

CDEX实验现状与展望

刘书魁 四川大学

2023年12月30日

汇报提纲

- ≻暗物质直接探测和CDEX实验
- ➤ CDEX-1和CDEX-10实验现状
- ➤ CDEX-50 & CDEX-300v @ CJPL-II实验规划
- ▶ 下代实验的关键技术
- ≻ 总结

暗物质

➢暗物质占宇宙组分的26.8%,在物质起源和宇宙演化过程中具有重要地位;➢暗物质研究是粒子物理、天文学和宇宙学的重大基础前沿课题。

暗物质直接探测

▶三种暗物质探测方法: 直接探测、间接探测、对撞机生成 ▶ 轻暗物质探测是近年来的研究热点; ▶ 轻暗物质探测的优势技术之一: 高纯锗 ▶国际上两个主要技术路线: ✓ 点电极高纯锗(CDEX, 美国CoGeNT) ✓ 电离量热高纯锗(美国CDMS, 欧洲EDELWEISS) 技术难点 探测器要求 事例少<1 evt/(kg·yr) 本底极低、靶质量大 能量小 (sub-keV) 阈值极低

CDEX"盘古"实验

技 ✓能量分辨率高(<0.12%)
术 ✓能量阈值低(<200 eV)
优 ✓自身纯度极高(~13个9)
势 ✓探测效率大(单体尺寸达数kg级)

CDEX"盘古"实验

➤ CDEX-1(2009-2018):发展点电极高纯锗探测器技术,开展本底研究

- ➤ CDEX-10(2016-2022): 液氮直冷的高纯锗阵列性能研究
- ➤ CDEX-50(2021-202X): 50公斤级液氮直冷高纯锗阵列实验系统
- ➤ CDEX-300v(2021-202X): 300公斤级富集锗阵列实验系统

CDEX-1

- ➤ CDEX-1: 两套单体1kg的点电极高纯锗探测器: $CDEX-1A(2011) \rightarrow 1B(upgraded, 2013);$
- > 传统的液氮冷指制冷; 低本底铅&铜屏蔽体+ 碘化钠反符合;
- > 锦屏一期开展实验

CDEX-

10

CDEX-

1A

CDEX-

1B

Testing

tank

Ge crystal (P type)

JFET

Layout of PE room, CJPL-I

CDEX-1 inside PE room

CDEX-1A&B: 1kg PPC Ge×2

A CANBERRA

CDEX-10

- ➢ P点电极锗阵列探测器:3串,每串3个晶体,总重约10kg;
- > 探测器阵列直接浸入液氮中;
- > 未来百公斤实验的原型探测系统
 - > 更纯净的液氮替换传统铜/铅屏蔽
 - > 增大探测靶质量的阵列技术

CDEX-10: ~10kg PPC Ge array

Science China-PMA 62, 031012 (2019)

CDEX-1暗物质实验结果

≻大于4年(Run-1&Run-2)稳定运行,超过1200公斤·天曝光量; ▶能量分析阈值160eVee,国际首次将点电极高纯锗暗物质探测 质量限下推至2 GeV;

▶基于CDEX-10实验数据给出4-5 GeV区间国际最灵敏实验结果;

Time-integrated (TI) analysis: CPC 42, 023002, 2018

CDEX-10暗物质实验结果

▷大于4年(Run-1&Run-2)稳定运行,超过1200公斤·天曝光量;

▶能量分析阈值160eVee,国际首次将点电极高纯锗暗物质探测 质量限下推至2 GeV;

≻基于CDEX-10实验数据给出4-5 GeV区间国际最灵敏实验结果;

PRL 120, 241301 (2018)

暗物质找寻

WIMP search

- Boosted WIMP: down to O(10 keV)
- Migdal effect: down to $\mathcal{O}(10 \text{ MeV})$
- χe scattering down to $\mathcal{O}(10 \text{ MeV})$

New physics

- Axion like particle: down to $\mathcal{O}(100 \text{ eV})$
- Dark photon: down to $\mathcal{O}(100 \text{ eV})$
- Exotic dark matter: down to O(1 MeV)

暗物质年度调制效应研究

- ▶利用CDEX四年实验数据,6GeV以下世界最好的年度 调制灵敏度;
- ▶排除了美国CoGeNT实验宣称探测到的"疑似"暗物 质信号;

暗物质源项: ✓ WIMP(标准暗物质晕模型) ✓ 年度调制效应(速度导致) ✓ 加速暗物质 ✓ 加速暗物质 ✓ 暗光子、轴子等 相互作用过程: ✓ 暗物质-核子 弹性散射 ✓ 暗物质-电子 弹性散射 ✓ 其他(全能量沉积)

PRL 123, 221301 (2019)

