Long-lived dark photons at the LHC

第十七届TeV工作组学术研讨会

2023年12月15-19日, 南京

- Enhanced Long-Lived Dark Photon Signals at the LHC Mingxuan Du, ZL, Van Que Tran JHEP 05 (2020) 055
 e-Print: 1912.00422 [hep-ph]
- Enhanced long-lived dark photon signals at lifetime frontier detectors Mingxuan Du, Rundong Fang, ZL, Van Que Tran *Phys.Rev.D* 105 (2022) 5, 055012
 e-Print: 2111.15503 [hep-ph]
- FACET: A new long-lived particle detector in the very forward region of the CMS experiment S. Cerci et al., JHEP 06 (2022) 110 • e-Print: 2201.00019 [hep-ex]

Dark photon models & constraints Our new (long-lived) dark photon models Long-lived dark photon signals at the LHC

Dark photon models & constraints

Our new (long-lived) dark photon models

Long-lived dark photon signals @ the LHC

Dark photon models & constraints

Hypercharge portal models \Longrightarrow dark photon

dark sector

[Holdom 1986] [Foot & He 1991] [Kors & Nath 2004] [Feldman, ZL, Nath, <u>hep-ph/0702123</u>, 372 cites]

Hypercharge portal models \Longrightarrow dark photon

[Holdom 1986] [Foot & He 1991] [Kors & Nath 2004] [Feldman, ZL, Nath, <u>hep-ph/0702123</u>, 372 cites]

$SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{V}$

 $\mathscr{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + g_D X_\mu \bar{\chi}\gamma^\mu \chi - \frac{\delta}{2}B_{\mu\nu}X^{\mu\nu} - \frac{M_1^2}{2}(\partial_\mu \sigma + X_\mu + \tilde{\epsilon} B_\mu)^2$

6

$SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X}$

 $\mathscr{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + g_D X_\mu \bar{\chi} \gamma^\mu \chi - \frac{\delta}{2} B_{\mu\nu} X^{\mu\nu} - \frac{M_1^2}{2} (\partial_\mu \sigma + X_\mu + \tilde{\epsilon} B_\mu)^2$

$SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X}$

 $\mathscr{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + g_D X_{\mu}\bar{\chi}\gamma^{\mu}\chi - \frac{\delta}{2}B_{\mu\nu}X^{\mu\nu} - \frac{M_1^2}{2}(\partial_{\mu}\sigma + X_{\mu} + \tilde{\epsilon}B_{\mu})^2$

$SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X}$

 $\mathscr{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + g_D X_{\mu}\bar{\chi}\gamma^{\mu}\chi - \frac{\delta}{2}B_{\mu\nu}X^{\mu\nu} - \frac{M_1^2}{2}(\partial_{\mu}\sigma + X_{\mu} + \tilde{\epsilon}B_{\mu})^2$ kinetic mixing

$SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X}$

 $\mathscr{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + g_D X_\mu \bar{\chi} \gamma^\mu \chi - \frac{\tilde{\delta}}{2} B_{\mu\nu} X^{\mu\nu} - \frac{M_1^2}{2} (\partial_\mu \sigma + X_\mu + \tilde{\epsilon} B_\mu)^2$ mass mixing kinetic mixing

$SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, **372** cites]

 $\mathscr{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + g_D X_\mu \bar{\chi} \gamma^\mu \chi - \frac{\tilde{\delta}}{2} B_{\mu\nu} X^{\mu\nu} - \frac{M_1^2}{2} (\partial_\mu \sigma + X_\mu + \tilde{\epsilon} B_\mu)^2$ mass mixing kinetic mixing

kinetic mixing $\delta \delta$ mass mixing $\tilde{\epsilon}$ are degenerate (w/o χ): only $\epsilon \sim (\tilde{\epsilon} - \delta)$ is physical

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, **372** cites] [see also Fabbrichesi+, 2005.01515, Dark Photon Review]

$$\mathscr{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + g_D X_\mu \bar{\chi} \gamma^\mu \chi - \frac{\tilde{\delta}}{2} B_{\mu\nu} X^{\mu\nu} - \frac{M_1^2}{2} (\partial_\mu \sigma + X_\mu + \tilde{\epsilon} B_\mu)^2$$

