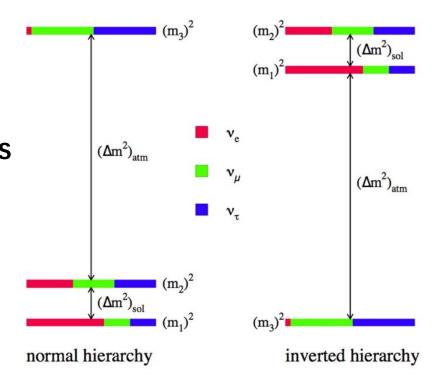
Improving Heavy Dirac Neutrino Prospects at Future Hadron Colliders Using Machine Learning

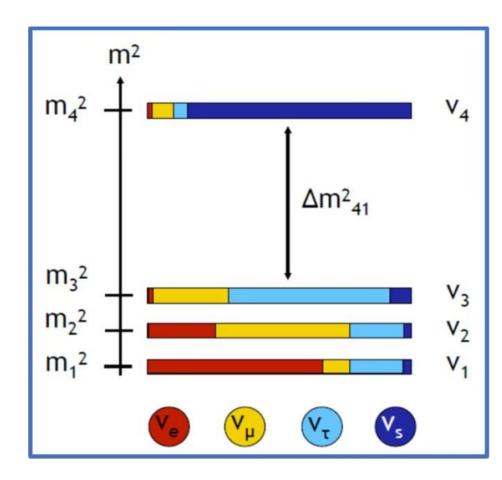
Jie Feng(冯劼)
Sun Yat-Sen University
(中山大学)


In collaboration with Prof. Hong-Hao Zhang (张宏浩) from SYSU, Prof. Yong-Chao Zhang (张永超) from SEU, Prof. Qi-Shu Yan (晏启树) from UCAS and Dr. Yu-Pan Zeng (曾育盼) from GDOU

TeV物理2023 SEU, Nanjing

arXiv: 2112.15312(JHEP) 16th December, 2023

Introduction


- **≻**Neutrino mass
 - ➤ Confirmed by Neutrino Oscillation experiments (Super-Kamiokande, Sudbury, Daya Bay, …)
 3 neutrino mass states.
- **►**In particle physics
 - **➢** Beyond the Standard Model (SM) description
 - ➤ New physics!

Introduction

Seesaw mechanisms provide natural explanations of the tiny neutrino masses.

- ➤Type-I
- ➤Type-II
- ➤Type-III

► The Yukawa Lagrangian is given by [1,2]

$$-\mathcal{L}_{Y} = Y_{\alpha\beta}\bar{L}_{\alpha}\Phi N_{R,\beta} + M_{N,\alpha\beta}\bar{S}_{L,\alpha}N_{R,\beta} + \frac{1}{2}\mu_{S,\alpha\beta}\bar{S}_{L,\alpha}S_{L,\beta}^{C} + \text{H.c.}$$

$$L_{\alpha} = (\nu_{\alpha}, \ell_{\alpha})^{\mathrm{T}}$$

 $L_{\alpha} = (\nu_{\alpha}, \ell_{\alpha})^{\mathrm{T}}$ - Standard Model lepton doublet

- Standard Model Higgs doublet

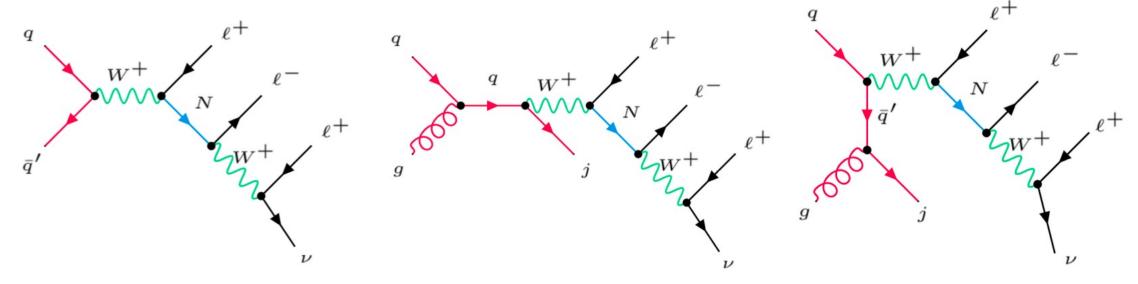
$$S_L^C \equiv S_L^{\mathrm{T}} C^{-1}$$

