

XENON

Latest Results from XENONnT

高飞 清华大学

on behalf of the XENON Collaboration

紫金山暗物质研讨会

Dec 29-31, 2023

The XENON Collaboration

Development of XENON Program

XENON10XENON100XENON1TXENONnT

2005-20072008-20162012-20182019-202x25 kg - 15cm drift161 kg - 30 cm drift3.2 ton - 1 m drift8.6 ton - 1.5 m drift~10^{-43} cm^2~10^{-45} cm^2~10^{-47} cm^2~10^{-48} cm^2

Gran Sasso: The XENON Shield

Physics with the XENON Detectors

XENON1T WIMPs Search

World's most sensitive WIMPs search back then

Source	1.3 t	0.9 t, NR Ref.	
ER	627 ± 18	1.1 ± 0.2	
Radiogenic	1.4 ± 0.7	0.4 ± 0.2	
Accidental	0.5 +0.3-0.0	0.06 +0.03 -0.00	
Surface	106 ± 8	0.02	
Total	735 ± 20	1.6 ± 0.3	
200 GeV WIMP $\sigma_{\rm SI} = 4.7 \ {\rm x} \ 10^{-47} \ {\rm cm}^2$	3.6	1.2	
Data	739	2	

I.

From XENON1T to XENONnT

XENONnT TPC and Electrodes

XENONnT Cryogenic Liquid Purification

Cryostat is filled with ~8.5t of LXe

Ехр	Max Drift [ms]	Electron lifetime [ms]	Cathode electron survival	Purification speed
XENON1T	0.73	0.65	30%	0.65ms in ~ 3 months
XENONnT	2.2	~10	>90%	5ms in ~5 days

XENONnT Radon Distillation Column

Lowest radon level ever achieved in a LXeTPC!

•

- Initial gas phase-only distillation: 1.8 µBq/kg
- Gas + liquid phase distillation: 0.8 µBq/kg

XENONnT Neutron Veto

- SR0: Water only veto efficiency of 68%
- Design Goal: Gd-Water veto efficiency of >85%

XENONnT First Data

SR0 WIMPs search data

- July 6 Nov 10, 2021
- 95.1 days live-time
- (4.18±0.13)t fiducial mass
- exposure of 1.1 t-y
- blind analysis

Electronic Recoil Background

Zoomed in look below 30 keV

 Lowest background level is achieved:

 $(16.1 \pm 1.3) \text{ events} / (t \cdot y \cdot \text{keV})$

 NR search data being blinded while searching for ER signals

First WIMPs search

Detection efficiency:

- S1 3-fold PMT coincidence
- Full waveform simulation
- Data-driven methods from ^{83m}Kr and ³⁷Ar

- ROI for WIMPs Search:
 - cS1 [0 pe, 100 pe]
 - cS2 [10^{2.1} pe, 10^{4.1} pe]

Nuclear Recoil Calibrations

Neutron Background

Observed neutron multiple scatter rate is x6 higher than MC predictions.

Final background prediction is performed towards the data-driven approach, without tuning fiducial volume post-unblinding

Accidental Coincidence Background

Accidental Coincidence Background

- Analyzers from Tsinghua:
- Kexin Liu (Ph. D. 2021)
- Dacheng Xu (B.S 2022, now Ph. D. @ Columbia)

Experiment	Isolated-S1	Isolated-S2	Max Drift	AC	Importance
XENON1T	1.1 Hz	2.6 mHz	~ 650 us	0.47	negligible
XENONnT	1.9 Hz	~100 mHz	~ 2200 us	~80	biggest background

AC Suppression – Shadow Effects

AC Suppression – S1 and S2 Correlations

Results from Unblinding

Sou	rces	Nominal		Best Fit	_			
		R	IC	I Signal Like				
ER		134	135±12	0.81±0.07				
Neut	ron	1.1±0.6	1.1±0.6	0.42±0.20				
Neut	rino	0.23±0.06	0.23±0.06	0.02±0.01				
AC		4.3±0.2	4.3±0.2	0.36±0.01				
Surfa	ace	14±3	12	0.34±0.11	Nurface N	eutron		МЛМР
Total	l	154	152±12	1.95±0.16			AC	
Data			152	3				
WIM	IPs		2.4	1.2			• • • •	
152 events in ROI, 16 in the blinded region Best fit indicate no NR exces			SS = 0	40	60	80	100	
					cS1 [PE]		

Importance of anti-AC cuts

The AC background can be highly suppressed by the anti-AC BDT cut Many AC events are hiding behind the "shadow" of high energy events

Limits on WIMPs-nucleon Cross Sections

Discovery Potential of Solar 8B Neutrinos

Discovery Potential of Solar 8B Neutrinos

These numbers are very only for illustration

Significantly increase in the discovery potential of ⁸B CEvNS

AC is additionally validated under

the selection criteria for the

0.6

>0.6

Summary and Outlook

• XENONnT had finished the first WIMPs search with 1.1 ton-year exposure

and the lowest electronic recoil background rate in the keV range

- No significant excess is found in the nuclear recoil search region.
- XENONnT is continuing data-taking with half of its electronic recoil background (radon dominated)
- With a lower background in SR1, XENONnT will be more sensitive to WIMPs, and also be more sensitive to Solar pp and ⁸B neutrinos

Stay tuned!

http://xenonexperiment.org

Thanks for your attention!

Importance of anti-AC cuts

AC events are more concentrated on the supporting wires, and they are mainly suppressed by "Shadow" cuts

Energy Calibrations

- Calibrations are done from keV to MeV
- Ar37, Kr83m, Xe131m, Xe129m are primarily used for low energy analysis

Ar37 Calibration

• Ar37: mono-energetic peak @ 2.8keV

 Modeled well with skewed Gaussian distribution in reconstructed energy