• $X_{\mu} \Longrightarrow A'_{\mu}$ (dark photon), if $M_1 \ll M_Z$ $\epsilon e Q_f A'_{\mu} \bar{f} \gamma^{\mu} f$ (SM sector) and $g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi$ (dark sector)

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, 372 cites]

[see also Fabbrichesi+, 2005.01515, Dark Photon Review]

$$\mathscr{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + g_D X_\mu \bar{\chi} \gamma^\mu \chi - \frac{\tilde{\delta}}{2} B_{\mu\nu} X^{\mu\nu} - \frac{M_1^2}{2} (\partial_\mu \sigma + X_\mu + \tilde{\epsilon} B_\mu)^2$$

- $X_{\mu} \Longrightarrow A'_{\mu}$ (dark photon), if M_1 $\epsilon e Q_f A'_{\mu} \bar{f} \gamma^{\mu} f$ (SM sector) and $g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi$ (dark sector)
- $X_{\mu} \Longrightarrow Z'_{\mu}$ (hypercharge-like), if $M_1 \gg M_Z$

$$\ll M_Z$$

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, **372** cites]

[see also Fabbrichesi+, 2005.01515, Dark Photon Review]

$$\mathscr{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + g_D X_\mu \bar{\chi} \gamma^\mu \chi - \frac{\tilde{\delta}}{2} B_{\mu\nu} X^{\mu\nu} - \frac{M_1^2}{2} (\partial_\mu \sigma + X_\mu + \tilde{\epsilon} B_\mu)^2$$

- $X_{\mu} \Longrightarrow A'_{\mu}$ (dark photon), if M_1
- $X_{\mu} \Longrightarrow Z'_{\mu}$ (hypercharge-like), if $M_1 \gg M_Z$

If A'_{μ} or Z'_{μ} is massive, χ is millicharged ($\epsilon e A_{\mu} \bar{\chi} \gamma^{\mu} \chi$) only when $\tilde{\epsilon} \neq 0$

$$\ll M_Z$$

$\epsilon e Q_f A'_{\mu} \bar{f} \gamma^{\mu} f$ (SM sector) and $g_D A'_{\mu} \bar{\chi} \gamma^{\mu} \chi$ (dark sector)

[Feldman, ZL, Nath, <u>hep-ph/0702123</u>, **372** cites] [see also Fabbrichesi+, 2005.01515, Dark Photon Review]

Limits on dark photon with mass below 1 MeV

 $\epsilon e Q_f A'_\mu \bar{f} \gamma^\mu f$

astro/cosmo probes

Limits on dark photon with mass above 1 MeV

accelerator probes

Limits on dark photon with mass above 1 MeV

dark photon interaction with SM particles

 $\epsilon e Q_f A'_\mu \bar{f} \gamma^\mu f$

long decay length \implies small coupling

Dark photon models & constraints

Our new (long-lived) dark photon models 2

Our new (long-lived) dark photon models

Long-lived dark photon signals @ the LHC

Long-lived dark photon signals

LLDP \implies small coupling \implies suppressed collider signals

[1503.06770]

Long-lived dark photon signals

- LLDP \implies small coupling \implies suppressed collider signals
- Go beyond the simple one U(1) picture BSM theories can predict multiple U(1)'s, e.g. SO(32) string theory [1503.06770]
- $SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X} \times U(1)_{C}$ Extend SM with 2 U(1)'s

Long-lived dark photon signals

- LLDP \implies small coupling \implies suppressed collider signals
- Go beyond the simple one U(1) picture BSM theories can predict multiple U(1)'s, e.g. SO(32) string theory [1503.06770]
- $SU(3)_{c} \times SU(2)_{I} \times U(1)_{V} \times U(1)_{X} \times U(1)_{C}$ Extend SM with 2 U(1)'s

Dirac fermion ψ charged under both U(1)'s $(g_F X_{\mu} + g_W C_{\mu}) \bar{\psi} \gamma^{\mu} \psi$

$SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X \times U(1)_C$

 $\mathscr{L}_{F} = -\frac{1}{4} \frac{X_{\mu\nu}^{2}}{2} - \frac{1}{2} (\partial_{\mu}\sigma_{1} + m_{1}\epsilon_{1}B_{\mu} + m_{1}X_{\mu})^{2}$ $SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X} \times U(1)_{C}$

