Connecting dark matter direct and indirect searches

Yu-Feng Zhou

Institute of Theoretical Physics, Chinese Academy of Sciences

Dark matter candidates and searches

Searches for DM in a vast parameter space requires complementary approaches

Primordial black holes (PBHs): astrophysical candidates

PA'

 10^{35}

 10^{45}

 10^{50}

 10^{40}

GW2

 10^{30}

 10^{25}

 10^{-8}

 10^{-9}

 10^{-10}

MF

 10^{15}

 10^{20}

PBH as whole DM strongly constrained by gravitational lensing and evaporation effects

 10^{55}

Stringent constraints on PBH from AMS-02 *e*⁺ flux

An analysis based on **Galprop+Helmod** framework

J. Z. Huang and YFZ, 2401.xxxx

WIMPs, SuperWIMPs, Freeze-in

QCD axion and ALPs

Axions are well-motivated by the strong CP problem

- □ Typically couple to photons
- □ Some axions couple to electrons and quarks (DSFZ)
- **C**an be cold DM, originated from misalighment

Ultra-light dark matter

Motivated by small-scale problem of cold DM

- I. Cusp-Core
- II. Missing satellites
- III. Too-big-to-fail

- Formation of BEC, superfluid
- Change structure formation
- □ Change the propagation of light and GW wave

1500

1.4

500

1.6

Amruth, et al, arXiv:2304.09895

Direct detection: DM scatterings underground

DM scatterings may occur everywhere

DM may interact with SM particles (weakly)

Yu-Feng Zhou, ITP-CAS

DM scattering in space: merging clusters

1E0657-56

Abel 2744

Typical constraints on self-scattering:

MACS J0025.4-1222

DLSCL J0916.2+2951 $\frac{\sigma}{m_{\chi}} \le O(10^{-24}) \ cm^2/GeV$

DM scatterings in space: CMB

DM-proton scattering in early universe

- □ Distortion of CMB spectrum
- □ Suppression of small sale structure (drag force)

Constraints: $\sigma < 10^{-27} \text{ cm}^2 @ 1 \text{ keV}$

Constraints from CMB insensitive to DM particle mass

Gluscevic & Boddy, arXiv:1712.07133

DM scattering in space: structure formation

DM-proton scattering damp structure perturbation Distribution of dwarf satellite galaxies is modified $\sigma < 6x10^{-30} \text{ cm}^2$ @ 10 keV, (<10⁻²⁷ cm² @ 10 GeV) Upper limits scale with DM mass as m^{1/4} for m <<1 GeV

DM boosted by astrophysical sources

Sun (evaporation, reflection)
 Kouvaris, et.tal 1506.04316, An, et.al, 1708.03642

Blazar/AGN (up-scattering)
Wang , et.al, arXiv:2202.07598, arXiv:2202.07598

Supernova (up-scattering) Lin, et.al, arXiv:2206.06864

Supernova remnants (up-scattering) Cappiello et.al, arXiv:2210.09448

Blackholes (Hawking evaporation)
 Calabrese, et.al, arXiv:2107.13001
 Chao, et.al, arXiv:2108.05608
 Kitabayashi, arXiv.2204.07898

Cosmic rays (up-scattering) Bringmann, et.al, arXiv:1810.10543 Ema, et.al, arXiv: 1811.00520 Cappiello, et.al, 1arXiv:906.11283

CR-DM scattering: an irreducible process for DM direct search

CR-DM scattering: CR boosted dark matter

Essentially no threshold problem
 Typical constraint σ_{χp} < 10⁻⁽³¹⁻³²⁾ cm²
 Constraints on σ_{χN} highly insensitive to DM mass (for constant cross section)

Yu-FengZhou, HP-CAS

16

Anisotropy in the boosted DM flux

Distribution of DM flux close follows the sources

- DM boosted by the Sun, supervona, etc, point-like
- DM boosted by the dark sector diffuse, azimuthal symmetric

$$- \text{ decay} \qquad \left(\frac{d\Phi_{\chi}}{dT_{B}d\Omega}\right)_{\text{dec}} = \frac{1}{4\pi m_{A}\tau_{A}} \frac{dN}{dT_{B}} \int_{\text{l.o.s}} d\ell \rho_{\chi}(\boldsymbol{r}),$$

$$- \text{ annihilation} \qquad \left(\frac{d\Phi_{\chi}}{dT_{B}d\Omega}\right)_{\text{ann}} = \frac{\langle\sigma_{\text{ann}}v\rangle}{8\pi m_{A}^{2}} \frac{dN}{dT_{B}} \int_{\text{l.o.s}} d\ell \rho_{\chi}^{2}(\boldsymbol{r}),$$

$$- 3 \rightarrow 2 \text{ process} \qquad \left(\frac{d\Phi_{\chi}}{dT_{B}d\Omega}\right)_{3\rightarrow 2} = \frac{\langle\sigma_{3\rightarrow 2}v^{2}\rangle}{24\pi m_{A}^{3}} \frac{dN}{dT_{B}} \int_{\text{l.o.s}} d\ell \rho_{\chi}^{3}(\boldsymbol{r}),$$

