

Electroweak corrections to double Higgs production at the LHC

Huan-Yu Bi Center for High Energy Physics, Peking University

> December 16th, 2023 The 17th TeV Physics Workshop

東南大學

Based on: arvix: 2311.16963

In cooperation with: Li-Hong Huang, Rui-Jun Huang, Yan-Qing Ma, Huai-Min Yu

1/22

Introduction to Higgs Boson

Standard Model of Elementary Particles

Figure taken from Wikipedia

- Discovery of Higgs boson(2012,LHC): last fundamental particle in SM.
- Experiments at the ALTAS and CMS: agrees with result SM predicted.
- Problems not solved: electroweak symmetry breaking, Higgs coupling to SM particles/DM, hierarchy problem... Require new physics beyond SM.
- One promising way probing new physics: precision measurements of the properties of H (for e.g. Higgs self coupling).

Higgs self coupling

Measurements of Higgs boson coupling

 $\textcircled{B} g_{Hf\bar{f}}, g_{HVV}$

 can be measured with high precision.

\bigcirc λ_{ΗΗΗ}, λ_{ΗΗΗΗ}

- require multi-Higgs production, small cross sections.
- Mixed with complicated background.

 Run 2 $\delta_{\mu}^{\text{tot}}$ [%]
 HL-LHC $\delta_{\mu}^{\text{tot}} (\delta_{\mu}^{\text{th}})$ [%]

 $-1.0 < \lambda/\lambda_{\text{SM}} < 6.6$ $0.5 < \lambda/\lambda_{\text{SM}} < 1.5$ Jones: LHEP 2023 (2023) 442

Status of QCD corrections

- NLO QCD
 - > NLO QCD with full top-quark mass dependence, Borowka et al:1604.06447
 - > NLO QCD matched to parton shower, Heinrich et al:1703.09252
 - > NLO QCD with soft-gluon resummation, Ferrera et al: 1609.01691
- NNLO QCD
 - > NNLO QCD in heavy-top limit (HTL) approximation, Florian et al:1305.5206
 - NNLO in HTL+ NLO with full top-quark mass dependence, Florian et al:2106.14050
 - > NNLO QCD in HTL matched to parton shower, Alioli et al: 2212.10489
- NNNLO QCD
 - > NNNLO QCD in HTL, Chen et al:1909.06808
 - NNNLO in HTL include the top-quark mass effects, Chen et al:1912.13001
 - NNNLO in HTL+ NLO with full top-quark mass dependence + soft-gluon resummation, Ajjath et al: 2209.03914

Process	Theory	$\sigma_{ m th}$ [pb]	$\delta_{ m th}$ [%]	$\delta_{\rm PDF}$ [%]	δ_{α_s} [%]
ggF HH	N ³ LO _{HTL}	0.03105	$^{+2.2}_{-5.0}$	±2.1	±2.1
	NLOQCD	0.00100			

- Unknown size of EW corrections
 - Biggest uncertainties from theoretical side
- NLO EW corrections are notably significant at high energy region

A Bierweiler et al:1305.5402

Zhang et al: 1407.1110

- Higgs quartic coupling only emerges at the NLO EW level
 - Constrained on λ_{HHHH}^{SM} indirectly from NLO EW correction

6/22

Status of NLO EW corrections

- Partial results
 - Two-loop box diagrams, Davies et al:2207.02587
 - Top-quark Yukawa corrections, Muhlleitner et al:2207.02524
 - Higgs self-coupling corrections, Borowka et al: 1811.12366
- Most recent work: Davies et al: 2308.01355
 - > HTL and the convergent behaviour is not good.
 - Neglecting diagrams with massless fermion loops.
 - > Only prediction at the matrix element squared level.
- Groups working on this topic:
 - See Hantian Zhang's talk at Higgs 2023: <u>HTL + partial results</u>
 - See Xiao Zhang's talk at Higgs 2023: partial results
 - See Thomas Stone's talk at Higgs 2023: partial results

~65% corrections at $\sqrt{\hat{s}}$ =260 GeV

EW corrections to double H production at the LHC

LO diagrams:

Typical Feynman diagrams at LO

NLO diagrams:

Typical Feynman diagrams at NLO EW

Amplitudes of $g(p_1)g(p_2) \rightarrow H(p_3)H(p_4)$

Decomposition: $\mathcal{M}^{\mu\nu} = F_1 T_1^{\mu\nu} + F_2 T_2^{\mu\nu} + \Delta_0^{\mu\nu} + \Delta_5^{\mu\nu}$

- $\Delta_0^{\mu\nu}$: depends on p_1^{μ} or p_2^{ν} . No contribution at the matrix element squred level.
- $\Delta_5^{\mu\nu}$: depends on Levi-Civita tensor. No contribution at the matrix element squred level at NLO EW.
- F_1, F_2 : Form factors.