非弹性散射: Migdal效应

Migdal effect

- $\square \text{ Elastic scattering}: \chi + N \rightarrow \nu + N(E_R)$
- □ Migdal effect: $\chi + A \rightarrow \chi + N(E_R) + e^-(E_{EM})$
- ➢利用Migdal效应测量轻暗物质,在50-180 MeV质量区间截面 限制灵敏度达到世界最好水平;

PRL 123, 161301 (2019)

ref: Migdal effect (M. Ibe et al.,2018)

暗物质-电子相互作用

≻开展了暗物质-电子相互作用实验研究;

 $60 \text{ eV} (E_{\text{dft}})$

 $\frac{0.67 \text{ eV}}{0 \text{ eV}} (E_{\text{g}})$

-140 eV (3p)

195 eV (3s)

-1.3 keV (2p)-1.4 keV (2s)

-11 keV (1s)

(3d)

–14 eV –28 eV

Ge

Ge壳层电子

Free

Cond.

Val

Core

▶100 MeV以上质量区间国际最灵敏的固体探测器实验限制;

>国际首个基于液氮温区高纯锗探测器的实验结果;

PRL 129, 221301 (2022)

PRD 106, 052008 (2022)

PRD 105, 052005 (2022)

10

DarkSide-50

 m_{γ} (GeV/c²)

EDELWEISS-Surface

CDEX (This Work)

原初黑洞蒸发轻暗物质

轴子、暗光子

- ≻探索除WIMP以外更多暗物质候选者,如暗光子、 轴子等;
- ➢暗光子研究: 10-300 eV区间国际最严格的直接探测实验限制;

PRL 124, 111301 (2020)

ref: An, H. et. al., PRL 111:041302¹⁷(2013)

奇异暗物质搜寻

≻奇异暗物质相互作用:

- 费米子暗物质中性流吸收: $\chi + N \rightarrow \nu + N$
- 暗物质-核子3→2非弹性散射信号: $\chi + \chi + N \rightarrow \phi + N$

>上述两个相互作用,得到低质量区域新的限制

$\frac{\chi}{E_R \approx \frac{m_\chi^2}{2M}} \bigvee_{\chi + N \to \nu + N} E_R$

- ν is neutrino
- Generates a monoenergetic signal

- ϕ is either a DM composite state or any dark radiation
- Generates a monoenergetic signal

[1] Jeff A. Dror, et al., Phys. Rev. Lett. 124, 181301 (2020);[2] W. Chao, et al., arXiv:2109.14944 (2021)

锗-76无中微子双贝塔衰变

▶2017年,合作组发表了国内首个锗-76无中微子双贝塔衰变实验结果(CDEX-1A);▶2022年,针对未来⁷⁶Ge 0vββ实验本底抑制、波形甄别方法,进行技术预研(BEGe);

Sci. China PMA. 60, 071011 (2017)

国内首个锗-76无中微子双贝塔衰变实验结果

PRD 106, 032012(2022)

未来⁷⁶Ge 0vββ实验波形甄别方法预研

增大有效曝光量

▶ 增大探测器质量

▶⁷⁶Ge 富集 (>86% 富集度)

<u>本底控制</u>

- ▶ 宇生本底控制
 - ▶ CJPL-II减少宇宙线本底
 - ▶ 尽量减少锗在地面的时间

▶本底抑制算法研究

- ▶ 减少锗晶体附近的放射性本底
 - ▶ 改变屏蔽体结构: Cu/Pb/PE --> 液氮
 - ▶ 锗晶体直接裸浸在液氮中,无制冷系统的本底
 - ▶ 采用低温、低本底、低噪声前端电子学
 - ▶ 严格的低本底材料筛选

CDEX-50 & CDEX-300v @ CJPL-II

- ➤ CJPL-II, 宇宙线可忽略
- ▶ 1725m³ 大型液氮罐作为制 冷和屏蔽体
- ➢ 超过6m厚液氮有效屏蔽外 部本底
- ▶ 锗晶体裸浸在液氮/液氩中
- ➢ 靠近锗的前放换成低本底 ASIC前放

CDEX-50 本底模拟

- ➤ 本底水平: <0.01 cts/(keV·kg·day) @1 keV</p>
- ➤ 本底主要来自锗晶体的宇生核素,如³H、⁶⁸Ge
- ➢ 对CEvNS和M层 X-ray本底有更好理解

* CEvNS (Coherent Elastic neutrino-Nucleus Scattering)