• DM boosted by CRs diffuse, **azimuthal asymmetric**

$$\frac{d\Phi_{\chi}}{dT_{\chi}d\Omega} = \int_{\rm l.o.s} d\ell \frac{\rho_{\chi}(\boldsymbol{r})}{m_{\chi}} \int_{T_e^{\rm min}} dT_e \frac{\sigma_{\chi e}}{T_{\chi}^{\rm max}} \frac{d\Phi_e(\boldsymbol{r})}{dT_e},$$

Distribution of CR source

$$q(R,z) = \left(\frac{R}{R_{\odot}}\right)^{a} \exp\left(-b\frac{R-R_{\odot}}{R_{\odot}}\right) \exp\left(-\frac{|z|}{z_{s}}\right),$$

Diffusion model Galactic disk Calactic disk Calactic disk Calactic wind V_c Calactic wind V_c

Diffusion halo $z_h \ll R_h$

Azimuthal symmetry breaking in CRDM flux

Harmonic expansion

$$\frac{d\Phi_{\chi}}{d\Omega}(\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l,m} Y_{l,m}(\theta,\varphi),$$

coefficients

$$a_{l,m} = \int d\Omega Y_{l,m}^*(\theta,\varphi) \frac{d\Phi_{\chi}}{d\Omega}(\theta,\varphi).$$

- $a_{l,m}$ independent of $\sigma_{\chi e}$
- nonvanishing $a_{l,m}$ with $m \neq 0$ \rightarrow azimuthal symmetry breaking

		$ ilde{a}_{1,0}$	$ ilde{a}_{2,0}$	$\tilde{a}_{3,0}$	$ ilde{a}_{4,0}$	$ ilde{a}_{5,0}$	$ ilde{a}_{2,2}$	$ ilde{a}_{3,2}$	$ ilde{a}_{4,2}$	$ ilde{a}_{4,4}$	$ ilde{a}_{5,2}$	$ ilde{a}_{5,4}$
NFW	CRDM	1.00	0.90	0.77	0.63	0.52	0.12	0.12	0.11	0.02	0.09	0.02
	BDM $(n = 1)$	0.63	0.37	0.24	0.17	0.13	0	0		0	0	0
	BDM $(n=2)$	1.28	1.33	1.32	1.29	1.27	0	0		0	0	0
Einasto	CRDM	1.06	1.00	0.88	0.75	0.64	0.11	0.11			0.00	0.00
	BDM $(n = 1)$	0.68	0.43	0.30	0.22	0.17	0	0	symmetry breaking term only appears in CRDM			
	BDM $(n=2)$	1.36	1.46	1.47	1.45	1.42	0	0				
Yan-Hao Xu,	n-Hao Xu, Chen Xia, YFZ, 2206.11454											

Probing the morphology of CREDM flux

Cherenkov detectors can tell the arrival direction of DM

Detectors for neutrino experiments 1) Liquid scintillator detectors: Borexino, *Dune* Low threshold (keV), no direction identification 2) Water Cherenkov detectors: *Super-K, SNO* High threshold (MeV), can measure direction 3) Hybrid detectors, 1)+2): SNO+

For boosted DM, the threshold is no longer
a problem --> good news for neutrino experiments
neutrino Exps. have huge exposures
e.g. SK: 50 kt

Water Cherenkov detectors can measure direction recoil electrons (and protons) following the direction of DM

SK has good angular resolution $\sim 3^\circ$

elastic electron scattering Super-K (2018)

Borexino (2022)

Constraints on DM-electron scattering from SK-IV data

Optimize the search cone

SK-IV all-sky data, 0.1–1.33 GeV 70°N 60°N 40° 30°N 20°I 10° 10°S 20° 30 10-26 10^{-28} 10-30 SK-IV (full sky) تی 10⁻³² هم 10⁻³⁴ SENSE Solar Reflection 10^{-36} SK–IV ($\theta \le 25^\circ$) PandaX-II --- HK Projection 10^{-38} FNO 10^{-} 10^{-4} 10^{-2} 10^{-7} 10^{-6} 10^{-3} 10^{-5} 10^{-1} m_{χ} [GeV] We obtain so far the most stringent limit