 $S_L^C \equiv S_L^T C^{-1}$ - charge conjugate of S_L

 M_N

Dirac mass term

 $\mu_{\mathcal{S}}$


- Majorana mass term

[1] R.N. Mohapatra, PRL 56 (1986) 561

[2] R.N. Mohapatra and J.W.F. Valle, PRD 34 (1986) 1642

In the limit of $\|\mu_S\| \ll \|M_N\|$ (with $\|\mu_S\| \equiv \sqrt{tr(x^{\dagger}x)}$), the primary signature of heavy neutrinos at the hadron colliders are ^[3,4]:

$$pp \to \ell_{\alpha}^{\pm} N \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp} W^{\pm} \to \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp} \ell_{\gamma}^{\pm} \nu$$

[3] C. Degrande et al., PRD 94 (2016) 053002 (arXiv:1602.06957)

[4] arXiv:1408.0983, 1706.02298

\triangleright The heavy neutrino N will decay [5,6]:

$$\Gamma(N \to \ell^- W^+) = \frac{\alpha_W |V_{\ell N}|^2}{16} \frac{m_N^3}{m_W^2} \left(1 - \frac{m_W^2}{m_N^2}\right)^2 \left(1 + \frac{m_W^2}{m_N^2}\right)$$

$$\Gamma(N \to \nu_{\ell} Z) = \frac{\alpha_W |\nu_{\ell N}|^2}{32\cos^2 \theta_W} \frac{m_N^3}{m_Z^2} \left(1 - \frac{m_Z^2}{m_N^2}\right)^2 \left(1 + \frac{m_Z^2}{m_N^2}\right)$$

$$\Gamma(N \to \nu_{\ell} \ h) = \frac{\alpha_W |\nu_{\ell N}|^2}{32} \frac{m_N^3}{m_W^2} \left(1 - \frac{m_h^2}{m_N^2}\right)^2$$

- [5] A. Pilaftsis, Z. Phys. C 55 (1992) 275
- [6] W. Buchmuller and C. Greub, Nucl. Phys. B 363 (1991) 345

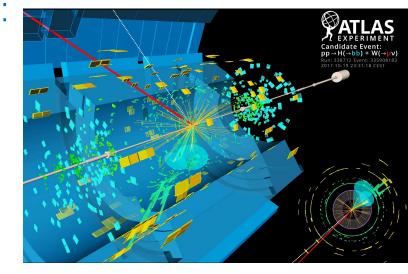
➤ The heavy neutrino N will decay [5,6]:

$$\Gamma(N \to \ell^- W^+) = \frac{\alpha_W |V_{\ell N}|^2}{16} \frac{m_N^3}{m_W^2} \left(1 - \frac{m_W^2}{m_N^2}\right)^2 \left(1 + \frac{m_W^2}{m_N^2}\right)$$

$$\Gamma(N \to \nu_{\ell} Z) = \frac{\alpha_W |\nu_{\ell N}|^2}{32\cos^2 \theta_W} \frac{m_N^3}{m_Z^2} \left(1 - \frac{m_Z^2}{m_N^2}\right)^2 \left(1 + \frac{m_Z^2}{m_N^2}\right)$$

$$\Gamma(N \to \nu_{\ell} \ h) = \frac{\alpha_W |\nu_{\ell N}|^2}{32} \frac{m_N^3}{m_W^2} \left(1 - \frac{m_h^2}{m_N^2}\right)^2$$

- [5] A. Pilaftsis, Z. Phys. C 55 (1992) 275
- [6] W. Buchmuller and C. Greub, Nucl. Phys. B 363 (1991) 345

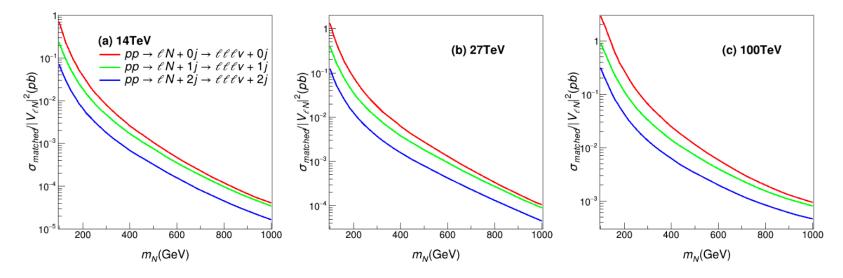

Collider analysis – Signal generation

- The final states of the signature in the detector: electrons, muons, jets, ...
- ➤ Measurements of each particle in the detector:

