第十七届TeV工作组 学术研讨会

Material partly prepared by 周也铃

会议总结

廖 益 2023-12-17

19 plenary talks

08:00

	Opening speech 【孙立涛副校长】			
	锦江南京饭店		08:15 - 08:30	
	ATLAS new physics search highlights	Zh	ijun Liang 🥝	
0.00	钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店		08:30 - 09:05	
09:00	CMS new physics search highlights	Congqiao Li 🧭		
	钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店			
	New physics searches in the LHCb experiment		暗物质直接探测实验进展 钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	
10:00	钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	09.00	Dark SHINE – a Dark Photon Search Experime	
	photo & coffee break	00.00	钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	
	锦江南京饭店		The status of light dark matter	
	Super Tau Charm Facility: Physics and Challenges		钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	
11:00	钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	10.00	SRF Cavity Searches for Dark Photon Dark Ma 钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	
	Neutrino phenomenology: recent progress	10.00	coffee break	
	钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店		锦江南京饭店	
	Probing dark matter particles with astronomical observations		Axion Haloscopes Meet the E Field	
12:00			钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	
	钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	11:00	Long-lived dark photons at the LHC	
			钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	
			Quark masses and low energy constants in the	

	Fei Gao 🥝
	08:30 - 08:55
nt initiative at SHINE facility	Shu Li
	08:55 - 09:20
	Jia Liu
	09:20 - 09:45
atter: First Scan Results	Jing Shu
	09:45 - 10:10
	10:10 - 10:30

12:00

研究所 Haloscopes Meet the E Field	14:00	Neutrinoless double beta decay and related searches in PandaX	Ke Han
Long-lived dark photons at the LHC		钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	14:00 - 14:30
钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店		宇宙相变引力波理论和实验进展	Huaike Guo
Quark masses and low energy constants in the continuum from Lattice 钟山厅 腾讯会议 ID: 682 232 1942. 锦江南京饭店		钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	14:30 - 15:00
The Circular Electron Positron Collider - Physics, Status and the Perspe	15:00	Cosmological implications of large galaxy surveys	Gongbo Zhao 🖉
钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店		钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	15:00 - 15:30
		Non-Gaussianity in the primordial black hole formation	Shi Pi
		钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	15:30 - 16:00
	16:00	coffee break	
		锦江南京饭店	16:00 - 16:30
		Quantum Computing for High Energy Physics	Yingying Li
		钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	16:30 - 17:00
	17:00	Progress on perturbative QCD at the LHC	HuaXing Zhu
		钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	17:00 - 17:30
		Workshop summary	Yi Liao
		钟山厅 腾讯会议 ID: 682 232 1942, 锦江南京饭店	17:30 - 18:00

48 parallel talks

Latest Dark Matter Results of the Pa. <i></i> <i>奕陶</i>	Heavy neutrino and lepton number v 🥝 Tong Li	Recent Dark Matter combination su. Ngoc Khanh Vu			
Dark Matter Annihilation via Breit-Wi <i>②</i> 杰盛	Type II seesaw Leptogenesis <i>@</i> 成成 韩	Search for Higgs Boson Pairs in the Yanlin Liu			
Sterile Neutrino Portal Dark Matter w 🤗 Ang Liu	Disentangling the Neutrino Electrom	Precise measurement of SM-EWK Z @ Danning Liu			
Probing Inelastic Dark Matter at the . <i>@</i> 致廷 卢	Phenomenology of Heavy Neutral Ga Honglei Ll	Discriminating Higgs production me			
Axion-like Particle Dark Matter and t. Wei Chao	Complementary LHC searches for U. <i>© Gang LI</i>	Electroweak corrections to double . <i>《</i> 环字 毕			
Freeze-in bino dark matter in high sc @	Single Transverse Spin Asymmetry & 🧭 Xin-Kai Wen	NNNLO QCD predictions for heavy . @	Detecting Quadratically Coupl Mr Yuanlin Gong	ed Ultr 🖉	ed Ultr 🖉 Probing the four-fermion operators v 🤗 Hao-Lin Wang
Probe axion-like particles at the elec	The Effective Operator Basis of the .	Soft photon theorem in OCD with m	Non-perturbative Effect on DM E 锦汉 梁	Electr	Electr On-Shell Construction of Effective Fi 🤗 Ming-Lei Xiao
Hongkai Liu	浩孙	Yao Ma	Feeble Sterile Neutrino Portal Day 昂 刘	rk N 🖉	rk N 🖉 Probing levitodynamics with multi-st 🧭 Wenyu Wang
			Z Portal to the Dark Sector Through Mr Xuhui Jiang	n <i>©</i>	▶ Ø 利用LHAASO伽马暴数据限制洛伦兹对. Ø 玉明 杨
			Broadband Search Strategies throug Xiaolin Ma	0	Dynamical realization of the small fie Hexu Zhang
			Dark matter candidates from U(1) hid. Wan-Zhe Feng		Nonanalyticity and On-Shell Factoriz <i>@</i> 哲涵 秦
			Dark matter from hot big bang black Ningqiang Song	0	Bootstrapping One-loop Inflation Co 🥔 Hongyu Zhang
			Neutrino CP Measurement in the Pre Chui-Fan Kong	2	Gravitational waves produced by do… 晨杨
			用机器学习方法探测对撞机中的重狄拉. <i>Jie FENG</i>		First-order phase transition during in 铂烨 苏