 $\sigma_{\chi e} \le 2.4 \times 10^{-33} cm^2 @1 \, MeV$

u-rengznou, mr-oao

27

Distinguishing CRDM from other boosted DM models

Define an azimuthal asymmetric parameter

Anisotropic DM flux : annual modulaton

Standard halo model

$$f_{\text{halo}}(\boldsymbol{v}) = \frac{n_0}{N} \exp\left(-\frac{\boldsymbol{v}^2}{v_0^2}\right) \Theta(v_{\text{esc}} - |\boldsymbol{v}|),$$

Advantages for DM search

- reject all isotropic backgrounds
 go beyond the neutrino floor
 uniquely identify DM
- uniquely identify DM

DAMA: arXiv:2209.00882

COSINE: arXiv:2111.08863

Beyond the solar neutrino floor

P. Grothaus, et al, arXiv:1406.5047

Anisotropic DM flux: diurnal modulation

□ Annual modulation: time-variation of DM flux

- sensitive to halo DM (nonrelativistic)
- > apply to small cross section $\sigma_{\chi p} \sim O(10^{-40})$
- > modulation amplitudes typically small ($\leq 10\%$)

Diurnal modulation: time-variation of underground DM flux

- sensitive to both halo DM and boosted DM
- ▶ require large cross section $\sigma_{\chi p} \sim O(10^{-30})$
- modulation amplitudes can be much larger

Diurnal modulation in electron events

Current constraints on DM-electron scattering cross section are strong enough

The DM mean-free-path is longer than the diameter of the Earth Impossible to see diurnal modulation in electron events? No !

Electron signals from DM-nucleon scattering

The Migdal effect: Ionization electrons from nuclear scattering

cross section

$$\frac{d\sigma_{\mathrm{Mig},nl}}{dT_N d\ln T_e} \approx \frac{1}{2\pi} \frac{d\sigma_{\chi N}}{dT_N} \frac{dP_{nl}}{d\ln T_e} \left(T_e, q_e\right)$$

Ionization probability

$$\frac{dP_{nl}}{d\ln T_e} \approx \frac{\pi}{2} \left| f_{nl}^{\text{ion}} \left(k_e, \, q_e \right) \right|^2,$$

simple QM calculation

$$\begin{split} \left| f_{nl}^{\text{ion}} \left(k_{e}, \, q_{e} \right) \right|^{2} = & \frac{2k_{e}}{\pi} \sum_{l'=0}^{\infty} \sum_{L=|l-l'|}^{l+l'} (2l'+1)(2l+1)(2L+1) \\ & \left(\begin{pmatrix} l & l' & L \\ 0 & 0 & 0 \end{pmatrix}^{2} \left| \int dr r^{2} \widetilde{R}_{k_{e}l'}^{*} j_{L}(q_{e}r) R_{nl} \right|^{2}, \end{split}$$

Underground DM flux

Mean energy-loss rate

$$\frac{dT_{\chi}}{dz} = -\sum_{N} n_N \int_0^{T_N^{\max}} \frac{d\sigma_{\chi N}}{dT_N} T_N dT_N,$$

But, assuming simple ballistic trajectories can be misleading

The numerical code (darkprop)

- \checkmark anisotropic initial condition
- ✓ spherical Earth model with layers
- ✓ both relativistic and non-relativistic scatterings
- ✓ nuclear form factor
- ✓ fully cross-checked with DaMasCUS dark matter

z [km]

Constraints from PandaX-II/4T on the Migdal effect

binned Poisson method used to set limits at 90% C.L. from PandaX-II (50-55 PE), Xenon-10 (41-68 PE) and Xenon-1T (42-70 PE)

Mai Qiao, Chen Xia, YFZ, 2307.12820(JCAP)

Predictions for diurnal asymmetry in electron event

Required background at 50-55 PE for 3σ significance

 $A_R = (2.11 \pm 0.70) \times 10^{-1}$ for $b_{50} = 9.5 \times 10^{-2} / \text{ton/day/PE}$,

Mai Qiao, Chen Xia, YFZ, 2307.12820 (JCAP)

Summary

- Astrophysical observables can provide alternative constraints on DMnucleon/electron scattering cross sections.
- The constraints are weaker but can be applied to broader range of DM particle masses.
- Many astrophysical boosting mechanism exist, which help the current underground DM experiments to explore light (sub-GeV) DM particles
- The morphology of the boosted DM flux can be useful to improve the constraints and distinguish different DM models. CRDM provides a good example for it.
- DM directional search are important to uniquely identify DM and distinguish different DM models. observing the diurnal modulation of electron events from DM-nucleus scattering (through Migdal effect) is possible, after considering all the current constraints

Thank you for your attention!