禄介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
000	000000	0000000	00	000

利用 LHAASO 伽马暴数据限制 Lorentz 对称性 破坏

杨玉明

yangyuming@ihep.ac.cn

中国科学院高能物理研究所

导师:毕效军、殷鹏飞

2023年12月16日

A B M A B M

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
0000	000000	0000000	00	000

1 背景介绍

2 PairView 方法

3 Maximum Likelihood 方法

4 总结

5 参考文献

æ

< E > < E >

背景 介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
●000	000000	0000000	00	000

- 2 PairView 方法
- 3 Maximum Likelihood 方法
- 4 总结
- 5 参考文献

æ

・日本・ (日本・) (日本)

在一些量子引力理论中, Lorentz 对称性不是一个严格的对称性, 在 Planck 能标附近会存在明显的破坏。LIV 的存在会对真空中光子的色散关系做出修正,可以唯象的写为

$$E^{2} = p^{2}c^{2}\left[1 - \sum_{n=1}^{\infty} \mathcal{S}\left(\frac{E}{E_{\mathsf{QG},n}}\right)^{n}\right]$$

< ロ > < 同 > < 三 > < 三 >

在一些量子引力理论中, Lorentz 对称性不是一个严格的对称性, 在 Planck 能标附近会存在明显的破坏。LIV 的存在会对真空中光子的色散关系做出修正, 可以唯象的写为

$$E^{2} = p^{2}c^{2}\left[1 - \sum_{n=1}^{\infty} \mathcal{S}\left(\frac{E}{E_{\mathsf{QG},n}}\right)^{n}\right]$$

这会导致真空中的光速是能量依赖的

$$v_{\gamma}(E) = \frac{\partial E}{\partial p} \simeq c \left[1 - S \frac{n+1}{2} \left(\frac{E}{E_{\text{QG},n}} \right)^n \right]$$

 $S = \pm 1$ 分别代表 subluminal 和 superluminal 情况, E_{QG} 为量子 引力能标。我们只考虑 n = 1 和 n = 2 的情况。

• • • • • • • •

参考文献

总结

位于一定红移 z_s 处的天体在同一时刻发出的两个能量不同的光 子到达地球的时间会存在差异

 $\Delta t_{LIV}(n, E_2, E_1) \simeq S \frac{n+1}{2} \frac{E_2^n - E_1^n}{E_{\mathsf{QG}, n}^n} \int_0^{z_s} dz \frac{(1+z)^n}{H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}$

利用 LHAASO 伽马暴数据限制 Lorentz 对称性破坏

总结

くロ と く 同 と く ヨ と 一

参考文献 000

位于一定红移 zs 处的天体在同一时刻发出的两个能量不同的光子到达地球的时间会存在差异

 $\Delta t_{LIV}(n, E_2, E_1) \simeq S \frac{n+1}{2} \frac{E_2^n - E_1^n}{E_{\mathsf{QG}, n}^n} \int_0^{z_s} dz \frac{(1+z)^n}{H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}$

对源的要求: ①光子能量范围足够大; ②光变时间足够短; ③红 移足够高。常用天体: 脉冲星、AGN、GRB。

总结

くロ と く 同 と く ヨ と 一

位于一定红移 zs 处的天体在同一时刻发出的两个能量不同的光子到达地球的时间会存在差异

 $\Delta t_{LIV}(n, E_2, E_1) \simeq S \frac{n+1}{2} \frac{E_2^n - E_1^n}{E_{\mathsf{QG}, n}^n} \int_0^{z_s} dz \frac{(1+z)^n}{H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}}$

对源的要求: ①光子能量范围足够大; ②光变时间足够短; ③红 移足够高。常用天体: 脉冲星、AGN、GRB。 定义 LIV 参数:

$$\eta_1 \equiv \mathcal{S}M_{\mathsf{PL}}/E_{\mathsf{QG},1}, \quad \eta_2 \equiv 10^{-16} \mathcal{S}M_{\mathsf{PL}}^2/E_{\mathsf{QG},2}^2$$