TeV··· more than TeV ···

- Colliders ATLAS, CMS, STCF, CEPC, LHCb
- Dark matter WMIP, light DM, ultralight DM
- Neutrino Nu Pheno, 0vββ
- Cosmology GW, Non-Gaussianity,
- Computation pert. & non-pert. QCD, quantum computing

ATLAS Highlights

Traditional SM searches

ATLAS: highlights of standard model physics results **Higgs self-coupling with H+HH Higgs property combination for Higgs 10th Anniversary** Nature 607, (2022) 52 🛓 PLB 843 (2023) 137745 ATLAS Run 2 × 1.4 ATLAS . ____ 68% с́∟*нн* + н $\mathbf{\Phi} \ \boldsymbol{\kappa}_c = \boldsymbol{\kappa}_t$ -- • 95% CL *HH* + *H* $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^{-1}$ $\frac{1}{2}\kappa_c$ is a free parameter ---- 68% CL H All other *κ* fixed to SM 1.3SM prediction --· 95% CL H Observed — 68% CL HH --- 95% CL HH ☆ SM prediction ↔ Best fit HH + H 1.1 高能所、交大/李所、 γ Z W 南大、山大、中科大 高能所、交大/李所、 清华 ັ 1.2 -山大、中科大 南大、 10² 10^{-1} 10 **Discovery of ZZ VBS process** Particle mass [GeV] **Precise Higgs mass measurement** Nature Physics 19 (2023) 237 arXiv:2308.04775(PRL) 70_F <u>,</u> ZZ (EW) Data ZZ (EW) Data ZZ (QCD) ggZZ ZZ (QCD) ggZZ ATLAS HH Total Combinatio Others Uncertaint Others Uncertaint 每大、中科工 **Run 1:** \sqrt{s} = 7-8 TeV, 25 fb⁻¹, **Run 2:** \sqrt{s} = 13 TeV, 140 fb ATLAS ATLAS √s = 13 TeV, 139 fb⁻¹ √s = 13 TeV, 139 fb⁻¹ effecting QCD Control Region **Run 1** $H \rightarrow \gamma$ 126.02 ± 0.51 (± 0.43) GeV 124.51 ± 0.52 (± 0.52) GeV **Run 1** $H \rightarrow 4\ell$ Run 2 $H \rightarrow \gamma \gamma$ 125.17 ± 0.14 (± 0.11) GeV Run 2 $H\to 4\ell$ $124.99 \pm 0.19 \ (\pm 0.18) \ \text{GeV}$ 125.22 ± 0.14 (± 0.11) GeV **Run 1+2** $H \rightarrow \gamma \gamma$ Run 1+2 $H \to 4\ell$ 124.94 \pm 0.18 (\pm 0.17) GeV $125.38 \pm 0.41 \ (\pm 0.37) \text{ GeV}$ Run 1 Combined Run 2 Combined 125.10 ± 0.11 (± 0.09) GeV 125.11 ± 0.11 (± 0.09) GeV Run 1+2 Combined

0.2 0 0.2 0.4 0.6 0.8 1

128

m_H [GeV]

Improvements on

123

ATLAS

MD

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

交大/李所、山大、中科大 MD

DM, long-lived particle, SUSY, LVF, etc

梁志均的报告

Observation of entanglement in t-tbar pairs

Quantum Entanglement in ttbar events

- 2022 Nobel prize "for experiments with entangled photons
- 2023: Entanglement is observed in tt⁻ pairs for the first time
 - Entanglement measured is higher than expected in signal region (340,380) GeV

