Connecting dark matter direct and indirect searches

Yu-Feng Zhou

Institute of Theoretical Physics, **Chinese Academy of Sciences**

Dark matter candidates and searches

Searches for DM in a vast parameter space requires complementary approaches

Primordial black holes (PBHs): astrophysical candidates

Yu-Feng Zhou, ITP-CAS $\overline{3}$ PBH as whole DM strongly constrained by gravitational lensing and evaporation effects

Stringent constraints on PBH from AMS-02 e⁺ flux

An analysis based on **Galprop+Helmod** framework

J. Z. Huang and YFZ, 2401.xxxx

WIMPs, SuperWIMPs, Freeze-in

Yu-Feng Zhou, ITP-CAS $\overline{5}$

QCD axion and ALPs

Axions are well-motivated by the strong CP problem

- Typically couple to photons
-
- ❑ Can be cold DM, originated from misalighment

 $10⁻$

 10^{-10}

 $Si(Li)$

XMASS SolarNeutrino

EDELWEISS-ICDEX-IN

Ultra-light dark matter

Motivated by small-scale problem of cold DM

- I. Cusp-Core
- II. Missing satellites
- III. Too-big-to-fail

Ultra-light dark matter

- ❑ Formation of BEC, superfluid
- ❑ Change structure formation
- ❑ Change the propagation of light and GW wave

1500

 1.4

500

1.6

Galaxy
halo Condensate DM: condensate core $\lambda_{\rm db} > d$

Yu-Feng Zhou, ITP-CAS 7

Direct detection: DM scatterings underground

DM scatterings may occur everywhere

DM may interact with SM particles (weakly)

DM scattering in space: merging clusters

1E0657-56

Abel 2744

Typical constraints on self-scattering:

MACS J0025.4−1222

DLSCL J0916.2+2951 $\leq O(10^{-24})$ cm²/GeV

 σ

 $m_\chi^{}$

DM scatterings in space: CMB

DM-proton scattering in early universe

- Distortion of CMB spectrum
- Suppression of small sale structure (drag force)

Constraints: $\sigma < 10^{-27}$ cm² @ 1 keV

Constraints from CMB insensitive to DM particle mass

Gluscevic & Boddy, arXiv:1712.07133

DM scattering in space: structure formation

DM-proton scattering damp structure perturbation Distribution of dwarf satellite galaxies is modified σ < 6x10⁻³⁰ cm² @ 10 keV, (<10⁻²⁷ cm² @ 10 GeV) Upper limits scale with DM mass as $m^{1/4}$ for m <<1 GeV

DM boosted by astrophysical sources

❑ Sun (evaporation, reflection) Kouvaris, et.tal 1506.04316, An, et.al, 1708.03642 ❑ Blazar/AGN (up-scattering) Wang , et.al, arXiv:2202.07598, arXiv:2202.07598

❑ Supernova (up-scattering) Lin, et.al, arXiv:2206.06864

❑ Supernova remnants (up-scattering) Cappiello et.al, arXiv:2210.09448

❑ Blackholes (Hawking evaporation) Calabrese, et.al, arXiv:2107.13001 Chao, et.al, arXiv:2108.05608 Kitabayashi, arXiv.2204.07898

❑ Cosmic rays (up-scattering) Bringmann, et.al, arXiv:1810.10543 Ema, et.al, arXiv: 1811.00520 Cappiello, et.al, 1arXiv:906.11283

… …

CR-DM scattering: an irreducible process for DM direct search

CR-DM scattering: CR boosted dark matter

 \Box Essentially no threshold problem \Box Typical constraint $\sigma_{\chi p}$ < 10⁻⁽³¹⁻³²⁾ cm² □ Constraints on $\sigma_{\chi N}$ highly insensitive to DM mass (for constant cross section)

Yu-Feng Zhou, ITP-CAS 16

Anisotropy in the boosted DM flux

Distribution of DM flux close follows the sources

- DM boosted by the Sun, supervona, etc, point-like
- DM boosted by the dark sector diffuse, azimuthal symmetric