 $\mathscr{L}_{F} = -\frac{1}{A} \frac{X_{\mu\nu}^{2}}{2} - \frac{1}{2} (\partial_{\mu}\sigma_{1} + m_{1}\epsilon_{1}B_{\mu} + m_{1}X_{\mu})^{2}$ $SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X} \times U(1)_{C}$ $\mathscr{L}_{W} = -\frac{1}{4}C_{\mu\nu}^{2} - \frac{1}{2}(\partial_{\mu}\sigma_{2} + m_{2}\epsilon_{2}B_{\mu} + m_{2}C_{\mu})^{2}$

 $\mathscr{L}_F = -\frac{1}{\Delta} \frac{X_{\mu\nu}^2}{2} - \frac{1}{2} (\partial_\mu \sigma_1 + m_1 \epsilon_1 B_\mu + m_1 X_\mu)^2$ $SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X} \times U(1)_{C}$ $\mathscr{L}_W = -\frac{1}{4}C_{\mu\nu}^2 - \frac{1}{2}(\partial_\mu\sigma_2 + m_2\epsilon_2B_\mu)$

$$+m_2 C_{\mu})^2$$

 $\mathscr{L}_F = -\frac{1}{\Delta} \frac{X_{\mu\nu}^2}{2} - \frac{1}{2} (\partial_\mu \sigma_1 + m_1 \epsilon_1 B_\mu + m_1 X_\mu)^2$ $SU(3)_{c} \times SU(2)_{L} \times U(1)_{V} \times U(1)_{X} \times U(1)_{C}$ $\mathscr{L}_{W} = -\frac{1}{4}C_{\mu\nu}^{2} - \frac{1}{2}(\partial_{\mu}\sigma_{2} + m_{2}\epsilon_{2}B_{\mu} + m_{2}C_{\mu})^{2}$

$$m^{2} = \begin{pmatrix} m_{2}^{2} & 0 \\ 0 & m_{1}^{2} \\ m_{2}^{2}\epsilon_{2} & m_{1}^{2}\epsilon_{1} & m \\ 0 & 0 \end{pmatrix}$$

[Du, ZL, Tran, 1912.00422]

4 by 4 mass square matrix in the basis of $V = (C, X, B, A^3)$

$m_2^2\epsilon_2$	0
$m_1^2 \epsilon_1$	0
$m_1^2 \epsilon_1^2 + m_2^2 \epsilon_2^2 + \frac{{g'}^2 v^2}{4}$	$\frac{g'gv^2}{4}$
$\frac{g'gv^2}{4}$	$\frac{g^2v^2}{4}$

14

$$m^{2} = \begin{pmatrix} m_{2}^{2} & 0 \\ 0 & m_{1}^{2} \\ m_{2}^{2}\epsilon_{2} & m_{1}^{2}\epsilon_{1} & m \\ 0 & 0 \end{pmatrix}$$

[Du, ZL, Tran, 1912.00422]

4 by 4 mass square matrix in the basis of $V = (C, X, B, A^3)$

$m_2^2\epsilon_2$	0
$m_1^2 \epsilon_1$	0
$m_1^2 \epsilon_1^2 + m_2^2 \epsilon_2^2 + \frac{{g'}^2 v^2}{4}$	$\frac{g'gv^2}{4}$
$\frac{g'gv^2}{4}$	$\frac{g^2v^2}{4}$

mass eigenstates: E = (Z', A', Z, A) via $V_i = O_{ij}E_j$

14

$$m^{2} = \begin{pmatrix} m_{2}^{2} & 0 \\ 0 & m_{1}^{2} \\ m_{2}^{2}\epsilon_{2} & m_{1}^{2}\epsilon_{1} & m \\ 0 & 0 \end{pmatrix}$$

determinant = $0 \implies$ massless photon

[Du, ZL, Tran, 1912.00422]

4 by 4 mass square matrix in the basis of $V = (C, X, B, A^3)$

mass eigenstates: E = (Z', A', Z, A) via $V_i = O_{ij}E_j$

14

$$m^{2} = \begin{pmatrix} m_{2}^{2} & 0 \\ 0 & m_{1}^{2} \\ m_{2}^{2}\epsilon_{2} & m_{1}^{2}\epsilon_{1} & m \\ 0 & 0 \end{pmatrix}$$

- - $\epsilon_1 = 0 = \epsilon_2 \Longrightarrow \text{decouple}$

[Du, ZL, Tran, 1912.00422]