CMS highlights, more on experimental innovations

4

AA

95% CL upper limit on B(H

10

10⁻²

10⁻³

Advanced jet neural network (ParticleNet) for low-level input

Traditional analysis in ATLAS

Model-agnostic searches

- → CMS systematically test all model-agnostic approaches to search for resonance
 - first performed on toy data (from simulation)
 - achieve comparable/better performance than conventional search using jet substructure selection (τ₂₁, τ₃₂)

ANN in CMS

ParticleNet: Jet Tagging via Particle Clouds

Huilin Qu (UC, Santa Barbara), Loukas Gouskos (CERN) Feb 22, 2019 → 250 citations

New Physics at LHCb

CP 破坏的测量

• 1.4 σ and 3.8 σ derivation for D^0

$$\rightarrow K^-K^+$$
 and $D^0 \rightarrow \pi^-\pi^+$

The first evidence for direct *CPV* in a specific D^0 decay

Lepton Universality

for combined R(D) –

 $R(D^*)$ now moves

from 3.3σ to 3.2σ

arXiv:2212.13072 arXiv:2301.03214 PRL 131 (2023) 111802

No tension for $b \rightarrow sl^+l^-$

王纪科的报告

稀有衰变(包括LFV)						
$\mathcal{B}(D^{*0} \to \mu^+ \mu^-) < 2.6 (3.4) \times 10^{-8} \text{ at } 90 (95)\% \text{ CL}$.						
$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 3.1 (3.5) \times 10^{-9} \text{ at } 90 (95)\% \text{ CL}$.						
${\cal B}(B^0_s o \mu^+ \mu^-) < 2.6 imes 10^{-10} \ {\cal B}(B^0_s o \mu^+ \mu^- \gamma) < 2.0 imes 10^{-9}$						
$ \begin{array}{l} \mathcal{B}\left(B_{s}^{0} \to \mu^{+} \mu^{-} \mu^{+} \mu^{-}\right) & < 8.6 \times 10^{-10} , \\ \mathcal{B}\left(B^{0} \to \mu^{+} \mu^{-} \mu^{+} \mu^{-}\right) & < 1.8 \times 10^{-10} , \\ \end{array} $						
$ \begin{array}{ll} \mathcal{B} \left(B_s^0 \to a \left(\mu^+ \mu^- \right) a \left(\mu^+ \mu^- \right) \right) & < 5.8 \times 10^{-10} , \\ \mathcal{B} \left(B^0 \to a \left(\mu^+ \mu^- \right) a \left(\mu^+ \mu^- \right) \right) & < 2.3 \times 10^{-10} , \\ \mathcal{B} \left(B_s^0 \to J/\psi \left(\mu^+ \mu^- \right) \mu^+ \mu^- \right) & < 2.6 \times 10^{-9} , \end{array} $						
$\mathcal{B}(B^{0} \to J/\psi (\mu^{+} \mu^{-}) \mu^{+} \mu^{-}) < 5.1 \times 10^{-12},$ $\mathcal{B}(K_{\rm S}^{0} \to \mu^{+} \mu^{-} \mu^{+} \mu^{-}) < 5.1 \times 10^{-12},$ $\mathcal{B}(K_{\rm L}^{0} \to \mu^{+} \mu^{-} \mu^{+} \mu^{-}) < 2.3 \times 10^{-9}.$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{split} \mathcal{B}(B^0 \to K^{*0}\mu^+e^-) &< 5.7 \times 10^{-9}(6.9 \times 10^{-9}), \\ \mathcal{B}(B^0 \to K^{*0}\mu^-e^+) &< 6.8 \times 10^{-9}(7.9 \times 10^{-9}), \\ \mathcal{B}(B^0 \to K^{*0}\mu^\pm e^\mp) &< 10.1 \times 10^{-9}(11.7 \times 10^{-9}), \\ \mathcal{B}(B^0_s \to \phi\mu^\pm e^\mp) &< 16.0 \times 10^{-9}(19.8 \times 10^{-9}) \end{split}$						
BR $(B^0 \to K^{*0} \mu^- \tau^+) < 1.0(1.2) \times 10^{-5}$,						
${\rm BR}(B^0\to K^{*0}\mu^+\tau^-){<}8.2(9.8)\times 10^{-6}$						