- decay
\n- annihilation
\n
$$
\left(\frac{d\Phi_{\chi}}{dT_{B}d\Omega}\right)_{\text{dec}} = \frac{1}{4\pi m_{A}\tau_{A}}\frac{dN}{dT_{B}}\int_{\text{l.o.s}}d\ell\rho_{\chi}(\boldsymbol{r}),
$$
\n- annihilation
\n
$$
\left(\frac{d\Phi_{\chi}}{dT_{B}d\Omega}\right)_{\text{ann}} = \frac{\langle\sigma_{\text{ann}}v\rangle}{8\pi m_{A}^{2}}\frac{dN}{dT_{B}}\int_{\text{l.o.s}}d\ell\rho_{\chi}^{2}(\boldsymbol{r}),
$$
\n- 3 \to 2 process
\n
$$
\left(\frac{d\Phi_{\chi}}{dT_{B}d\Omega}\right)_{3\to 2} = \frac{\langle\sigma_{3\to 2}v^{2}\rangle}{24\pi m_{A}^{3}}\frac{dN}{dT_{B}}\int_{\text{l.o.s}}d\ell\rho_{\chi}^{3}(\boldsymbol{r}),
$$

• DM boosted by CRs diffuse, azimuthal asymmetric

$$
\frac{d\Phi_{\chi}}{dT_{\chi}d\Omega} = \int_{\text{l.o.s}} d\ell \frac{\rho_{\chi}(r)}{m_{\chi}} \int_{T_e^{\text{min}}} dT_e \frac{\sigma_{\chi e}}{T_{\chi}^{\text{max}}} \frac{d\Phi_e(r)}{dT_e},
$$

Distribution of CR source

$$
q(R,z)=\left(\frac{R}{R_{\odot}}\right)^a\exp\left(-b\frac{R-R_{\odot}}{R_{\odot}}\right)\exp\left(-\frac{|z|}{z_s}\right),
$$

Diffusion halo $z_h \ll R_h$

Azimuthal symmetry breaking in CRDM flux

Harmonic expansion

$$
\frac{d\Phi_{\chi}}{d\Omega}(\theta,\varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l,m} Y_{l,m}(\theta,\varphi),
$$

coefficients

$$
a_{l,m} = \int d\Omega Y_{l,m}^*(\theta,\varphi) \frac{d\Phi_\chi}{d\Omega}(\theta,\varphi).
$$

- $a_{l,m}$ independent of $\sigma_{\chi e}$
- nonvanishing $a_{l,m}$ with $m \neq 0$ \rightarrow azimuthal symmetry breaking

Probing the morphology of CREDM flux

Cherenkov detectors can tell the arrival direction of DM

Detectors for neutrino experiments 1) Liquid scintillator detectors: Borexino, Dune Low threshold (keV), no direction identification 2) Water Cherenkov detectors: Super-K, SNO High threshold (MeV), can measure direction 3) Hybrid detectors, $1)+2$): SNO+

For boosted DM, the threshold is no longer a problem --> good news for neutrino experiments ❑ neutrino Exps. have huge exposures

e.g. SK: 50 kt

❑ Water Cherenkov detectors can measure direction recoil electrons (and protons) following the direction of DM

SK has good angular resolution \sim 3°

elastic electron scattering Super-K (2018)

Borexino (2022)

Constraints on DM-electron scattering from SK-IV data

Optimize the search cone SK-IV all-sky data, 0.1–1.33 GeV

70°N $60°N$ 40° 1°30
20°N 10° $10°$ 20^o 10^{-26} 10^{-28} 10^{-30} SK-IV (full sky) $\begin{array}{c}\n\stackrel{\sim}{2}10^{-3}\n\\ \n\stackrel{\sim}{\sim} 10^{-3}\n\end{array}$ SENSE **Solar Reflection** 10^{-36} \blacksquare SK-IV ($\theta \le 25^\circ$)