 $\triangleright p_T$ - transverse momentum

 $\succ \eta$ - pseudorapidity

 $\succ \phi$ - azimuthal angle



► Geometrical acceptance cuts from ATLAS: $p_T^{\ell,leading} > 20 \text{ GeV}$

\sqrt{s} (TeV)	electron		muon		jet	
	$p_T \; ({ m GeV})$	$ \eta $	$p_T \; ({ m GeV})$	$ \eta $	$p_T \; ({ m GeV})$	$ \eta $
14	>10	< 2.47	>10	< 2.7	> 20	< 4.5
27	>10	< 2.47	>10	< 2.7	> 30	< 4.5
100	>15	< 2.47	>15	< 2.7	> 45	< 4.5

Collider analysis – Signal generation

Cross sections of trilepton signal process

- ➤ Cross sections increase with higher center of mass energies.
- \triangleright Cross sections with 2jets are much smaller than those with 1jet. It is safe to neglect events with higher jet multiplicity $n_i \ge 3$.

Collider analysis – Signal generation

Assuming either $|V_{eN}| \neq 0$ or $|V_{\mu N}| \neq 0$, in the charge space, the three leptons of an event can be either +-+ or -+-. All the resultant trilepton states are

mixing	trilepton states	signs $(\pm \mp \pm)$	
V	eee	$e^{\pm}e^{\mp}e^{\pm}$	
V_{eN}	$ee\mu$	$e^{\pm}e^{\mp}\mu^{\pm}$	
$V_{\mu N}$	$\mu \mu e$	$\mu^\pm\mu^\mp e^\pm$	
	$\mu\mu\mu$	$\mu^{\pm}\mu^{\mp}\mu^{\pm}$	

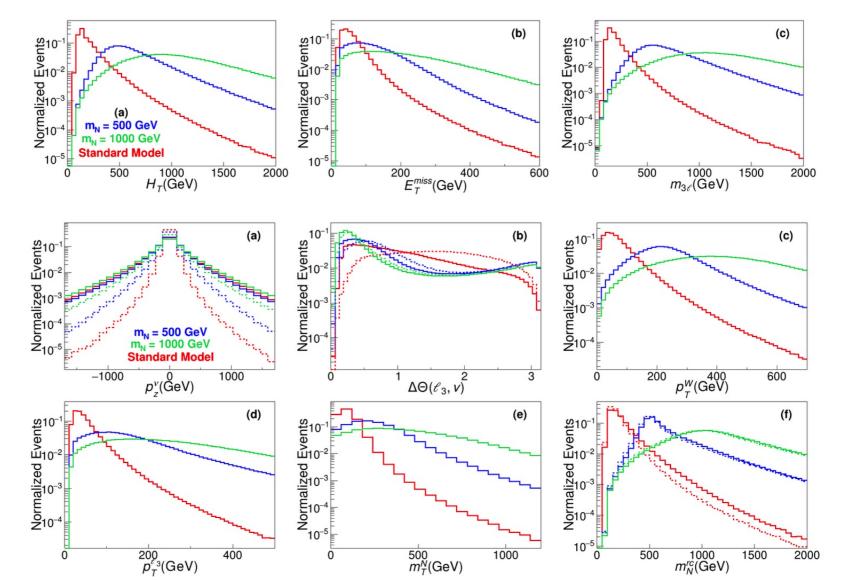
Collider analysis – background generation

➤ The main background:

$$pp \rightarrow ZW^{\pm} \rightarrow \ell_1^{\pm} \ell_2^{\mp} \ell_3^{\pm} \nu$$