GRB 221009A 红移 $z_s = 0.151$, 计算可得 LIV 导致的时间差

$$\begin{split} \Delta t_{\mathsf{LIV}}(\eta_1, E_2, E_1) &= 5.87 \eta_1 \left(\frac{E_2}{\mathsf{TeV}} - \frac{E_1}{\mathsf{TeV}} \right) \,\mathsf{s}, \\ \Delta t_{\mathsf{LIV}}(\eta_2, E_2, E_1) &= 7.77 \eta_2 \left[\left(\frac{E_2}{\mathsf{TeV}} \right)^2 - \left(\frac{E_1}{\mathsf{TeV}} \right)^2 \right] \,\mathsf{s}. \end{split}$$

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
0000	●00000	0000000	00	000

1 背景介绍

2 PairView 方法

3 Maximum Likelihood 方法

4 总结

5 参考文献

æ

・日本・ (日本・) (日本)

假设探测器探测到了 N 个重建能量两两均不相同的光子, 每一个光子 i都有到达时间 $t^{(i)}$ 和重建能量 $E_{est}^{(i)}$, 计算任意两个 光子 i, j之间的 spectral lag

$$l_{i,j}^{(n)} \equiv \frac{t^{(i)} - t^{(j)}}{\left(E_{\text{est}}^{(i)}\right)^n - \left(E_{\text{est}}^{(j)}\right)^n}$$

< ロ > < 同 > < 三 > < 三 >

假设探测器探测到了 N 个重建能量两两均不相同的光子, 每一个光子 i 都有到达时间 $t^{(i)}$ 和重建能量 $E_{est}^{(i)}$, 计算任意两个 光子 i, j 之间的 spectral lag

$$l_{i,j}^{(n)} \equiv \frac{t^{(i)} - t^{(j)}}{\left(E_{\mathsf{est}}^{(i)}\right)^n - \left(E_{\mathsf{est}}^{(j)}\right)^n}$$

假设所有光子都同时发射,则 spectral lags 完全由 LIV 决定,取 值均相同

$$\begin{split} l_{i,j}^{(1)} &= 5.87 \eta_1 \, \text{s/TeV} \equiv \tau_1 \\ l_{i,j}^{(2)} &= 7.77 \eta_2 \, \text{s/TeV}^2 \equiv \tau_2 \end{split}$$

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
2000	00●000	0000000	00	000

但实际上光子的发射时间是有内禀的分布的,计算得到的 spectral lags 分布有相应的展宽,但是峰的位置依然对应 LIV 参数 T_n 。

э

* 注入 * 注入 -

但实际上光子的发射时间是有内禀的分布的,计算得到的 spectral lags 分布有相应的展宽,但是峰的位置依然对应 LIV 参数 T_n 。

利用 230-300s 之间的 3,818 个 WCDA 最低 N_{hit} bin 中的光子和 64 个 KM2A 光子。将 3,818 个 WCDA 光子能量都視为这个 N_{hit} bin 的中值能量 $E_0 = 0.35$ TeV。计算 KM2A 光子与 WCDA 光子 之间的、KM2A 光子內部的 spectral lags 进行直方统 计, 用 KDE 方法寻找峰的位置。

< ロ > < 同 > < 三 > < 三 >

参考文献 000

但实际上光子的发射时间是有内禀的分布的,计算得到的 spectral lags 分布有相应的展宽,但是峰的位置依然对应 LIV 参数 τ_n 。

利用 230-300s 之间的 3,818 个 WCDA 最低 N_{hit} bin 中的光子和 64 个 KM2A 光子。将 3,818 个 WCDA 光子能量都視为这个 N_{hit} bin 的中值能量 $E_0 = 0.35$ TeV。计算 KM2A 光子与 WCDA 光子 之间的、KM2A 光子內部的 spectral lags 进行直方统 计,用 KDE 方法寻找峰的位置。

 $\hat{\tau}_1 = -0.045, \quad \hat{\tau}_2 = -0.019$

FIG. 1. The distributions of $l^{(1)}(\text{left})$ and $l^{(2)}(\text{right})$. The red dashed lines represent the positions of the peaks identified using the kernel density estimation method.