4 by 4 mass square matrix in the basis of $V = (C, X, B, A^3)$

mass eigenstates: E = (Z', A', Z, A) via $V_i = O_{ij}E_j$

determinant = $0 \implies$ massless photon

14

vector and axial-vector couplings of neutral bosons

vector and axial-vector couplings between bosons & fermions

 $\bar{f}\gamma_{\mu}(v_{i}^{f}-\gamma_{5}a_{i}^{f})fE_{i}^{\mu}+v_{i}^{\psi}\bar{\psi}\gamma_{\mu}\psi E_{i}^{\mu}$

vector and axial-vector couplings of neutral bosons

vector and axial-vector couplings between bosons & fermions

 $\bar{f}\gamma_{\mu}(v_{i}^{f}-\gamma_{5}a_{i}^{f})fE_{i}^{\mu}+v_{i}^{\psi}\bar{\psi}\gamma_{\mu}\psi E_{i}^{\mu}$ $v_i^f = (g\mathcal{O}_{4i} - g'\mathcal{O}_{3i})T_f^3/2 + g'\mathcal{O}_{3i}Q_f$ $a_i^f = (g\mathcal{O}_{4i} - g'\mathcal{O}_{3i})T_f^3/2$

SM fermion v

SM fermion a

vector and axial-vector couplings of neutral bosons

vector and axial-vector couplings between bosons & fermions

 $\bar{f}\gamma_{\mu}(v_{i}^{f}-\gamma_{5}a_{i}^{f})fE_{i}^{\mu}+v_{i}^{\psi}\bar{\psi}\gamma_{\mu}\psi E_{i}^{\mu}$ $v_i^f = (g\mathcal{O}_{4i} - g'\mathcal{O}_{3i})T_f^3/2 + g'\mathcal{O}_{3i}Q_f$ $a_i^f = (g\mathcal{O}_{4i} - g'\mathcal{O}_{3i})T_f^3/2$ $v_i^{\psi} = g_W \mathcal{O}_{1i} + g_F \mathcal{O}_{2i}$

SM fermion v

SM fermion a

dark sector

hidden radiation channel

millicharged dark matter constraints

[see. e.g. Kovetz+ 1807.11482, Boddy+ 1808.00001, Puttter+ 1805.11616]

¹ millicharged DM abundance < 0.4%

experimental constraints

More recent constraints on millicharged particles from SENSEI, BEBC, Super-K etc [2305.04964] [2011.08153]

[2211.11469]

Dark photon models & constraints

Long-lived dark photon signals @ the LHC 3

Our new (long-lived) dark photon models

Long-lived dark photon signals @ the LHC

lifetime frontier detectors

3 types detectors: (1) far forward, (2) far transverse, (3) near timing

Detector	η	Distance from IP (m)	Decay volume (m^3)	LHC ru
FACET [3,4]	[6, 7.2]	100 (upstream)	12.3	Run 4 (2
FASER [5–9]	>9	480 (downstream)	0.047	Run 3 (2
FASER2 [9,10]	>6.87	480 (downstream)	15.7	HL-LH
AL3X [11]	[0.9, 3.7]	5.25 (upstream)	915.2	Run 5 (2
MoEDAL-MAPP [12]	~3.1	55 (upstream)	~150	Run 3 (2
CODEX-b [18,19]	[0.14, 0.55]	26 (transverse)	10 ³	Run 4 (2
MATHUSLA [13–17]	[0.64, 1.43]	60 (transverse)	2.5×10^{5}	HL-LH
ANUBIS [20]	[0.06, 0.21]	24 (transverse)	$\sim 1.3 \times 10^4$	HL-LH
CMS-MTD [21]	[-3,3]	1.17 (barrel), 3.04 (endcaps)	25.4	HL-LH
ATLAS-HGTD [22]	[2.4, 4]	3.5 (endcaps)	8.7	HL-LH
LHCb-TORCH [23,24]	[1.6, 4.9]	9.5 (beam direction)	• • •	HL-LH

Timing detectors at ATLAS/CMS/LHCb

CMS-TMD
ATLAS-HGTD
HC-TORCH

[https://cds.cern.ch/record/2296612/files/LHCC-P-009.pdf]

between tracker & calorimeter δt = 30 ps; pileup reduction & LLP

Time delay for NR long-lived particles

D

$$\Delta t = \frac{\ell_X}{\beta_X} + \frac{\ell_a}{\beta_a} - \frac{\ell_{\rm SM}}{\beta_{\rm SM}}$$