Calculation of form factors

Form factors can be decomposed into:

$$F_{1,2}(x) = \sum_{i} d_i(x) FI_i(x)$$

 $\begin{array}{l} x: m_H, m_t, m_W, m_Z, \\ \hat{s} = (p_1 + p_2)^2, \\ \hat{t} = (p_1 - p_3)^2. \end{array}$

Reduce $FI_i(\hat{s})$ to master integrals (IBP):

$$\{FI_i(x)\} = \{\sum_k c_{i,k}(x)I_k(x)\}$$

- $d_i(x)$ and $c_{i,k}(x)$ are analytic.
- A huge number of I_k need to be calculated.
- ➤ The number of $\{I_k\} < \{FI_i\}$.
- > The number of I_k is finite.
- \blacktriangleright We can construct the different equations for I_k and solve them. 10/22

A.V. Smirnov et al: 1004.4199

Different equations for I_k

Construct differential equations (DEs): $\vec{I}(x) = \{I_1(x), I_2(x) \dots I_N(x)\}$

$$\frac{dI_m(x)}{dx} = \sum_n A_{m,n}(x) I'_n(x) \quad \stackrel{\text{IBP}}{\longrightarrow} \quad \frac{d\vec{I}(x)}{dx} = A(x)\vec{I}(x)$$

 $\vec{I}(x)$ can be expanded as a power expansion near x_0 ,

▶ regular:
$$S = \{0\}, k_0 = 0$$
,

$$I_{i}(x) = \sum_{\mu \in S} (x - x_{0})^{\mu} \sum_{k=0}^{k_{\mu}} \log(x - x_{0})^{k} \sum_{n=0}^{m} c_{i,\mu,k,n} (x - x_{0})^{n}$$

- $c_{i,\mu,k,n}$ can be determined once any boundary $\vec{l}(x_1)$ are provided.
- $\vec{I}(x_1)$ can be determined by AMFlow
- Taking adequate expansion order *m*, we can eventually achieve predictions with high precision.
- $\vec{I}(x)$ can be evaluated at any points of x efficiently.

Calculation flowchart

Input Paramaters

 G_{μ}

$$m_t = 172.69 \text{ GeV}$$
 $\frac{m_H^2}{m_t^2} = \frac{12}{23}, \ \frac{m_Z^2}{m_t^2} = \frac{23}{83}, \ \frac{m_W^2}{m_t^2} = \frac{14}{65},$

$$= 1.166378 \times 10^{-5} \text{ GeV}^{-2} \qquad \qquad \alpha = \frac{\sqrt{2}}{\pi} G_{\mu} m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right)$$

CKM=1

 σ

PDFs: NNPDF31_nlo_as_0118

on-shell renormalization: masses and fields; G_{μ} -scheme: Electromagnetic coupling Denner et al:1912.06823

$$D=4-2\varepsilon, \quad \varepsilon = \pm 1/1000$$

$$\sigma(\varepsilon) = a_0 + a_1\varepsilon + a_3\varepsilon^2 + \cdots$$

$$(0) \sim \frac{\sigma(\pm 1/1000) + \sigma(-1/1000)}{2} = a_0 + a_3\varepsilon^2 + \cdots$$

$$13/22$$

Results: Total cross sections

μ	$M_{HH}/2$	$\sqrt{p_T^2 + m_H^2}$	m_H
LO	19.96(6)	21.11(7)	25.09(8)
NLO	19.12(6)	20.21(6)	23.94(8)
\mathcal{K} -factor	0.958(1)	0.957(1)	0.954(1)

LO and NLO EW corrected integrated cross sections (in fb) 14 TeV LHC.