< ロ > < 同 > < 三 > < 三 >

 $\hat{\tau}_n$ 作为真实值 τ_n 的估计值是以一定的概率分布在 τ_n 附近 的, 假设 $\hat{\tau}_n - \tau_n$ 的概率分布 $P(\hat{\tau}_n - \tau_n)$ 不依赖于 τ_n 的具体取 值,则可以在没有 LIV 的前提下进行 MC 模拟,得到估计值 $\hat{\tau}_{n,\text{mock}}$ 的概率分布 $P(\hat{\tau}_{n,\text{mock}} - 0) = P(\hat{\tau}_{n,\text{mock}})$,根据假设进一 步可得

$$P(\hat{\tau}_n - \tau_n) = P(\hat{\tau}_{n, \text{mock}})$$

找到以上概率分布的 2.5% 和 97.5% 分位数 $\tau_{n,l}, \tau_{n,r}$, 进而可以 得到真实值 τ_n 的 95% 置信区间的下限和上限

$$\tau_{n,\mathsf{LL}} = \hat{\tau}_n - \tau_{n,r}, \ \tau_{n,\mathsf{UL}} = \hat{\tau}_n - \tau_{n,l}$$

从而对 QG 能标做出限制。

イロト イヨト イヨト イヨト

参考文献 000

 为了考虑 KM2A 光子重建能 量的误差,对每个光子的能量 根据其上下误差进行抽样,重 新赋予每个 KM2A 光子一个 新的估计能量;

Ξ.

イロト イヨト イヨト イヨト

- 为了考虑 KM2A 光子重建能量的误差,对每个光子的能量根据其上下误差进行抽样,重新赋予每个 KM2A 光子一个新的估计能量;
- 在没有 LIV 的前提下进行随机抽样,时间和能量没有关联。可以直接保持这 3,882 个光子的到达时间不变,将能量随机重排;

3

イロト イ団ト イヨト イヨト

- 为了考虑 KM2A 光子重建能 量的误差,对每个光子的能量 根据其上下误差进行抽样,重 新赋予每个 KM2A 光子一个 新的估计能量;
- 在没有 LIV 的前提下进行随机抽样,时间和能量没有关联。可以直接保持这 3,882 个光子的到达时间不变,将能量随机重排;
- 重复上述操作产生 30,000 组 假数据,每组数据中都包含 3,882 个光子;

э.

总结

< ロ > < 同 > < 三 > < 三 > 、

- 为了考虑 KM2A 光子重建能量的误差,对每个光子的能量根据其上下误差进行抽样,重新赋予每个 KM2A 光子一个新的估计能量;
- 在没有 LIV 的前提下进行随机抽样,时间和能量没有关联。可以直接保持这 3,882 个光子的到达时间不变,将能量随机重排;
- 重复上述操作产生 30,000 组 假数据,每组数据中都包含 3,882 个光子;
- 对这 30,000 组假数据都做
 PV 分析,得到 30,000 个峰
 值,进行直方统计从而得到
 P(²n,mock).

э.

PairView 方法 0000●0

- 在没有 LIV 的前提下进行随机抽样,时间和能量没有关联。可以直接保持这 3,882 个光子的到达时间不变,将能量随机重排;
- 重复上述操作产生 30,000 组 假数据,每组数据中都包含 3,882 个光子;
- 对这 30,000 组假数据都做
 PV 分析,得到 30,000 个峰
 值,进行直方统计从而得到
 P(²_{n,mock}).

FIG. 2. The distribution of the 30,000 peaks obtained from the 30,000 mock data sets by the PV analysis is illustrated in the left and right panels for the case n = 1 and n = 2, respectively. The green dashed lines represent the bias, while the blue and red dashed lines depict the 2.5% and 97.5% quantiles, respectively.

TABLE I. The values of $\eta_{\rm LL}^{\rm PV}$ and $\eta_{\rm UL}^{\rm PV}$ obtained by the PV method, along with the corresponding lower limits on the QG energy at the 95% CL.