[Liu, Liu, Wang, 1805.05957]

Transverse detectors

CODEX-b
MATHUSLA
ANUBIS

MATHUSLA

[MATHUSLA, 2009.01693]

Far detectors

FASER and FASER2 FACET

FASER

[see 2308.05587 for FASER's new results]

[FASER 1901.00468]

FACET: a new long-lived particle detector in the very forward region of the CMS experiment

- S. Cerci,^{*a*,1} D. Sunar Cerci,^{*a*,1} D. Lazic,^{*b*} G. Landsberg,^{*c*,2} F. Cerutti,^{*d*}

- **B.** Isildak^{m,1} and V.Q. Tran^{n,o}

Published for SISSA by O Springer

RECEIVED: January 4, 2022 ACCEPTED: May 19, 2022 PUBLISHED: June 20, 2022

M. Sabaté-Gilarte,^d M.G. Albrow,^{e,2} J. Berryhill,^e D.R. Green,^e J. Hirschauer,^e S. Kulkarni,^f J.E. Brücken,^g L. Emediato,^h A. Mestvirishvili,^h J. Nachtman,^h Y. Onel,^h A. Penzo,^h O. Aydilek,ⁱ B. Hacisahinoglu,ⁱ S. Ozkorucuklu,^{i,2} H. Sert,ⁱ C. Simsek,^{*i*} C. Zorbilmez,^{*i*} I. Hos,^{*j*,1} N. Hadley,^{*k*} A. Skuja,^{*k*} M. Du,^{*l*} R. Fang,^{*l*} Z. Liu,^{*l*}

100 meter from CMS R = 50 cm pipe (vacuum)

[FACET, JHEP, 2201.00019]

[see Albrow's talk for variants]

Sensitivities from lifetime frontier detectors

Minimal DP

distance d

volume V

probability of decaying at distance L: (suppressed at large L, but NOT at small L)

probability of decaying at distance L: (suppressed at large L, but NOT at small L)

ratio between 2 far detectors (assuming isotropic)

probability of decaying at distance L: (suppressed at large L, but NOT at small L)

ratio between 2 far detectors (assuming isotropic)

larger & closer to IP is better (geometrical, w/o BG)

- Minimal dark photon models have suppressed long-lived dark photon signals at the LHC
- We build a new model by extending the SM with two U(1) gauge fields in the dark sector, where the dark photon is produced via another gauge boson and is not suppressed
- We study a new dark photon production channel at the LHC: hidden radiation, in additional to the proton bremsstrahlung and meson decay channels
- Far detectors (FASER & FACET) and timing detectors (CMS, ATLAS, LHCb) are sensitive to long-lived dark photons with small and large masses, respectively

additional slides

probability of decaying at distance L:

probability of decaying in (d, d + h):

LLDP decays inside volume V

LLDP decays inside a far detector

High-Granularity Timing Detector

- ATLAS upgrade detector for the high luminosity LHC
- uses LGAD sensors to measure time with $\sigma_t \sim 30-50$ ps per track until end of HL-LHC
- covers range $2.4 \leq |\eta| \leq 4.0$
- two disks positioned at $z = \pm 3.5m$ from the interaction point

[taken from Leopold's talk] 2,2m 12,5 cm

LHCb-TORCH

Figure 4.9: Schematic of TORCH detector for LHCb: (a) Front-on view of full detector; (b) View of single module showing focusing block and photodetector plane.

The precision of each track in the TORCH system is 15 ps

[CERN-LHCC-2017-003]

Mike Albrow 20231025

FACET FUTURE OPTIONS

FACET – A (baseline) with *large* pipe as JHEP paper but with beam pipe optimized for background reduction:

(Too late for Run4: Plan for Run 5 subject to feasibility from more studies) FACET – B (variant) with *standard* pipe, detectors as FACET-A (full azimuth): (Possible for Run4 – but would need modifications to LHC, e.g pipe supports) FACET – C (variant) *above standard* pipe : (smaller acceptance, no mods to LHC, easiest option. Area shown nominal example)

Contributions mainly: Mike Albrow Deniz Sunar Cerci Salim Cerci Suat Ozkorucuklu Aldo Penzo Burak Hacisahinoglu Orhan Aydilek

FACET

[Albrow's talk]

TRACK CALO

FASER

[2308.05587]