- Differences with varying scale choices are around 20%.
 - Huge scale uncertainties. Can be reduced by including QCD corrections.
- K-factor is insensitive to the scale choice.
 - > EW corrections beyond NLO are on the order of a few thousandths.
- The statistical uncertainty for the K-factor is smaller than that of $\sigma_{LO,NLO}$.
 - K-factor can get a controllable error with far fewer events.

$$\Delta \sigma^{\rm NLO} = \Delta \mathcal{K} \Delta \sigma^{\rm LO}$$

 $\Delta \sigma_{LO}$: based on 300k events ΔK : based on 30k events

15/22

• Big positive corrections at the HH threshold.

 \succ $\sigma_{LO}(\sqrt{\hat{s}} = 2m_H)$ ~0. Enhancement from Log(v) at NLO EW.

- -10% correction at high energy region.
 - EW Sudakov effects.
- Tiny cross section at high energy region
 - Gluon PDFs are highly suppressed at high energy region.

- Positive corrections at the beginning of the spectrum.
 - > The events in this region are mixed with high $\sqrt{\hat{s}}$ and low $\sqrt{\hat{s}}$.
- -10% correction at high energy region.
 - EW Sudakov effects.

- Flat corrections at around -4%.
 - Similar to the total cross section

Summary

- Higgs self coupling is important to identify the Higgs potential and to probe new physics.
- The study of $\sigma(HH)$ is the best way to extract the Higgs self coupling.
- Our full calculation includes all the diagrams and all the mass effects.
- -4% EW corrections at total cross section level.
- For dimensionful observables, EW corrections reach up to +15% at the beginning of the spectrum and -10% in the tail.
- Our results suggest that the remained uncertainties from theoretical side is overall about few percent and it's precise enough for the measurements at the HL-HLC.

Thanks for your attention!

Some Higgs hadroproduction channels:

 $gg \rightarrow H$ Vector boson fusion

q q w,z

Associated V + H production

Double Higgs production

Micco et al: 1910.00012

 $\bar{t}t + H$ production

20/22

Cross section of $pp \rightarrow HH$

• Due to the dominant gluon luminosity $f_{g/p}(x,\mu)$, other channels are at least one order magnitude lower.

$$\sigma^{\text{LO(NLO)}} = \frac{1}{512\pi} \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 \int_{\hat{t}_-}^{\hat{t}_+} \mathrm{d}\hat{t} \\ \times \frac{1}{\hat{s}^2} f_{g/p}(x_1,\mu) f_{g/p}(x_2,\mu) \hat{\sigma}^{\text{LO(NLO)}},$$

$$\begin{split} \hat{\sigma}^{\text{LO}} &= \sum_{i=1}^{2} |F_{i}^{(0)}|^{2} \;, \\ \hat{\sigma}^{\text{NLO}} &= \sum_{i=1}^{2} |F_{i}^{(0)}|^{2} + F_{i}^{(0)} F_{i}^{(1)*} + F_{i}^{(0)*} F_{i}^{(1)} \;, \end{split}$$

Amplitudes of $g(p_1)g(p_2) \rightarrow H(p_3)H(p_4)$

$$\mathcal{M}^{\mu\nu} = F_1 T_1^{\mu\nu} + F_2 T_2^{\mu\nu}$$

$$\begin{split} T_1^{\mu\nu} &= g^{\mu\nu} - \frac{p_1^{\nu} p_2^{\mu}}{p_1 \cdot p_2} \;, \\ T_2^{\mu\nu} &= g^{\mu\nu} + \frac{1}{p_T^2 \left(p_1 \cdot p_2 \right)} \left[2 \left(p_1 \cdot p_2 \right) p_3^{\nu} p_3^{\mu} \right. \\ &\quad - 2 \left(p_1 \cdot p_3 \right) p_3^{\nu} p_2^{\mu} - 2 \left(p_2 \cdot p_3 \right) p_3^{\mu} p_1^{\nu} + m_H^2 p_1^{\nu} p_2^{\mu} \right] \;, \\ P_1^{\mu\nu} &= + \frac{1}{4} \frac{D-2}{D-3} T_1^{\mu\nu} - \frac{1}{4} \frac{D-4}{D-3} T_2^{\mu\nu} \;, \\ P_2^{\mu\nu} &= -\frac{1}{4} \frac{D-4}{D-3} T_1^{\mu\nu} + \frac{1}{4} \frac{D-2}{D-3} T_2^{\mu\nu} \;, \end{split}$$

$$F_1 = P_1^{\mu\nu} \mathcal{M}_{\mu\nu} , \ F_2 = P_2^{\mu\nu} \mathcal{M}_{\mu\nu} .$$