	$\eta_{ m LL}^{ m PV}$	$\eta_{ m UL}^{ m PV}$
η_1	-0.139	0.076
η_2	-0.015	0.003
	$\mathcal{S}=-1$	S = +1
$E_{\rm QG,1}[10^{19} {\rm GeV}]$	8.8	16.1
$E_{\rm QG,2}[10^{11} {\rm GeV}]$	9.9	20.7

・ 同 ト ・ ヨ ト ・ ヨ ト

参老文尌

イロト イボト イヨト イヨト

WCDA 光子能量分布的影响

上面的做法将 3,818 个 WCDA $N_{hit} \in [30,33)$ 中的光子能量 都视为中值能量 $E_0 = 0.35$ TeV,由于 KM2A 光子能量远高于这 些光子,根据 spectral lag 的定义可知这不会引起很大的误差。

这 3,818 个 WCDA 光子的具体能量分布不知道,我们假设 了一个均值和方差均为 E₀ 的高斯分布对这些光子能量进行抽样, 然后再进行上述 PV 分析,发现对限制结果的影响在 1~2% 的 量级。

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
0000	000000	●000000	00	000

1 背景介绍

2 PairView 方法

3 Maximum Likelihood 方法

4 总结

5 参考文献

æ

(*) * 문 * * 문 *

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
0000	000000	0●00000	00	000
likelihood	function			

在
$$t^{(i)}$$
 时刻观测到一个能量为 $E_{est}^{(i)}$ 的光子的 PDF 为:

$$P(t^{(i)}, E_{\mathsf{est}}^{(i)} | \eta_n) = p_s \frac{f_s(t^{(i)}, E_{\mathsf{est}}^{(i)} | \eta_n)}{\int_{E_{\min}}^{E_{\max}} dE_{\mathsf{est}} \int_{t_{\min}}^{t_{\max}} dt f_s(t, E_{\mathsf{est}} | \eta_n)} + p_b \frac{f_b(E_{\mathsf{est}}^{(i)})}{\int_{E_{\min}}^{E_{\max}} dE_{\mathsf{est}} \int_{t_{\min}}^{t_{\max}} dt f_b(E_{\mathsf{est}})}$$

$$p_s = (N_{on} - N_b)/N_{on}$$
 和 $p_b = N_b/N_{on}$ 分别为这个光子是信号和
是背景的概率; f_s 和 f_b 分别为信号和背景的 PDF, 归一化因子
中 $[E_{min}, E_{max}] = [3, 13]$ TeV, $[t_{min}, t_{max}] = [230, 900]$ s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
0000	000000	0●00000	00	000
likelihood	function			

在
$$t^{(i)}$$
 时刻观测到一个能量为 $E_{est}^{(i)}$ 的光子的 PDF 为:

$$P(t^{(i)}, E_{\mathsf{est}}^{(i)} | \eta_n) = p_s \frac{f_s(t^{(i)}, E_{\mathsf{est}}^{(i)} | \eta_n)}{\int_{E_{\min}}^{E_{\max}} dE_{\mathsf{est}} \int_{t_{\min}}^{t_{\max}} dt f_s(t, E_{\mathsf{est}} | \eta_n)} + p_b \frac{f_b(E_{\mathsf{est}}^{(i)})}{\int_{E_{\min}}^{E_{\max}} dE_{\mathsf{est}} \int_{t_{\min}}^{t_{\max}} dt f_b(E_{\mathsf{est}})}$$

$$p_s = (N_{on} - N_b)/N_{on}$$
 和 $p_b = N_b/N_{on}$ 分别为这个光子是信号和
是背景的概率; $f_s \approx f_b$ 分别为信号和背景的 PDF, 归一化因子
中 $[E_{min}, E_{max}] = [3, 13]$ TeV, $[t_{min}, t_{max}] = [230, 900]$ s.

 $f_s(t, E_{\mathsf{est}} \mid \eta_n) \propto \int_0^\infty dE\lambda \left(t - \Delta t_{\mathsf{LIV}}(\eta_n, E, 0)\right) \frac{dN}{dE} \left(t - \Delta t_{\mathsf{LIV}}(\eta_n, E, 0), E\right) F(E) A_{\mathsf{eff}}^{\mathsf{KM2A}}(t, E) G(E_{\mathsf{est}}, E) = 0$

假设 fb 分别在 230-300s 和 300-900s 内不依赖于时间,这两个时间段内对能量的依赖分别通过插值得到。

$$f_s(t, E_{\mathsf{est}} | \eta_n) \propto \int_0^\infty dE\lambda \left(t - \Delta t_{\mathsf{LIV}}(\eta_n, E, 0) \right) \frac{dN}{dE} \left(t - \Delta t_{\mathsf{LIV}}(\eta_n, E, 0), E \right) F(E) A_{\mathsf{eff}}^{\mathsf{KM2A}}(t, E) G(E_{\mathsf{est}}, E)$$

 光变曲线 λ(t) 选为 WCDA 最低的 N_{hit} bin (即 N_{hit} ∈ [30, 33)) 中光子拟合得到结果,参数暂时取为 最佳拟合值。LIV 导致的时间差取为与 E₀ = 0.35
 TeV 光子之间的时间差 Δ4_{IV}(η_n, E, E₀).