Super Tau-Charm Facility (STCF) Physics and Challenges 赵政国的报告

Super Tau Charm Facility (STCF)

- E_{cm} =2-7GeV, L=0.5×10³⁵ cm⁻² s⁻¹
- Potential for an upgrade to increase L and realize polarized beam •
- Site area: 1 km² (Hefei Future Big Science City)
- 2021 2027: Key technology R&D, 0.42 B CNY.
- 2026 2031: Construction, 6 years, 4.5 B CYN.
- Operating for 15 years (upgrade...)

number of τ leptons, particles made of c quarks to study the deep structure of matter and basic interaction

Currently limit

STCF(1 ab⁻¹)

BSM(upper limit)[®]

LFV(T->HHHH)

LFV(T-YH)

LFV

BSM(lower limit)

BSM prediction

 $LFV(J/\psi \rightarrow e\mu)$

LFV(J/W-> et)

BNV, LNV(J/4) 11 "

LFV/BNV

n()-> 1 91+1- ~

 $\exists \mathbf{T} \times \mathbf{i} \vee \rangle = hep-ex > arXiv:2303.15790$

Search .. Help | Advance

High Energy Physics – Experiment

[Submitted on 28 Mar 2023 (v1), last revised 30 Mar 2023 (this version, v2)]

STCF Conceptual Design Report: Volume 1 --**Physics & Detector**

M. Achasov, X. C. Ai, R. Aliberti, Q. An, X. Z. Bai, Y. Bai, O. Bakina, A. Barnyakov, V. Blinov, V. Bobrovnikov, D. Bodrov, A. Bogomyagkov, A. Bondar, I. Boyko, Z. H. Bu, F. M. Cai, H. Cai, J. J. Cao, Q. H. Cao, Z. Cao, Q. Chang, K. T. Chao, D. Y. Chen, H. Chen, H. X. Chen, J. F. Chen, K. Chen, L. L. Chen, P. Chen, S. L. Chen, S. M. Chen, S. Chen, S. P. Chen, W. Chen, X. F. Chen, X. Chen, Y. Chen, Y. Q. Chen, H. Y. Cheng, J. Cheng, S. Cheng, J. P. Dai, L. Y. Dai, X. C. Dai, D. Dedovich, A. Denig, I. Denisenko, D. Z. Ding, L. Y. Dong, W. H. Dong, V. Druzhinin, D. S. Du, Y. J. Du, Z. G. Du, L. M. Duan, D. Epifanov, Y. L. Fan, S. S. Fang, Z. J. Fang, G. Fedotovich, C. Q. Feng, X. Feng, Y. T. Feng, J. L. Fu, J. Gao, P. S. Ge, C. Q. Geng, L. S. Geng, A. Gilman, L. Gong, T. Gong, W. Gradl, J. L. Gu, A. G. Escalante, L. C. Gui, F. K. Guo, J. C. Guo, J. Guo, Y. P. Guo, Z. H. Guo, A. Guskov, K. L. Han, L. Han, M. Han, X. Q. Hao, J. B. He, S. Q. He, X. G. He, Y. L. He, Z. B. He, Z. X. Heng, B. L. Hou, T. J. Hou, Y. R. Hou, C. Y. Hu, H. M. Hu, K. Hu, R. J. Hu, X. H. Hu, Y. C. Hu et al. (337) additional authors not shown)

The Super τ -Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^{35} cm⁻² s⁻¹ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present τ -Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&D and physics case studies.

FCNC(Do > Iti+h)

FCNC

FCNC(J/W-> D9(1)

Recent Progress on Neutrino Phenos

唐健的报告

Probing Dark Matter Particles with Astronomical Observations 袁强的报告

2023, Science Advances, 9, eadj2778

持波动型暗物质,这 是真的吗? 这是否为 未来暗物质理论研究 指明一些方向?

nature astronomy

https://doi.org/10.1038/s41550-023-01943-9

Einstein rings modulated by wavelike dark matter from anomalies in gravitationally lensed images

