

Quantum Computing for High Energy Physics

Dec. 17, 2023@第十七届TeV工作组学术研讨会

「「本国神学技术大学 Y.-Y. Li

Dec. 2023 @ 南京

Why Quantum Computing

lattice non-perturbative calculations

$$\langle O \rangle = \frac{\sum_{\mathcal{C}} O(\mathcal{C}) W(\mathcal{C})}{\sum_{\mathcal{C}} W(\mathcal{C})}$$

Imaginary time problem : $W(\mathcal{C}) \sim \exp(-S(\mathcal{C}))$

complex S(C) for non vanishing θ real-time dynamics, finite density... Sign Problem!!!

configuration space \mathcal{C} is exponentially large in system size out-of-equilibrium, non-perturbative higher order processes, quantum interference cannot be solved classically due to theoretical or computational limitations:

sign problem or rare events that has exponential-scaling of the complexity

Why Quantum Computing

lattice non-perturbative calculations

$$\langle O \rangle = \frac{\sum_{\mathcal{C}} O(\mathcal{C}) W(\mathcal{C})}{\sum_{\mathcal{C}} W(\mathcal{C})}$$

Imaginary time problem : $W(\mathcal{C}) \sim \exp(-S(\mathcal{C}))$

complex S(C) for non vanishing θ real-time dynamics, finite density... Sign Problem!!!

configuration space \mathcal{C} is exponentially large in system size $\langle x|e^{-iHt}|y
angle = \int \mathcal{D}\phi e^{iSt}$

[*PRX Quantum* 4 (2023) 2, 027001]

Quantum Simulation for High Energy Physics

Christian W. Bauer,^{1, a} Zohreh Davoudi,^{2, b} A. Baha Balantekin,³ Tanmoy Bhattacharya,⁴ Marcela Carena,^{5, 6, 7, 8} Wibe A. de Jong,¹ Patrick Draper,⁹ Aida El-Khadra,⁹ Nate Gemelke,¹⁰ Masanori Hanada,¹¹ Dmitri Kharzeev,^{12, 13} Henry Lamm,⁵ Ying-Ying Li,⁵ Junyu Liu,^{14, 15} Mikhail Lukin,¹⁶ Yannick Meurice,¹⁷
Christopher Monroe,^{18, 19, 20, 21} Benjamin Nachman,¹ Guido Pagano,²² John Preskill,²³ Enrico Rinaldi,^{24, 25, 26} Alessandro Roggero,^{27, 28} David I. Santiago,^{29, 30} Martin J. Savage,³¹ Irfan Siddiqi,^{29, 30, 32} George Siopsis,³³ David Van Zanten,⁵ Nathan Wiebe,^{34, 35} Yukari Yamauchi,² Kübra Yeter-Aydeniz,³⁶ and Silvia Zorzetti⁵

Rapidly improving universal quantum computing hardware

Superconducting Processor

1121 qubits 54 qubits

Photon qubits

九章三号 - 255 qubits

IBM Quantum

133 QUBITS

22 qubits

multi-chip quantum processor

80 qubits

neutral atoms 48 logical Qubits, hundreds of entangling logical operations

Rapidly improving universal quantum computing hardware

Development Roadmap

	·											
	2016-2019 🛛	2020 🛛	2021 🛛	2022 🛛	2023 🛛	2024	2025	2026	2027	2028	2029	2033+
	Run quantum circuits on the IBM Quantum Platform	Release multi- dimensional roadmap publicly with initial aim focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serverless and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000's of logical qubits unlocking the full power of quantum computing
Data Scientist						Platform						
						Code assistant 🥹	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Researchers					Middleware							
					Quantum 🔗 Serverless	Transpiler Service 🔌	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
Quantum Physicist			Qiskit Runtime									
, njenote	IBM Quantum Experience	0	QASM3 🥪	Dynamic circuits 🛛 🥹	Execution Modes 🛛 🥥	Heron (5K) 🕹	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue Jay (1B)
	Early 📀	Falcon Benchmarking	0	Eagle Benchmarking	6	5k gates 133 qubits	5k gates 156 qubits	7.5k gates 156 qubits	10k gates 156 qubits	15k gates 156 qubits	100M gates 200 qubits	1B gates 2000 qubits
	5 qubits 16 qubits 20 qubits 53 qubits	27 qubits		127 qubits		Classical modular 133x3 = 399 qubits	Quantum modular 156x7 = 1092 qubits	Quantum modular 156x7 = 1092 qubits	Quantum modular 156x7 = 1092 qubits	Quantum modular 156x7 = 1092 qubits	Error corrected modularity	Error corrected modularity