< ロ > < 回 > < 回 > < 回 > < 回 >

$$f_s(t, E_{\mathsf{est}} | \eta_n) \propto \int_0^\infty dE\lambda \left(t - \Delta t_{\mathsf{LIV}}(\eta_n, E, 0) \right) \frac{dN}{dE} \left(t - \Delta t_{\mathsf{LIV}}(\eta_n, E, 0), E \right) F(E) A_{\mathsf{eff}}^{\mathsf{KM2A}}(t, E) G(E_{\mathsf{est}}, E) = 0$$

 光变曲线 λ(t) 选为 WCDA 最低的 N_{hit} bin (即 N_{hit} ∈ [30, 33)) 中光子拟合得到结果,参数暂时取为 最佳拟合值。LIV 导致的时间差取为与 E₀ = 0.35
 TeV 光子之间的时间差 Δt_{LIV}(η_n, E, E₀).

< ロ > < 同 > < 三 > < 三 >

- 能谱 dN/dE 和 EBL 吸收 F(E) 考虑三组模型:
 - 随时间连续变化的 power-law 能谱 (E/TeV)^{-2.579+0.135 lg(t-226)} 和 Saldana-Lopez et al.
 2021 的 EBL 模型;
 - 230-300s 和 300-900s 谱指数分别为-2.35 和-2.26 的 power-law 能谱和 Saldana-Lopez et al. 2021
 的 EBL 模型;
 - 230-300s 和 300-900s 分別为谱指数是-2.12 的 power-law 和 (E/TeV)^{-2.03-0.15 log(E/TeV)} 的 log-parabolic 谱和 LHAASO constrained EBL 模型.

$$f_s(t, E_{\mathsf{est}} | \eta_n) \propto \int_0^\infty dE\lambda \left(t - \Delta t_{\mathsf{LIV}}(\eta_n, E, 0) \right) \frac{dN}{dE} \left(t - \Delta t_{\mathsf{LIV}}(\eta_n, E, 0), E \right) F(E) A_{\mathsf{eff}}^{\mathsf{KM2A}}(t, E) G(E_{\mathsf{est}}, E)$$

 光変曲线 λ(t) 选为 WCDA 最低的 N_{hit} bin (即 N_{hit} ∈ [30, 33)) 中光子拟合得到结果,参数暂时取为 最佳拟合值。LIV 导致的时间差取为与 E₀ = 0.35
 TeV 光子之间的时间差 Δt_{LIV}(η_n, E, E₀).

• • • • • • • •

- 能谱 dN/dE 和 EBL 吸收 F(E) 考虑三组模型:
 - 随时间连续变化的 power-law 能谱 (E/TeV)^{-2.579+0.135 lg(t-226)} 和 Saldana-Lopez et al.
 2021 的 EBL 模型;
 - 230-300s 和 300-900s 谱指数分别为-2.35 和-2.26 的 power-law 能谱和 Saldana-Lopez et al. 2021 的 EBL 模型;
 - 230-300s 和 300-900s 分別为谱指数是-2.12 的 power-law 和 (E/TeV)^{-2.03-0.15 log(E/TeV)} 的 log-parabolic 谱和 LHAASO constrained EBL 模型.
- KM2A 有效面积 A^{KM2A}_{eff}(t, E) 取 230s 和 900s 有效面积的平均值,忽略时间依赖;能量分辨取为均值为 E、标准差为 0.4E 的 Gaussian 分布。

利用 KM2A 230-900s 的 142 个光子计算 likelihood function:

$$\mathcal{L}\left(\eta_n \left| \left\{ t^{(i)}, E_{\mathsf{est}}^{(i)} \right\} \right) = \prod_{i=1}^{142} P(t^{(i)}, E_{\mathsf{est}}^{(i)} | \eta_n)$$