暗物质直接探测实验进展

惰性液体的优势: 体积可以越做越大

Dark Matter Search Results PandaX4T-4.25 $\log_{10}(n_{\rm e}^{\rm /S1})$ 3.25 0.5 3.00 2.9 keVee 9 keVee 5.1 keVee 7.4 keVee 15 keV_{nr} 25 keV_{nr} 35 keV_{nr} 2.75 10 20 30 50 60 70 40 100 20 40 60 80 120 S1*c* [phd] S1 [PE] PRL 127, 261802 (2021) PRL 131, 041002 (2023) 10^{-4} 10 $\mathbf{1}^2$ [cm EAP-3600 (2019 **XENON1T 201** .it 10⁻⁴⁴ $\sigma_{\rm SI} \ [{\rm cm}^2]$ PandaX-4T 2021 Median Sensitiv XENON1T 2018 Median Sens 10^{-45} **o** 10 WIMP-IMP A SI 10^{-48} 10 10^{3} 10^{4} 10^{2} 10 WIMP Mass [GeV/c²] WIMP Mass [GeV/c²]

更轻的暗物质:新技术,更低的能量阈值

高飞的报告

Dark SHINE (暗光计划)

李数的报告

13

Light dark matter ~ keV-GeV

模型: dark photon, dark scalar, and dark sector ... 0 More: asymmetric, freeze-in, SIMP, ELDER, co-annihilation, non-thermal... non-minimal misalignment, cosmic strings, inflationary fluctuations

刘佳的报告

14

Ultra-light dark matter detection in Tunable SRF Cavities 舒菁的报告 Current DPDM search

Haloscope sensitivity largely depends on Q: Superconducting cavity has Q~10^{10}

SRF Cavity

- **Significant** $Q_0 > 10^{10}$ compared to copper cavity
- Superconducting Radio-Frequency (SRF) Cavities:
 extremely high $Q_0 \simeq 10^{10} \rightarrow \text{improve SNR} \propto Q_0^{1/4}$
- ▶ 1-cell elliptical niobium cavity with mechanical tuner, immersed in liquid helium at $T \sim 2 K$
- TM₀₁₀ mode: z-aligned \vec{E} , maximizes the overlap for dark photon dark matter (DPDM)

how to make use it? 5 orders more than traditional cavity. Longitude mode has better sensitivity because of the larger spatial wavefunction

preliminary

polarization-dependent,

Axion Haloscope in Electric Field

共振腔的增益计算:基于量子力学计算高Q值增益

高宇的报告

1 1

Long-lived dark photons at LHC

$$L_{A'} = \gamma v \tau \simeq 100 \text{ meter} \left[\frac{10^{-6}}{e \epsilon Q_f}\right]^2 \left[\frac{E_{A'}}{100 \text{ GeV}}\right] \left[\frac{0.1 \text{ GeV}}{M_{A'}}\right]^2$$

刘佐伟的报告

Quark masses and low energy constants in CLQCD

更重的夸克?正在向前.....

Clover fermion + Symanzik gauge actions 框架

Renormalization and final results

Quark mass of three light flavors

CEPC

95% C.L. upper limit on selected Higgs Exotic Decay BR

CEPC Operation Plan

article	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. /IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. /yr (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
H*	240	10	50	8.3	2.2	21.6	4.3 × 10 ⁶
			30	5	1.3	13	$2.6 imes 10^6$
Z	0.1		50	192**	50	100	$4.1 imes 10^{12}$
	91	2	30	115**	30	60	$\textbf{2.5}\times\textbf{10}^{12}$
W	160		50	26.7	6.9	6.9	$2.1 imes 10^8$
		60 1	30	16	4.2	4.2	$1.3 imes 10^8$
tī	360	5	50	0.8	0.2	1.0	$0.6 imes 10^6$
	500	V	30	0.5	0.13	0.65	$0.4 imes 10^{6}$

无中微子双贝塔衰变 (0νββ)

韩柯的报告

相变引力波理论与实验进展

郭怀珂的报告

Cosmological implications of large galaxy surveys

Multiple cosmological probes: galaxy surveys CMB, SNe, GWs, LSS

赵公博的报告

Break degeneracy between Dark Energy and Modified Gravity

ELGs, and a RSD signal is detected at 4 sigma in the

Non-Gaussianity in the primordial black hole formation

皮石的报告

PBH-IGW crosscheck

Quantum Computing for High Energy Physics

SUMMARY and OUTLOOK

Dec. 2023 @ 南京

Perturbative QCD at LHC

朱华星的报告

Summary

This year marks the discovery of QCD for 50 years.

QCD gave rise to the pursuit of understanding the strong force via perturbation theory.

We have witnessed remarkable **continuous** progress in the past 50 years.

Stay tuned for more exciting results from the future!

48 parallel talks

			J		
Latest Dark Matter Results of the Pa. <i></i> <i>奕</i> 陶	Heavy neutrino and lepton number v 🥝 Tong Li	Recent Dark Matter combination su. <i>Ngoc Khanh Vu</i>			
Dark Matter Annihilation via Breit-Wi <i></i> <i>杰 盛</i>	Type II seesaw Leptogenesis <i>《</i> 成/ 朝 日日日日日日	Search for Higgs Boson Pairs in the <i></i>			
Sterile Neutrino Portal Dark Matter w <i></i>	Disentangling the Neutrino Electrom <i>Shao-Feng Ge</i>	Precise measurer ett f SN E.X Z @ Danning Liu			
Probing Inelastic Dark Matter at the . <i>②</i> 致廷 卢	Phenomenology of Heavy Neutral Ga Honglei Ll	Discriminating Higgs production me			
Axion-like Particle Dark Matter and t. 🤗 Wei Chao	Complementary LHC searches for U. <i>© Gang LI</i>	Electroweak corrections to double . <i>@</i> 环宇 毕			
Freeze-in bino dark matter in high sc <i>@</i> <i>Peiwen Wu</i>	Single Transverse Spin Asymmetry & 🧭 Xin-Kai Wen	NNNLO QCD predictions for heavy . Ø Yefan Wang	Detecting Quadratically Coupled Ultr 🤗 Mr Yuanlin Gong	Probing the four-fermion operators v 🤗 Hao-Lin Wang	Search for T-odd mechanisms beyo 🧭 Boxing Gou
Probe axion-like particles at the elec	The Effective Operator Basis of the . <i>《</i> 浩孙	Soft photon choice in CD with m @ Yao Ma	Non-perturbative Effect on DM Electr 锦汉 梁	On-Shell Construction of Effective Fi	Optimizing Fictitious States for Bell @ Kun Cheng
Hongkai Liu			Feeble Sterile Neutrino Portal Dark N <i>②</i> 昂 刘	Probing levitodynamics with multi-st @ Wenyu Wang	Long-lived Search as f \ c or-like L @ Yan Luo
			Z Portal to the Dark Sector Through Mr Xuhui Jiang	利用LHAASO伽马暴数据限制洛伦兹对。 <i>玉明 杨</i>	Probing quirk signal at the LHC far . <i>O</i> <i>Jinmian Li</i>
			Broadband Search Strategies throug Xiaolin Ma	Dynamical realization of the small fie <i>Hexu Zhang</i>	Search for nearly-degenerate higgsi <i>②</i> 航周
			Dark mater or inlate from U(1) hid Wan-Zhi Fer	Nonanalyticity and On-Shell Factoriz <i>《</i> 哲涵 秦	CPV double-aligned 2HDMs at the L <i>O</i> <i>MICHIHISA TAKE</i>
			Dark matter from hot big bang black Ø Ningqiang Song	Bootstrapping One-loop Inflation Co 🤗 Hongyu Zhang	Global Symmetries and Effective Po 🧭 Dr Changlong Xu
			Neutrino CP Measurement in the Pre 🤗 Chui-Fan Kong	Gravitational wores produed by do 晨杨	Testing Bell inequalities in W boson 🤗 Mr Qi Bi
			用机器学习方法探测对撞机中的重狄拉.	First-order phase transition during in 铂烨 苏	Alternative Froggatt-Nielsen like me Fei Wang

分会场报告

- ◎ 陶奕, PlandaX-4T, 暗物质电磁性质的测量, e-DM散射最强限制
- 。
 泉伟, Majoron DM and leptogensis in global U(1)_L,
- 宋宁强,纯引力DM,但是对Inflation能标要求很高;额外维可以显著降低能标
- ◎ 冯万哲, hidden U(1)里的暗物质, Hidden sector全自由度的Boltzmann演化
- 葛韶锋,中微子电磁性质诱导的原子到中微子对的辐射。
- 文新锴, Spin Asymm. vs SMEFT Dipole Operators
- 王雯宇, Levitodynamics in optical levitation experiment
- 李刚, 0vββ EFT & UV completion
- 孙浩, Basis in Higgs EFT
- 岩斌,通过Jet charge区分Higgs产生机制 还有很多精彩的报告.....

李金勉, quirk particle @ FASER

Kun Cheng, t-tbar中的量子纠缠

● 毕琪, W-W pair中的量子纠缠

很抱歉,由于研究背景所限,不能做很好的总结

Public lecture