Innovation Roadmap

Software Innovation	IBM Quantum Quantum Experience	Qiskit Circuit and operator API with compilation to multiple targets	Application modules Modules for domain specific application and algorithm workflows	Qiskit Runtime Performance and abstract through Primitives	Serverless Demonstrate concepts of quantum centric- supercomputing	AI enhanced quantum Prototype demonstrations of AI enhanced circuit transpilation	Resource management System partitioning to enable parallel execution	Scalable circuit knitting Circuit partitioning with classical reconstruction at HPC scale	Error correction decoder Demonstration of a quantum system with real-time error correction decoder			
Hardware Innovation	Early Canary Penguin 5 qubits 20 qubits Albatross Prototype 16 qubits 53 qubits	Falcon Demonstrate scaling with I/O routing with Bump bonds	Hummingbird Demonstrate scaling with multiplexing readout	Eagle Demonstrate scaling with MLW and TSV	Osprey Enabling scaling with high density signal delivery	Condor Single system scaling and fridge capacity	Flamingo Demonstrate scaling with modular connectors	Kookaburra Demonstrate scaling with nonlocal c-coupler	Demonstrate path to improved quality with logical memory	Cockatoo Demonstrate path to improved quality with logical communication	Starling Demonstrate path to improved quality with logical gates	
Executed by IBMOn target						Heron Architecture based on tunable- couplers	Crossbill m-coupler					
IBM Quantum / © 2023 IBM Corporation												

IBM Quantum

Quantum Simulation for Quantum Field Theory

Bosonic and fermionic DOF, Dynamical and coupled global and local (gauge) symmetries, Relativistic - particle number non-conservation, Nontrivial vacuum state in strongly interacting theories

"Galactic Algorithms"

Discretization
infinities in QFT

$$H = \int d^d x \operatorname{Tr} \left(E^2 + B^2 \right) \qquad U_{\Box} = \exp \left\{ ig \oint_{\Box} A \cdot dx \right\}$$

$$U_i(x) = e^{ig \int_{\alpha}^{\Omega} dt A_i(x+t\hat{u})}$$
Kogut and Susskind formulation: [Phys. Rev. D 11, 395 (1975)]

$$H = -t \sum_{(xy)} s_{xy} \left(\psi_x^{\dagger} U_{xy} \psi_y + \psi_y^{\dagger} U_{xy}^{\dagger} \psi_x \right) + m \sum_x s_x \psi_x^{\dagger} \psi_x + \frac{g^2}{2} \sum_x E(x)^2 - \frac{1}{4g^2} \sum_{\Box} \operatorname{Tr} \left(U_{\Box} + U_{\Box}^{\dagger} \right)$$
energy of energy of energy of electric field magnetic field

[J. Carlsson, et al, hep-lat/0105018]

$$P_{ij}(x) = 1 - \frac{1}{N} \operatorname{ReTr} \exp\left\{ ig \oint_{\Box} A \cdot dx \right\} \approx \frac{g^2 a^4}{2N} \operatorname{Tr} \left\{ F_{ij}(x) F_{ij}(x) \right\} + \frac{g^2 a^6}{12N} \operatorname{Tr} \left\{ F_{ij}(x) (D_i^2 + D_j^2) F_{ij}(x) \right\} + \dots$$

deviations from the continuum start from a^2 error, classical computational resources proportional a^{-k} to for Wilson action

$$R_{ij}(x) = 1 - \frac{1}{N} \operatorname{ReTr}\left\{ \underbrace{-}_{i} \int j \right\} = \frac{4g^2 a^4}{2N} \operatorname{Tr}\left\{F_{ij}(x)F_{ij}(x)\right\} + \frac{4g^2 a^6}{24N} \operatorname{Tr}\left\{F_{ij}(x)(4D_i^2 + D_j^2)F_{ij}(x)\right\} + \dots$$

deviations from the continuum starts from a^2g^2 at quantum level

[M. Carena, H. Lamm, **YYL**, W. Liu, PRL. **129**, 051601]

Digitization
$$|q\rangle^N \rightarrow |G\rangle$$

infinities in QFT
Kogut and Susskind formulation: [Phys. Rev. D 11, 395 (1975)]

$$H = -t \sum_{\langle xy \rangle} s_{xy} (\psi_x^{\dagger} U_{xy} \psi_y + \psi_y^{\dagger} U_{xy}^{\dagger} \psi_x) + m \sum_x s_x \psi_x^{\dagger} \psi_x + \frac{g^2}{2} \sum_x \mathbf{E}(x)^2 - \frac{1}{4g^2} \sum_{\Box} \operatorname{Tr} \left(U_{\Box} + U_{\Box}^{\dagger} \right)$$