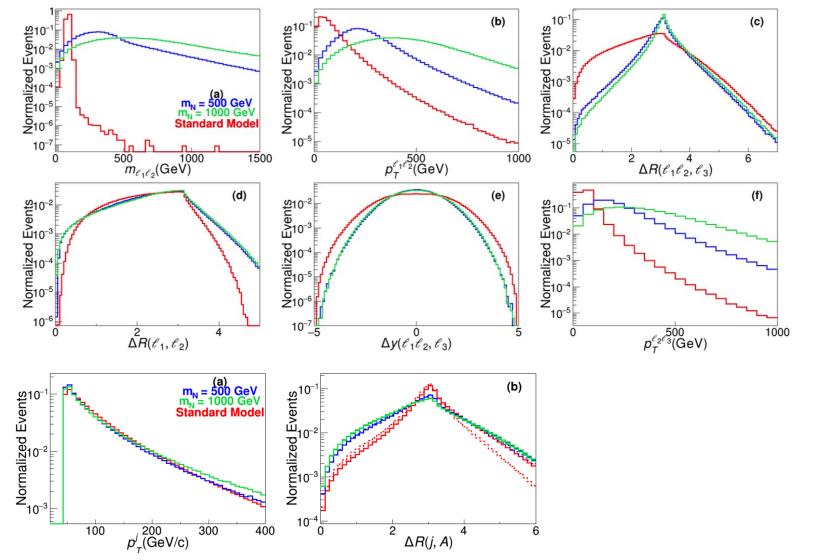
- ➤ Pre-selection:
 - The total number of energetic charged leptons is exactly 3, i.e. $n_e + n_\mu = 3$.
 - The invariant mass of the two leading leptons should be larger than 12 GeV, i.e. $m_{\ell_1 \; \ell_2} >$ 12GeV.
 - The number of jets is not larger than 2, i.e. $n_j \leq 2$.
 - The missing transverse momentum $E_T^{miss} = |-\sum_{v_i} \overrightarrow{p_T}(v_i)|$ is larger than 20 GeV, i.e. $E_T^{miss} > 20$ GeV.

Collider analysis – background generation


>Cross sections of all possible trilepton final state processes after

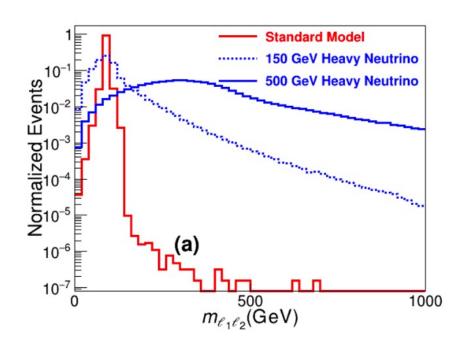
pre-selections:

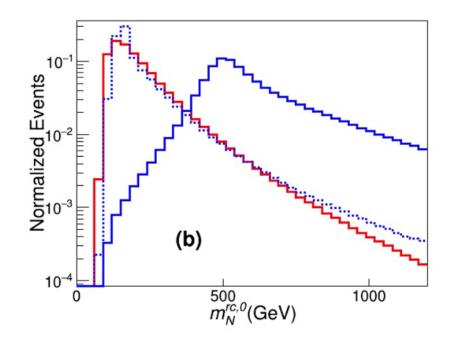
process	cross section (fb)		
process	0-jet	1-jet	
$ZW o \ell\ell\ell u$	29.10	20.50	
$\ell\ell\ell u$	1.65	0.84	
(off-shell + interference)	1.00	0.04	
4ℓ	1.56	1.25	


The contributions of the off-shell and four-lepton processes to the standard model backgrounds are small. We can just scale the ZW background by 1.1 to take the other two into account.

Collider analysis – Feature observables

Variables reconstructed from the 3-lepton measurements.


Collider analysis – Feature observables

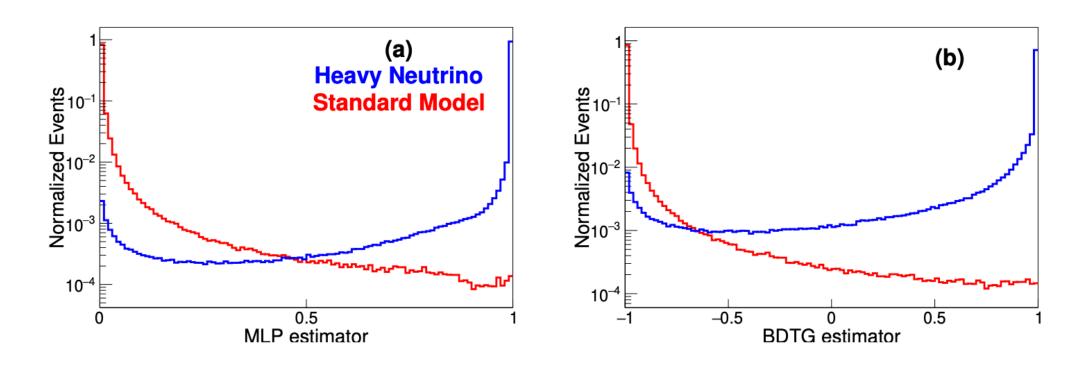


Variables reconstructed from the 3-lepton measurements.