定义:

$$L(\eta_n) \equiv -2\ln\left(\frac{\mathcal{L}_{\eta_n}}{\mathcal{L}_{\hat{\eta}_n}}\right)$$

æ

利用 KM2A 230-900s 的 142 个光子计算 likelihood function:

$$\mathcal{L}\left(\eta_{n} \left| \left\{ t^{(i)}, E_{\mathsf{est}}^{(i)} \right\} \right) = \prod_{i=1}^{142} P(t^{(i)}, E_{\mathsf{est}}^{(i)} | \eta_{n})$$

定义:

$$L(\eta_n) \equiv -2\ln\left(\frac{\mathcal{L}_{\eta_n}}{\mathcal{L}_{\hat{\eta}_n}}\right)$$

æ

イロト イ団ト イヨト イヨト

通过指定 $L(\eta_n)$ 曲线极小值点左右两侧的阈值 L_l , L_r 来确定 95% 置信区间的上下界。 L_l , L_r 指定方法:

- 按照光变曲线和观测能谱对信号光子进行抽样,按照背景 PDFfb 对背景抽样,产生 1,000 组版数据,每组 包括 125 个信号光子和 17 个背景事例;
- 1,000 组假数据对应了 1,000 条 L(η_n) 曲线,相应的有 1,000 个极小值点,极小值点的平均为 η_{bias};
- 每条 L(η_n) 曲线都有方程 L(η_n) = L_l (L(η_n) = L_r) 的解, 调整 L_l (L_r) 的取值, 使得有 97.5% 的 解小于 (大于) η_{bias}.

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
0000	000000	00000000	00	000
置信区间的和	备完			

通过指定 $L(\eta_n)$ 曲线极小值点左右两侧的阈值 L_l , L_r 来确定 95% 置信区间的上下界。 L_l , L_r 指定方法:

- 按照光变曲线和观测能谱对信号光子进行抽样,按照背景 PDFfb 对背景抽样,产生 1,000 组假数据,每组 包括 125 个信号光子和 17 个背景事例;
- 1,000 组假数据对应了 1,000 条 L(η_n) 曲线,相应的有 1,000 个极小值点,极小值点的平均为 η_{bias};
- 每条 L(η_n) 曲线都有方程 L(η_n) = L_l (L(η_n) = L_r) 的解, 调整 L_l (L_r) 的取值, 使得有 97.5% 的 解小于 (大于) η_{bias}.

TABLE IV. η_{bias} , L_l , and L_r of the three models obtained from Monte Carlo simulations.

	Model-1		Mod	iel-2	Model-3		
	n = 1	n = 2	n = 1	n = 2	n = 1	n = 2	
$\eta_{\rm bias}$	-0.025	-0.003	0.006	0.001	-0.001	-0.001	
L_l	3.55	3.51	3.21	3.28	4.16	4.52	
L_r	3.33	3.21	5.21	4.80	3.78	2.91	

イロト イポト イヨト イヨト

э.

95% 置信区间上下界:

$$\eta_{\mathsf{LL}}^{\mathsf{cal}} = \eta_{\mathsf{LL}} - \eta_{\mathsf{bias}}, \quad \eta_{\mathsf{UL}}^{\mathsf{cal}} = \eta_{\mathsf{UL}} - \eta_{\mathsf{bias}}$$

æ

・ロト ・四ト ・ヨト ・ヨト

95% 置信区间上下界:

$$\eta_{\mathsf{LL}}^{\mathsf{cal}} = \eta_{\mathsf{LL}} - \eta_{\mathsf{bias}}, \quad \eta_{\mathsf{UL}}^{\mathsf{cal}} = \eta_{\mathsf{UL}} - \eta_{\mathsf{bias}}$$

TABLE II. The calibrated best fits of η_n , the lower and upper bounds of the 95% CIs of η_n , and the corresponding 95% CL lower limits on the E_{OG} .