continuous field variables

Digitization
$$|q\rangle^{N} \rightarrow |G\rangle$$

infinities in QFT
Kogut and Susskind formulation: [Phys. Rev. D 11, 395 (1975)]

$$H = -t \sum_{\langle xy \rangle} s_{xy} (\psi_{x}^{\dagger} U_{xy} \psi_{y} + \psi_{y}^{\dagger} U_{xy}^{\dagger} \psi_{x}) + m \sum_{x} s_{x} \psi_{x}^{\dagger} \psi_{x} + \frac{g^{2}}{2} \sum_{x} \mathbf{E}(x)^{2} - \frac{1}{4g^{2}} \sum_{\Box} \operatorname{Tr} \left(U_{\Box} + U_{\Box}^{\dagger} \right)$$
continuous field variables

rapid development with its own pros and cons

rate of convergences to the infinite-dimensional theory, resource requirements, local and global gauge symmetry

Casimir dynamics, Natalie et al

LSH formalism, Mathur et al, Anishetty et al

Group-element basis and discrete subgroups, Erez et al, Lamm et al, Carena et al Magnetic or dual representations, Mathur et al, Bauer et al

Tensor renormalization group (character expansion, Fourier series), Meurice et al

Light-front quantization (light-cone instead of fixed time-slicing), Mannheim et al

Quantum link models/qubit regularization (critical point), Brower et al

Matrix models (dimension reduction), Shen et al

infinities in QFT

Kogut and Susskind formulation: [Phys. Rev. D 11, 395 (1975)]

$$H = -t\sum_{\langle xy\rangle} s_{xy} \left(\psi_x^{\dagger} U_{xy} \psi_y + \psi_y^{\dagger} U_{xy}^{\dagger} \psi_x \right) + m\sum_x s_x \psi_x^{\dagger} \psi_x + \frac{g^2}{2} \sum_x \mathbf{E}(x)^2 - \frac{1}{4g^2} \sum_{\Box} \operatorname{Tr} \left(U_{\Box} + U_{\Box}^{\dagger} \right)$$

In angular momentum basis, truncated with cut-off *SU*(3) *for one plaquette*

$$\sum_{b} |\hat{\mathbf{E}}^{(b)}|^2 \ket{p,q} = rac{p^2 + q^2 + pq + 3p + 3q}{3} \ket{p,q}$$

Ciavarella, Klco, and Savage, arXiv:2101.10227 [quant-ph] continuous field variables

group element basis truncated with discrete subgroup

$\xi_{1- ext{loop}}$		ξ
	BI	SU(2) [111]
2.097	2.099(1)	
4.278		4.35(19)
4.207		4.22(11)
1.351	1.369(19)	
4.136		4.08(9)
1.351	1.36(1)	

Carena, Gustafson, Lamm, **YYL**, Liu, PRD **106**, 114504 (2022)

Digitization
$$|q\rangle^{N} \rightarrow |G\rangle$$

infinities in QFT
Kogut and Susskind formulation: [Phys. Rev. D 11, 395 (1975)]

$$H = -t \sum_{\langle xy \rangle} s_{xy} (\psi_{x}^{\dagger} U_{xy} \psi_{y} + \psi_{y}^{\dagger} U_{xy}^{\dagger} \psi_{x}) + m \sum_{x} s_{x} \psi_{x}^{\dagger} \psi_{x} + \frac{g^{2}}{2} \sum_{x} \mathbf{E}(x)^{2} - \frac{1}{4g^{2}} \sum_{\Box} \operatorname{Tr} \left(U_{\Box} + U_{\Box}^{\dagger} \right)$$
continuous field variables

Gauss's law operator

$$G^{a}(x) = -E_{L}^{a}(x) + E_{R}^{a}(x-1) + \psi^{\dagger}(x)T^{a}\psi(x)$$

$$G_x^a \left| P \right\rangle = 0$$

Gauge symmetry used for error corrections, see Halimeh, et al. Lamm, et al. ...

Quantum signal processing, blocking encoding, off-diagonal Hamiltonian expansion, etc... PRX Quantum 4 (2023) 2, 027001

$$\mathcal{U}(t) = e^{-iH_{KS}t}$$
$$\approx \left[e^{-i\delta tK_{KS}}e^{-i\delta tV_{KS}}\right]^{t/\delta t}$$

$$K_{KS} = \sum_{\mathbf{x},i} \frac{g_t^2}{a} \operatorname{Tr} L_i^2(\mathbf{x})$$
$$V_{KS} = -\sum_{\mathbf{x},i} \frac{2}{a} \operatorname{Re} \operatorname{Tr} P_i$$

$$V_{KS} = -\sum_{\mathbf{x},i < j} \frac{2}{g_s^2 a} \operatorname{Re} \operatorname{Tr} P_{ij}(\mathbf{x})$$

$$P_{ij}(x) = 1 - \frac{1}{N} \operatorname{ReTr}\left\{ \underbrace{ \overbrace{ i}}_{i} j \right\}$$

 $\underbrace{P_{xy}}_{1}^{2} \quad \operatorname{Tr}\{U_{1}U_{2}U_{3}^{\dagger}U_{4}^{\dagger}\}$

General Method
[H. Lamm, et al, arXiv:1903.08807]

$$G$$
-register : $|g\rangle$
 $\mathfrak{U}_{\times} |g\rangle |h\rangle = |g\rangle |gh\rangle$
 $\mathfrak{U}_{-1} |g\rangle = |g^{-1}\rangle$
 $\mathfrak{U}_{\mathrm{Tr}}(\theta) |g\rangle = e^{i\theta \operatorname{Re} \operatorname{Tr} g} |g\rangle$
 $\mathfrak{U}_{F} \sum_{g \in G} f(g) |g\rangle = \sum_{\rho \in \hat{G}} \hat{f}(\rho)_{ij} |\rho, i, j\rangle$

4

3

Propagation $\mathcal{U} \ket{\psi_0} \rightarrow \ket{\psi(t)}$

$$H_{I} = K_{I} + V_{I}$$
$$V_{I} = \beta_{V0}V_{KS} + \beta_{V1}V_{\text{rect}} \cdot$$
$$K_{I} = \beta_{K0}K_{KS} + \beta_{K1}K_{2L}$$

[M. Carena, H. Lamm, YYL, W. Liu, PRL. 129, 051601]

BT discrete group with 24 group elements $g = (-1)^m \mathbf{i}^n \mathbf{j}^o \mathbf{l}^{p+2q}$

|qponm
angle

[M. Carena, H. Lamm, YYL, W. Liu, PRL. 129, 051601]

H

 $R_z(\theta)$

 $R_z(\theta)$

1

() いiversity of Science and Technology of China Y.-Y. Li

Propagation $\mathcal{U} \ket{\psi_0} \rightarrow \ket{\psi(t)}$

demonstration of improved Hamiltonian is allowed in the near future

[M. Carena, H. Lamm, **YYL**, W. Liu, PRL. **129**, 051601]

() いiversity of Science and Technology of China Y.-Y. Li

To reach the observables — How to do ...

Dec. 2023 @ 南京

To reach observables in the continuum limit

TRAJECTORY TO THE CONTINUUM LIMIT

Benchmarks

"It is time to go"

SUMMARY and OUTLOOK

Quantum computing can access to quantities in high energy physics which are intractable with classical methods

So many things to do, ... and lots should be done to before scalable noise-resilient ones are available.

Theory investigations, algorithmic developments, benchmark study, hardware co-design,...

Thank you

BACK UP

1897-2012: electron, muon, tau lepton, gluon, W and Z boson, top quark, tau neutrino, Higgs boson

1967-Now naturalness problem

strong dynamics

complex action

rare events

theoretical inputs to colliders

33

Propagation

 $\mathcal{U} \ket{\psi_0}
ightarrow \ket{\psi(t)}$

Anisotropic Parameter $\xi = a/a_t$ Renormalization

- numerical results is pretty tedious—saving measurement on the Euclidean side
- Preferred for analytical continuation
- Determine the fixed anisotropic trajectory
- Continuous group agrees quite well with their discrete subgroups

$eta_{m{\xi}}$	N_s	N_t	$ar{\xi}$	$\xi_{1- ext{loop}}$		ξ
					BI	SU(2) [111]
D = 3						
2.00	36	72	2.00	2.097	2.099(1)	• • •
2.00	$12^{\mathbf{a}}$	60^{a}	4.00	4.278	•••	4.35(19)
2.65	16^{a}	64^{a}	4.00	4.207	•••	4.22(11)
3.00	36	72	1.33	1.351	1.369(19)	•••
4.00	24^{a}	96 ^a	4.00	4.136	•••	4.08(9)
D = 4						
3.0	36	72	1.33	1.351	1.36(1)	•••

[M. Carena, E. Gustafson, H. Lamm, YYL, W. Liu, PRD 106 11, 114504]

Theoretical inputs to colliders

Parton Shower

Long-distance dynamics - dominated by massless modes, high multiplicity final states

 $\sigma = H \otimes J_1 \otimes \cdots \otimes J_n \otimes S$

collinear

Lattice: in principle, sign problem State-of-art tech (MCMC): probability level—interference not properly included

[arXiv:2102.05044, arXiv: 1904.03196, PRD 103, 076020, PRD 106, 056002,...]

-Now-: precision measurement