Collider analysis – Feature observables

➤ Variables with the largest seperation power:

Z mass

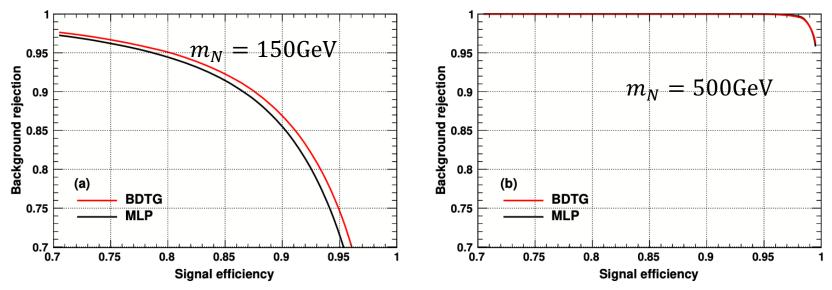

Heavy neutrino mass (calculated from W mass assumption) $W^{\pm} \rightarrow \ell_3^{\pm} \nu$

arXiv: 2112.15312(JHEP)

Collider analysis – Machine Learning (ML)

The ML estimator distributions for $m_N = 500$ GeV:

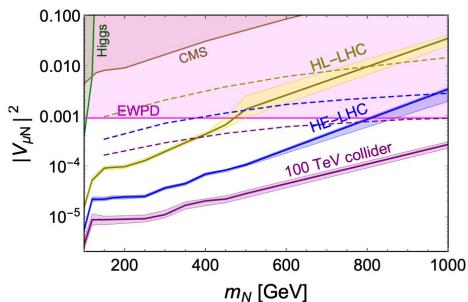
Multi-Layer Perceptron (MLP)



arXiv: 2112.15312(JHEP)

Boosted Decision Tree with Gradient boosting (BDTG)

Collider analysis – Machine Learning


The signal efficiency and background rejection power:

- >BDTG and MLP methods show compatible results.
- ➤ When the heavy neutrino mass goes to a higher value, the separation becomes better.

17

$\frac{0.100}{0.010}$ $\frac{10^{-4}}{10^{-4}}$ $\frac{10^{-5}}{200}$ $\frac{200}{400}$ $\frac{100}{600}$ $\frac{100}{600}$ $\frac{100}{600}$ $\frac{100}{600}$ $\frac{1000}{600}$

Results

- Sensitivities of the heavy-light neutrino mixing $|V_{eN}|^2$ (upper) and $|V_{\mu N}|^2$ (lower) at 95% C.L..
- With machine learning methods, $|V_{lN}|^2$ can be improved up to O(10⁻⁶) for heavy neutrino mass $m_N = 100$ GeV and O(10⁻⁴) for $m_N = 1$ TeV.

 \sqrt{s} = 14 TeV(3ab⁻¹), 27 TeV(15ab⁻¹), and 100 TeV(30ab⁻¹)

18

Summary

- By using the machine learning methods, we study the sensitivities of heavy pseudo-Dirac neutrino *N* in the inverse seesaw at the high-energy hadron colliders.
- We use either the Multi-Layer Perceptron or the Boosted Decision Tree with Gradient Boosting to analyze the kinematic observables and optimize the discrimination of background and signal events.
- It is found that the reconstructed Z boson mass and heavy neutrino mass play crucial roles in separating the signal from backgrounds.
- The prospects of heavy-light neutrino mixing $|V_{lN}|^2$ (with $l=e, \mu$) are estimated by using machine learning at the hadron colliders with $\sqrt{s}=14$ TeV, 27 TeV, and 100 TeV, and it is found that $|V_{lN}|^2$ can be improved up to $O(10^{-6})$ for heavy neutrino mass $m_N=100$ GeV and $O(10^{-4})$ for $m_N=1$ TeV.

Thank you!