高纯锗阵列单元

Category	Component	Material	Quantity[g
Crystal	Crystal	Germanium (Ge)	~ 1000
Cabling	HV-Cable	PTFE, Copper	3.7
	Signal-Cable	PTFE, Copper	5.4
Electronics	Signal Pin	Copper	0.4
	HV/Front-Electronics	PCB Resistor, Capacitor	10.2
Support	Crystal Support	Copper	27.6
	Support Pole	Copper	58.1
	Crystal Fix	PTFE	19.3
	Isolation Pole	PTFE	8.4
	Silicon-Base	Silicon	30.2
TOTAL			1163.3

CDEX-50 预期灵敏度

- ➤ 本底水平: <0.01 cts/(keV·kg·day) @1 keV</p>
- ▶ 数据分析能量阈值: 160 eV
- ➢ 曝光量: ~50 kg·year
- ➢ WIMP自旋无关灵敏度达到 10⁻⁴⁴ cm²

本底@1keV: 2 cpkkd 灵敏度: 10⁻⁴² cm² 量级 本底@1keV: 0.01 cpkkd 灵敏度: 10⁻⁴⁴ cm² 量级

arXiv:2309.01843 (2023)

CDEX-300实验规划

- ▶ 建造: 2021-2026,运行: 2027-2031
- ▶ 能量分辨率: 0.12% FWHM@2.039MeV
- ➤ 本底指数: 1×10⁻⁴ cpkky (cts/(keV·kg·year))
- ➢ ⁷⁶Ge曝光量> 1t⋅y, T_{1/2} > 10²⁷y.

Parameter	CDEX-300
⁷⁶ Ge mass	>225 kg
BI@2039keV	10⁻⁴ cpkky
E _r @2039keV	2.5 keV (FWHM)
Run time	5 y (2027-2031)
Exposure	1.125 t∙y
T _{1/2}	>1×10 ²⁷ y
m _{ββ}	28.5~68.0 meV

关键技术: 锗探测器制备

- ▶ 已掌握不同类型锗探测器的制备技术
- ▶ 性能达到商业产品水平,且性能长期稳定
- ▶ 针对暗物质/无中微子实验进行的锗技术研究

✓ Commercial Ge crystal;
 ✓ Structure machining;
 ✓ Li-drift and B-implanted;
 ✓ Home-made ASIC PreAmp;
 ✓ Underground EF-Cu;
 ✓ Underground assemble;
 ✓ Underground testing...

液氮裸浸高纯锗探测器阵列研制

- >研制液氮直冷的裸浸高纯锗探测器阵列
 - √液氮裸浸高纯锗探测器单元设计;
 - ✓ 高纯锗探测器串列关键性能研究;
 - ✓大型液氮环境下高纯锗阵列系统性能测试 和稳定运行;

高纯锗单元液氮裸浸测试

高纯锗阵列设计_26

低温低本底低噪声前端电子学

- ➢ 轻暗物质 → 低噪声; 靠近高纯锗晶体→低温/低本底
- ▶清华大学2004年开始低温CMOS高纯锗探测器读出ASIC前放技术研究
- ➤ ASIC 前放 @ 77K
 - ▶ PCB 材料: PTFE(Rogers 4850);
 - ➢ ENC ~26e(<200eV) @ 4µs shaping time</p>

Details in JINST (2018) 13: 8019

地下电解铜生长

- ▶ 地下电解铜生产原型装置
 - ≻阴极芯棒: 316L不锈钢, φ95x380mm;
 - ≻电镀槽: PE, φ400x500mm;
 - ≻目标: Majorana铜, U/Th : ~O(0.1µBq/kg);
- ➤ 使用ICP-MS做U/Th含量分析

地下电解铜装置@CJPL-I

锗富集材料及宇生放射性本底控制

- ▶ 已获得约200kg ⁷⁶Ge(>86%)材料,其中100kg来自俄罗斯, 100kg来自中国
- ▶ 富集锗材料的大规模国产化,为国际大规模富集锗实验作出的重要贡献
- ▶ 严格控制锗生产、制备以及运输的时间

本底抑制算法研究

CJPL II —— C1大厅

CJPL II —— C1大厅

- ▶ 大型液氮罐已于2019年建成
- ▶ 钢平台以及液氮罐上部的洁净间将于2024年初完成
- ▶ 实验腔安装以及液氮灌注预计在2024年中完成
- > 第一批高纯锗阵列今年将放入大型液氮罐中

总结

- ➤CDEX-1和CDEX-10实验取得了一系列国际先进的物理成果,为锦屏二期开展大型 液氮直冷的阵列高纯锗实验奠定了基础;
- ▶利用具有低本底、低阈值特色的CDEX实验数据,开展现有理论框架的实验研究, 并推动发展暗物质理论和中微子相关新物理:
- >目前正在建设百公斤级的高纯锗阵列系统,两个前沿物理研究:暗物质+0νββ;
- ▶多项关键技术正在研究,进一步降本底、增质量、降阈值!

http://cjpl.tsinghua.edu.cn