	η_1		η_2		$E_{QG,1} [10^{19} GeV]$		$E_{QG,2} [10^{11} GeV]$			
	$\eta_{\rm LL}^{\rm cal}$	$\eta_{ m best}^{ m cal}$	$\eta_{\rm UL}^{\rm cal}$	$\eta_{ m LL}^{ m cal}$	$\eta_{ m best}^{ m cal}$	$\eta_{\mathrm{UL}}^{\mathrm{cal}}$	$\mathcal{S} = +1$	$\mathcal{S} = -1$	$\mathcal{S}=+1$	$\mathcal{S} = -1$
Model-1	-0.189	0.024	0.083	-0.029	0.002	0.010	14.7	6.5	12.0	7.2
Model-2	-0.159	0.011	0.100	-0.024	0.001	0.011	12.2	7.7	11.5	7.9
Model-3	-0.184	0.015	0.074	-0.077	0.002	0.009	16.4	6.6	13.1	4.4

上面的限制中光变曲线拟合参数选取为了最佳拟合值 Ib, 但这些参数存在一定的误差,尤其是在快速上升期,数据点较 少,误差相对较大。分别选取使得光变最快的参数 If 和最慢的 参数 Is 研究拟合参数误差带来的影响,以 Model-1 为例。

くロ と く 同 と く ヨ と 一

上面的限制中光变曲线拟合参数选取为了最佳拟合值 Ib, 但这些参数存在一定的误差,尤其是在快速上升期,数据点较 少,误差相对较大。分别选取使得光变最快的参数 If 和最慢的 参数 Is 研究拟合参数误差带来的影响,以 Model-1 为例。

TABLE III. The 95% CL lower limits on the QG energy from Model-1 with the values of parameters chosen as I_f , I_b and I_s .

	$E_{\rm QG,1} \left[10^{19} {\rm GeV} \right]$		$E_{\rm QG,2} [10^{11} {\rm GeV}]$	
	$\mathcal{S}=+1$	S = -1	S = +1	S = -1
I_f	16.5	11.6	12.5	10.6
I_b	14.7	6.5	12.0	7.2
I_s	11.0	3.9	11.0	5.6

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
0000	000000	0000000	●O	000

1 背景介绍

2 PairView 方法

3 Maximum Likelihood 方法

5 参考文献

æ

▲御▶ ▲ 臣▶ ▲ 臣▶

为了充分利用光子携带的信息,我们利用了两种不同的 event by event 的分析方法,并且得到了相近的 QG 能标的 95%CL 下限,其中通过 PV 方法得到的对 n=1 和 n=2 的 subluminal (superluminal)情况的限制分别为:

> $E_{\mathrm{QG},1} \gtrsim 16.1 \, (8.8) \times 10^{19} \mathrm{GeV}$ $E_{\mathrm{QG},2} \gtrsim 20.7 \, (9.9) \times 10^{11} \mathrm{GeV}$

ML 方法中 Model-1 得到的限制:

 $E_{\rm QG,1} \gtrsim 14.7 \, (6.5) \times 10^{19} {\rm GeV}$ $E_{\rm QG,2} \gtrsim 12.0 \, (7.2) \times 10^{11} {\rm GeV}$

GRB afterglow 光变曲线快速上升和缓慢下降的特性使得其对与 subluminal 情况给出的限制更强,而对 superluminal 给出的限制 相对较弱。

.

背景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
0000	000000	0000000	00	●00

1 背景介绍

2 PairView 方法

3 Maximum Likelihood 方法

4 总结

5 参考文献

æ

▲御▶ ▲ 臣▶ ▲ 臣▶

- LHAASO Collaboration. A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst. Science380,1390-1396(2023).
- [2] LHAASO Collaboration. Very high-energy gamma-ray emission beyond 10 TeV from GRB 221009A. Sci. Adv.9.eadi2778(2023).
- [3] V. Vasilejou et al. Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Physical Review D, 87(12), 122001.
- [4] V. A. Acciari et al. Bounds on Lorentz invariance violation from MAGIC observation of GRB 190114C. Physical review letters, 125(2), 021301.
- [5] Saldana-Lopez et al. An observational determination of the evolving extragalactic background light from the multiwavelength HST/CANDELS survey in the Fermi and CTA era. Monthly Notices of the Royal Astronomical Society 507.4 (2021): 5144-5160.

(日)

皆景介绍	PairView 方法	Maximum Likelihood 方法	总结	参考文献
2000	000000	0000000	00	○○●

Thanks!

◆ロ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @ ●