Progress for Perturbative QCD at the LHC Hua Xing Zhu Peking University

> Southeast University, Nanjing December 15-19, 2023

Plan of this talk

Precision phenomenology for the LHC

Indispensable part of QCD

Probing structure of Quantum Field Theory

Plan of this talk

Precision phenomenology for the LHC

Probing Quantum Field

Indispensable

Success of the LHC precision program

stanc	ard model lotal i	roduction cross a		ments	$\int \mathcal{L} dt$	Reference
	$\sigma = 96.07 \pm 0.18 \pm 0.91$ mb (data)			[[tb]	
рр	COMPETE HPR1R2 (theory) $a = 95.35 \pm 0.38 \pm 1.3$ mb (data)		<u></u>		50×10 ⁻	PLB 761 (2016) 158
-	COMPETE HPR1R2 (theory) $\sigma = 190.1 \pm 0.2 \pm 6.4$ nb (data)	AILAS Preliminary		<u> </u>	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (20
• /	DYNNLO + CT14NNLO (theory) $\sigma = 112.69 + 3.1 \text{ nb} (\text{data})$, '	1 ¥ 1	0.081	PLB 759 (2016) 601
V	DYNNLO + CT14NNLO (theory) $\sigma = 98.71 \pm 0.028 \pm 2.191$ nb (data)	$\sqrt{s} = 7.8,13$ TeV			20.2	EPJC 79 (2019) 760
	DYNNLO + CT14NNLO (theorý) $\sigma = 58.43 \pm 0.03 \pm 1.66$ nb (data)		<u>_</u> Y	- <u> </u>	4.6	EPJC // (2017) 367
,	DYNNLO+CT14 NNLO (theory) $\sigma = 34.24 \pm 0.03 \pm 0.92$ nb (data)		, '		3.2	JHEP 02 (2017) 117
-	DYNNLO+CT14 NNLO (theory) $\sigma = 29.53 \pm 0.03 \pm 0.77$ nb (data)				20.2	JHEP 02 (2017) 117
	DYNNLO+CT14 NNLO (theory) $\sigma = 826.4 \pm 3.6 \pm 19.6 \text{ pb} (\text{data})$	b	Ŷ		4.6	SHEP 02 (2017) 117
-	top++ NNLO+NNLL (theorý) $\sigma = 242.9 \pm 1.7 \pm 8.6 \text{ pb} (\text{data})$, [,] [,]		¥	36.1	EPJC 80 (2020) 528
t	top++ NNLO+NNLL (theory) $\sigma = 182.9 \pm 3.1 \pm 6.4$ pb (data)	4		1	20.2	EPJC 74 (2014) 3109
	top++ NNLO+NNLL (theory) $\sigma = 247 \pm 6 \pm 46 \text{ pb} \text{ (data)}$				4.6	EPJC 74 (2014) 3109
	NLO+NLL (theory) $\sigma = 89.6 \pm 1.7 + 7.2 - 6.4 \text{ pb} (data)$, H			3.2	SHEP 04 (2017) 000
t–chan	NLO+NLL (theory) $\sigma = 68 \pm 2 \pm 8 \text{ pb} \text{ (data)}$, [₽]			20.3	EPJC // (2017) 531
	NLO+NLL (theory) $\sigma = 94 \pm 10 + 28 - 23 \text{ pb} \text{ (data)}$				4.6	HER 01 (2018) 62
N/+	NLO+NNLL (theory) $\sigma = 23 \pm 1.3 + 3.4 - 3.7$ pb (data)	, P			3.2	
Vť	NLO+NLL (theory) $\sigma = 16.8 \pm 2.9 \pm 3.9$ pb (data)	4			20.3	DIR 716 142 150 (2012)
	NLO+NLL (theory) $\sigma = 55.5 \pm 3.2 + 2.4 - 2.2 \text{ pb}$ (data)				2.0	PLB / 16, 142-159 (2012)
	LHC-HXSWG YR4 (theory) $\sigma = 27.7 \pm 3 + 2.3 - 1.9$ pb (data)	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲		"	139	ATLAS-CONF-2022-002
	LHC-HXSWG YR4 (theory) $\sigma = 22.1 + 6.7 - 5.3 + 3.3 - 2.7$ pb (data)	La construction de la constructi			20.3	EPJC 76 (2016) 6
	LHC-HXSWG YR4 (theory) $\sigma = 130.04 \pm 1.7 \pm 10.6$ pb (data)	¥	Theory		4.5	EPJC 76 (2010) 6
////	NNLO (theory) $\sigma = 68.2 \pm 1.2 \pm 4.6$ pb (data)	ب ۲		I 🖌 I	20.2	PLR 763 114 (2016)
vvv	NNLO (theory) $\sigma = 51.9 \pm 2 \pm 4.4$ pb (data)	4	$1 \text{HC} \text{ nn } \sqrt{s} = 13 \text{ TeV}$		20.3	Phys. Rev. D 87 (2013) 11:
	NNLO (theory) $\sigma = 51 \pm 0.8 \pm 2.3$ pb (data)	¥		H K H	4.0	arXiv:1408.5243
V7	MATRIX (NNLO) (theory) $\sigma = 24.3 \pm 0.6 \pm 0.9$ pb (data)	<u>ب</u> ۲	Data	X	20.2	PRD 93, 092004 (2016)
٧Z	MATRIX (NNLO) (theory) $\sigma = 19 + 1.4 - 1.3 \pm 1$ pb (data)	<u>d</u>	SIAI stat⊕ svet		20.3	ED IC 72 (2012) 2172
	MATRIX (NNLO) (theory) $\sigma = 17.3 \pm 0.6 \pm 0.8$ pb (data)	¥		- ¥	4.0	PRD 97 (2012) 2175
7	Matrix (NNLO) & Sherpa (NLO) (theory) $\sigma = 7.3 \pm 0.4 + 0.4 - 0.3$ pb (data)	ب م	LHC pp $\sqrt{s} = 8$ TeV	<mark>"</mark> [20.2	ILER 01 000 (2017)
.∠	NNLO (theory) $\sigma = 6.7 \pm 0.7 + 0.5 - 0.4$ pb (data)	A	Data		20.5	JHEP 03, 128 (2013)
	NNLO (theory) $\sigma = 4.8 \pm 0.8 + 1.6 - 1.3$ pb (data)	^	stat		4.0	PLB 735 (2014) 311
s-chan	NLO+NNL (theory) $\sigma = 870 \pm 130 \pm 140$ fb (data)		stat ⊕ syst —		20.3	PRD 99, 072009 (2019)
ŧW	Madgraph5 + aMCNLO (theory) $\sigma = 369 + 86 - 79 \pm 44$ fb (data)		$1 \text{ HC } \text{pp} \sqrt{c} = 7 \text{ TeV}$		20.2	HEP 11 172 (2015)
	$\sigma = 990 \pm 50 \pm 80 \text{ fb } (\text{data})$				130	Fur Phys. J. C. 81 (2021) 7
īΖ	Madgraph5 + aMCNLO (theory) $\sigma = 176 + 52 - 48 \pm 24$ fb (data)		• Data		20.2	JHEP 11 172 (2015)
\/\A/\A/	HELAC-NLO (theory) $\sigma = 0.82 \pm 0.01 \pm 0.08$ pb (data)		stat stat		130	or Xiv:2201 12045
	NLO QCD (theory) $\sigma = 0.55 \pm 0.14 \pm 0.15 - 0.13 \text{ pb} \text{ (data)}$		Siai & 5y5i		70.8	PLB 798 (2019) 134913
	Sherpa 2.2.2 (theory) $\sigma = 24 \pm 4 \pm 5$ fb (data)	PP			130	IHEP 11 (2021) 118
					139	
10	-5 10-4 10-3 10-2 10-	-1 1 101 102 103	104 105 106 1011	0510152025		
10	10 10 10 10 10	$10^{-}10^{-}10^{-}$	10 10 10 10 10-	0.5 1.0 1.5 2.0 2.5	Statu	s: February 2022
			- [nh]	data/thaany		-

A great triumph of The **Standard Model**

But we should let no stone left unturned

Stress-test The Standard Model to its extreme!

But let's recall some history

anomalous magnetic moment of electron

$$g = 2 + 2a_e$$

$$g = 2 + 2 \times \frac{\alpha}{2\pi} + \cdots$$
$$= 2 + 0.0023228 + \cdots$$

Lead to establishment of QED!

B الحضما الحضما المتصار المتصار المتصار hand hand hand المجمل المجمل المرجما with with the المركمة الأركمة الأركمة الأركمة الأركمة الأركمة الأركمة

 $a_{\mu} = 0.001\,165\,920\,61(41)$ $a_{\mu}^{
m SM} = a_{\mu}^{
m QED} + a_{\mu}^{
m EW} + a_{\mu}^{
m hadron}$ $= 0.001\,165\,918\,04(51)$

Looking for new physics at the 8th digit!

Deficiencies in theoretical predictions

event isotropy: an event shape observable that measures the departure from perfect isotropy of collider event

C. Cesarotti, J. Thaler

Theoretical predictions are far from perfect. Substantial space for progress!

Two faces of QCD

DGLAP evolution

 $\mu^{2} \frac{\partial}{\partial \mu^{2}} f_{i}(x,\mu^{2}) = \frac{\alpha_{S}(\mu^{2})}{2\pi} \sum_{i} \int_{x}^{1} \frac{dy}{y} f_{j}(y,\mu^{2}) P_{ij}(x/y,\alpha_{S}(\mu^{2}))$

One loop: D. Gross, F. Wilczek, 1973 (twist operator) Gribov, Lipatov; Altarelli, Parisi; Dokshitzer, 1976-1977

Two loops: G. Curci, W. Furmanski and R. Petronzio, 1980

Three loops: S. Moch, J. Vermaseren, A. Vogt, 2004

leading transcendentality: QCD => N=4 SYM

Integrability in N=4 SYM:

Towards 4 loops: S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt: planar non-singlet

Towards DGLAP at 4 loops Relation between twist-2 operator and DGLAP kernel

$$\gamma(n) = -\int_0^1 dx x^{n-1} P(x)$$

$$O_{\rm ns}(n) = \frac{i^{n-1}}{2} \bigg[\bar{\psi}_{i_1} \Delta \cdot \gamma (\Delta \cdot D)_{i_1 i_2} (\Delta \cdot D)_{i_2 i_3} \cdots (\Delta \cdot D)_{i_{n-1} i_n} \frac{\lambda_k}{2} \psi_{i_n} \bigg], \ k = 3, \cdots N_f^2 - 1$$

Computation with fixed moment in this way quickly explode in complexity Turn fixed-order derivative into a generating function!

 $A_{ij} = \langle j(p) | O_i | j(p) \rangle$ with $p^2 < 0$

T. Gehrmann, A. von Manteuffel, V. Sotnikov, Tong-Zhi Yang, 2023

$$t^{n} \left(\Delta \cdot p\right)^{n-1} = \frac{\iota}{1 - t\Delta \cdot p}$$

Non-planar Nf coefficient are now calculable!

Precision top quark physics

ATLAS achieves highest-energy detection of quantum entanglement

28 September 2023 | By ATLAS Collaboration

Call for production and decay of top pair to high precision!

Bernreuther, Brandenburg, Zong-Guo Si, P. Uwer, 2004

Top quark decay:

NLO: M. Jezabek and J. H. Kuhn (1989, approx.) A. Czarnecki, (1990, approx.) Chong Sheng Li, J. Oakes, T. C. Yuan, (1991, exact)

NNLO: Jun Gao, Chong Sheng Li, HXZ, 2012 M. Brucherseifer, F. Caola, and K. Melnikov 2013

Long-Bing Chen, Hai Tao Li, Jian Wang, Yefan Wang, 2022 (analytic) 10

Top decay at N3LO

Top-Quark Decay at Next-to-Next-to-Next-to-Leading Order in QCD

Long Chen,^{1,*} Xiang Chen,^{2,†} Xin Guan,^{2,‡} and Yan-Qing Ma^{2,3,§}

Analytic three-loop QCD corrections to top-quark and semileptonic $b \rightarrow u$ decays

Long-Bin Chen,¹ Hai Tao Li,^{2,*} Zhao Li,^{3,4,5,†} Jian Wang,^{2,‡} Yefan Wang,^{2,§} and Quan-feng Wu^{3,4,¶}

current experimental uncertainty

See also Jian Wang's talk

	$\delta_b^{(i)}$	$\delta^{(i)}_W$	$\delta^{(i)}_{ m EW}$	$\delta^{(i)}_{ m QCD}$	$\Gamma_t [{ m GeV}]$
LO	-0.273	-1.544	—	—	1.459
NLO	0.126	0.132	1.683	-8.575	$1.361\substack{+0.0091\\-0.0130}$
NNLO	*	0.030	*	-2.070	$1.331\substack{+0.0055\\-0.0051}$
N ³ LO	*	0.009	*	-0.667	$1.321\substack{+0.0025\\-0.0021}$

Expect ten times of more data in the full LHC run. Call for even more precise theory prediction!

B. Mistlberger, 2018

R. Lee, A. von Manteuffel, R. Schabinger, A. Smirnov, V. Smirnov, M. Steinhauser, 2022

Soft photon theorem

$$M_{3}(\{p_{i}\}, k, \epsilon(k)) = \sum_{i} \delta_{i} e_{i} \frac{p_{i}^{\mu}}{p_{i} \cdot k} [\epsilon_{\mu}(k)$$

Weinberg's soft theorem, 1965

The soft photon theorem [1–5] relates the leading infrared behavior of scattering amplitudes with and without single soft photon emission

$$\langle p_{m+1}, \dots | a_{\alpha}(q) \mathcal{S} | p_1, \dots \rangle = S_0 \langle p_{m+1}, \dots | \mathcal{S} | p_1, \dots \rangle + \mathcal{O}(q^0)$$
 (1.1)

where p_k is the momentum of the kth particle and a_{α} annihilates the momentum $q \to 0$ photon. The soft factor S_0 (equation (2.1) below) has a pole in q. The formula (1.1) is exact as long as there are no magnetic monopoles among the asymptotic particles. In this paper we argue that the general form of the relation (1.1) remains valid in the presence of monopoles, but the formula for S_0 is corrected. Electromagnetic duality transformations

A. Strominger, 2015

Amplitude with two charged line emitting a soft photon

Low, 1958; Burnett, Kroll, 1968

It is widely believed that Weinberg's soft photon theorem is exact to all orders.

But actual calculation reveals that it's non-vanishing!

Yao Ma, G. Sterman, A. Venkata, 2023

Plan of this talk

Precision phenomenology for the LHC

Probing structure of Quantum Field Theory

Indispensable part of QCD

Unreasonable simplicity of Quantum Field Theory

The Chinese Magic Zhan Xu, Da-Hua Zhang, Li Chang, 1985

Result of a brute force calculation:

+30 more pages

 $A(1^+, 2^+, \cdots, i^-, \cdots, j^-, \cdots, n^+) = \frac{\langle \cdot \cdot \rangle}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n-1, n \rangle}$

Parke, Taylor, 1988

The symbol magic

Goncharov

$$\begin{aligned} R_6^{(2)}(u_1, u_2, u_3) &= \sum_{i=1}^3 \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \operatorname{Li}_4(1 - 1/u_i) \right) \\ &- \frac{1}{8} \left(\sum_{i=1}^3 \operatorname{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72}. \end{aligned} \tag{3}$$
$$u_1 &= \frac{s_{12}s_{45}}{s_{123}s_{345}}, \quad u_2 &= \frac{s_{23}s_{56}}{s_{234}s_{123}}, \quad u_3 &= \frac{s_{34}s_{61}}{s_{345}s_{234}}, \qquad x_i^{\pm} = u_i x^{\pm}, \quad x^{\pm} = \frac{u_1 + u_2 + u_3 - 1 \pm \sqrt{\Delta}}{2u_1 u_2 u_3}, \end{aligned}$$

Correct choice of variables

A. Goncharov, M Spradlin, C. Vergu, A. Volovich, 2010

Special functions in Feynman integrals Who ordered those functions?

 $\log(x) \longrightarrow \operatorname{Li}_2(x) \longrightarrow \operatorname{Li}_n(x), \operatorname{HPL}$

differential equations

$$[\{n_1, n_2, \cdots, n_m\}, x] \longrightarrow$$

$$\begin{split} K(w^2) &= \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-w^2x^2)}}, \qquad 0 < \\ E(w^2) &= \int_0^1 dx \sqrt{\frac{1-w^2x^2}{1-x^2}}, \qquad 0 < w^2 < 1 \end{split}$$

 $\begin{array}{rcl} & \text{Kachov, 1981} & \text{Remiddi, Gehrmann, 1999} & \text{Henn, 2013} \\ F(x,\epsilon) = \sum_{i} R_i(x,\epsilon) I_i(x,\epsilon) & \longrightarrow & \frac{d}{dx} I_i(x,\epsilon) = \sum_{i} A_{ij}(x,\epsilon) I_j(x,\epsilon) & \longrightarrow & \frac{d}{dx} \tilde{I}_i(x,\epsilon) = \epsilon \sum_{i} A_{ij}(x) \tilde{I}_j(x,\epsilon) \end{array}$

Calabi-Yau manifolds

banana integrals up to four loops

S. Pogel, Xing Wang, S. Weinzierl, 2022, 2023

$$J\frac{d}{dy}M = \epsilon \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & F_{11} & 1 & 0 & 0 & & 0 & 0 \\ 0 & F_{21} & F_{22} & Y_2 & 0 & & 0 & 0 \\ 0 & F_{31} & F_{32} & F_{33} & Y_3 & & 0 & 0 \\ \vdots & & & \ddots & & \vdots \\ 0 & F_{(l-2)1} & F_{(l-2)2} & F_{(l-2)3} & F_{(l-2)4} & \cdots & Y_{l-2} & 0 \\ 0 & F_{(l-1)1} & F_{(l-1)2} & F_{(l-1)3} & F_{(l-1)4} & \cdots & F_{(l-1)(l-1)} & 1 \\ * & * & * & * & * & \cdots & * & * \end{pmatrix} M.$$

relevant for LEP luminosity calibration

Bhabha scattering

Plan of this talk

Precision phenomenology for the LHC

Probing structure of Quantum Field Theory

Indispensable part of QCD

RG flow of QCD probed by the LHC

from Pythia event generator

Asymptotic freedom

Spectacular view along the journey from UV to IR!

Infrared

The non-global world light jet mass distribution (b)

a

 \mathcal{H}_{R}

Banfi-Marchesini-Syme equation

(a)

 \mathcal{H}_{L}

 \mathcal{H}_{L}

Conformal symmetry of BMS equation Y. Hatta, T. Ueda, 2013

Effective field theory for non-global logarithms: T. Becher, M. Neubert, Ding Yu Shao, 2015

 \mathcal{H}_{R}

M. Dasgupta, G. Salam, 2001

$$\frac{1 - \cos \theta_{ab}}{\cos \theta_{aj}(1 - \cos \theta_{jb})} \Big[\theta_L(j) G_{aj}(L) G_{jb}(L) - G_{ab} \Big]$$

Five-loop perturbative solution: M. Schwartz, HXZ, 2014

T. Becher, M. Neubert, Ding Yu Shao, M. Stillger, 2023

	Two contracted indices	Four contracte		
$oldsymbol{A}_{2,F}^{(j)}$	$(F_1 - F_2) \cdot T_j$	$oldsymbol{A}_{4,F,\Delta}^{(j)}$	$\left(oldsymbol{F}_{1}^{a} oldsymbol{\Delta}_{2}^{ab} - 1 ight.$	
$oldsymbol{A}_{2,D}^{(j)}$	$(oldsymbol{D}_1 - oldsymbol{D}_2) \cdot oldsymbol{T}_j$	$oldsymbol{A}_{4,F, abla}^{(j)}$	$\left(oldsymbol{F}_{1}^{a} oldsymbol{ abla}_{2}^{ab} - 1 ight)$	
		$oldsymbol{A}_{4,F,FF}^{(j)}$	$\left(oldsymbol{F}_{1}^{a}\left\{oldsymbol{F}_{2}^{a},oldsymbol{F}_{2}^{b} ight. ight)$	
	Three contracted indices	$ig oldsymbol{A}_{4,F,FD}^{(j)}$	$\left \left(oldsymbol{F}_{1}^{a}\left\{ oldsymbol{F}_{2}^{a},oldsymbol{D}_{2}^{b} ight. ight) ight.$	
$oldsymbol{A}_{3f,F,F}^{(j)}$	$i f^{abc} oldsymbol{F}_1^a oldsymbol{F}_2^b oldsymbol{T}_j^c$	$egin{array}{c} oldsymbol{A}_{4,D,\Delta}^{(j)} \end{array}$	$\left \left(oldsymbol{D}_{1}^{a}oldsymbol{\Delta}_{2}^{ab} - 1 ight. ight.$	
$oldsymbol{A}_{3f,D,D}^{(j)}$	$if^{abc}oldsymbol{D}_1^aoldsymbol{D}_2^boldsymbol{T}_j^c$	$oldsymbol{A}_{4,D, abla}^{(j)}$	$\left(\boldsymbol{D}_{1}^{a}\boldsymbol{ abla}_{2}^{ab}-1 ight)$	
$oldsymbol{A}_{3f,F,D}^{(j)}$	$if^{abc}\left(oldsymbol{F}_{1}^{a}oldsymbol{D}_{2}^{b}-oldsymbol{F}_{2}^{a}oldsymbol{D}_{1}^{b} ight)oldsymbol{T}_{j}^{c}$	$oldsymbol{A}_{4,D,FF}^{(j)}$	$\left(oldsymbol{D}_{1}^{a}\left\{oldsymbol{F}_{2}^{a},oldsymbol{F}_{2}^{b} ight. ight)$	
$oldsymbol{A}_{3d,F,D}^{(j)}$	$d^{abc}\left(oldsymbol{F}_{1}^{a}oldsymbol{D}_{2}^{b}-oldsymbol{F}_{2}^{a}oldsymbol{D}_{1}^{b} ight)oldsymbol{T}_{j}^{c}$	$oldsymbol{A}_{4,D,FD}^{(j)}$	$\left(oldsymbol{D}_{1}^{a}\left\{ oldsymbol{F}_{2}^{a},oldsymbol{D}_{2}^{b} ight) ight) ight)$	

Five contracted indices					
$oldsymbol{A}_{5f,\Delta,\Delta}^{(j)}$	$i f^{abc} {oldsymbol{\Delta}}_1^{ad} {oldsymbol{\Delta}}_2^{bd} {oldsymbol{T}}_j^c$				
$oldsymbol{A}_{5f, abla, abla}^{(j)}$	$i f^{abc} oldsymbol{ abc}_1^{ad} oldsymbol{ abc}_2^{bd} oldsymbol{T}_j^c$				
$oldsymbol{A}_{5f,\Delta, abla}^{(j)}$	$i f^{abc} \left({oldsymbol{\Delta}_1^{ad} oldsymbol{ abc}_2^{bd} - 1 \! \leftrightarrow \! 2} ight) {oldsymbol{T}_j^c}$	$oldsymbol{A}_{5d,\Delta, abla}^{(j)}$	$d^{abc}\left({oldsymbol{\Delta} _1^{ad} oldsymbol{ abc} _2^{bd} } ight)$		
$oldsymbol{A}_{5f,\Delta,FF}^{(j)}$	$if^{abc}\left(oldsymbol{\Delta}_{1}^{ad}\left\{oldsymbol{F}_{2}^{b},oldsymbol{F}_{2}^{d} ight\}-1\leftrightarrow2 ight)oldsymbol{T}_{j}^{c}$	$oldsymbol{A}_{5d,\Delta,FF}^{(j)}$	$d^{abc}\left(oldsymbol{\Delta}_{1}^{ad}\left\{oldsymbol{F}_{2}^{b} ight. ight\}$		
$oldsymbol{A}_{5f,\Delta,FD}^{(j)}$	$if^{abc}\left({oldsymbol{\Delta}_1^{ad} \left\{ {oldsymbol{F}_2^b , oldsymbol{D}_2^d } ight\} - 1 \! \leftrightarrow \! 2} ight) {oldsymbol{T}_j^c }$	$oldsymbol{A}_{5d,\Delta,FD}^{(j)}$	$d^{abc}\left({oldsymbol{\Delta} _1^{ad}\left\{ {oldsymbol{F} _2^i} ight.} ight)$		
$oldsymbol{A}_{5f, abla,FF}^{(j)}$	$if^{abc}\left(oldsymbol{ abc}_{1}^{ad}\left\{oldsymbol{F}_{2}^{b},oldsymbol{F}_{2}^{d} ight\}-1\leftrightarrow2 ight)oldsymbol{T}_{j}^{c}$	$oldsymbol{A}_{5d, abla,FF}^{(j)}$	$d^{abc}\left(oldsymbol{ abc}{ abc}\left(oldsymbol{ abc}{ abc}_{1}^{ad}\left\{oldsymbol{F}_{2}^{bb} ight\} ight)$		
$oldsymbol{A}_{5f, abla,FD}^{(j)}$	$if^{abc}\left(oldsymbol{ abc}_{1}^{ad}\left\{oldsymbol{F}_{2}^{b},oldsymbol{D}_{2}^{d} ight\}-1\!\leftrightarrow\!2 ight)oldsymbol{T}_{j}^{c}$	$oldsymbol{A}_{5d, abla,FD}^{(j)}$	$d^{abc}\left(oldsymbol{ abc} \left(oldsymbol{ abc} T_{1}^{ad} \left\{ oldsymbol{F}_{2}^{ad} ight\} ight)$		

P. Boer, P. Hager, M. Neubert, M. Stillger, Xiaofeng Xu, 2023

Extending the space flat-space observable

QFT 101: gauge theory amplitude not observable; cross section are

But cross section are not the only observable;

correlation function of asymptotic lightray operators are also finite

The simplest class are energy correlators

 $\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \ \vec{n}_i T^{0i}(t, r\vec{n})$

Hao Chen, I. Moult, Xiaoyuan Zhang, HXZ, 2020

Energy correlators at works

time

Decrease in transverse momentum transfer between probed hadron https://cds.cern.ch/record/2866560/files/SMP-22-015-pas.pdf $\alpha_S(m_Z) = 0.1229^{+0.0014}_{-0.0012}(\text{stat.})^{+0.0030}_{-0.0033}(\text{theo.})^{+0.0023}_{-0.0036}(\text{exp.})$

Large R_L (perturbative region)

scaling law

$$\lim_{\hat{n}_2 \to \hat{n}_1} \mathcal{E}(\hat{n}_1) \mathcal{E}(\hat{n}_2) = \sum c_i \theta^{\tau_i - 4} \mathbb{O}_i(\hat{n}_1) + \text{running coupled}$$

very small R_L (free hadrons)

Most precise measurement from jet substructure. Uncertainties dominated by theory!

Summary

Precision phenomenology for the LHC

Probing structure of Quantum Field Theory

Indispensable part of QCD

This year marks the discovery of QCD for 50 years.

QCD gave rise to the pursuit of understanding the strong force via perturbation theory.

We have witnessed remarkable continuous progress in the past 50 years.

Stay tuned for more exciting results from the future!