--- HK Projection

 10^{-6}

 10^{-5}

 10^{-38}

 10^{-7}

 10^{-4}

We obtain so far the most stringent limit $\sigma_{\chi e} \leq 2.4 \times 10^{-33} cm^2 \omega$ MeV

 10^{-4} m_Y [GeV]

 10^{-3}

 10^{-2}

PandaX-II

 10^{-1}

Distinguishing CRDM from other boosted DM models

Define an azimuthal asymmetric parameter

Anisotropic DM flux : annual modulaton

Standard halo model

$$
f_{\text{halo}}(\boldsymbol{v}) = \frac{n_0}{N} \exp\left(-\frac{\boldsymbol{v}^2}{v_0^2}\right) \Theta(v_{\text{esc}} - |\boldsymbol{v}|),
$$

Advantages for DM search

- ❑ reject all isotropic backgrounds □ go beyond the neutrino floor
-

DAMA: arXiv:2209.00882

Beyond the solar neutrino floor

P. Grothaus, et al, arXiv:1406.5047

Anisotropic DM flux: diurnal modulation

❑ Annual modulation: time-variation of DM flux

- \triangleright sensitive to halo DM (nonrelativistic)
- ρ apply to small cross section $\sigma_{\chi p} \sim O(10^{-40})$
- \triangleright modulation amplitudes typically small ($\leq 10\%$)

❑ Diurnal modulation: time-variation of underground DM flux

- ➢ sensitive to both halo DM and boosted DM
- ρ require large cross section $\sigma_{\chi p} \sim O(10^{-30})$
- ➢ modulation amplitudes can be much larger

Diurnal modulation in electron events

Current constraints on DM-electron scattering cross section are strong enough

The DM mean-free-path is longer than the diameter of the Earth Impossible to see diurnal modulation in electron events ? No !

Electron signals from DM-nucleon scattering

❑ The Migdal effect: Ionization electrons from nuclear scattering

cross section

$$
\frac{d\sigma_{\text{Mig},nl}}{dT_N d\ln T_e} \approx \frac{1}{2\pi} \frac{d\sigma_{\chi N}}{dT_N} \frac{dP_{nl}}{d\ln T_e} (T_e, q_e)
$$

Ionization probability

$$
\frac{dP_{nl}}{d\ln T_e} \approx \frac{\pi}{2} \left| f_{nl}^{\text{ion}}\left(k_e, q_e\right) \right|^2,
$$

simple QM calculation

$$
\left| f_{nl}^{\text{ion}}\left(k_e, q_e \right) \right|^2 = \frac{2k_e}{\pi} \sum_{l'=0}^{\infty} \sum_{L=l-l'}^{l+l'} (2l'+1)(2l+1)(2L+1)
$$

$$
\left(\begin{array}{cc} l & l' & L \\ 0 & 0 & 0 \end{array} \right)^2 \left| \int dr r^2 \widetilde{R}_{k_e l'}^* j_L(q_e r) R_{nl} \right|^2,
$$

Underground DM flux

Mean energy-loss rate

$$
\frac{dT_{\chi}}{dz} = -\sum_{N} n_{N} \int_{0}^{T_{N}^{\max}} \frac{d\sigma_{\chi N}}{dT_{N}} T_{N} dT_{N},
$$

But, assuming simple ballistic trajectories can be misleading

The numerical code (darkprop)

- \checkmark anisotropic initial condition
- spherical Earth model with layers
- both relativistic and non-relativistic scatterings
- \checkmark nuclear form factor
- fully cross-checked with DaMasCUS dark matter

Constraints from PandaX-II/4T on the Migdal effect

binned Poisson method used to set limits at 90% C.L. from PandaX-II (50-55 PE), Xenon-10 (41-68 PE) and Xenon-1T (42-70 PE)

Mai Qiao, Chen Xia, YFZ, 2307.12820(JCAP)

Predictions for diurnal asymmetry in electron event

Required background at 50-55 PE for 3σ significance

 $A_R = (2.11 \pm 0.70) \times 10^{-1}$ for $b_{50} = 9.5 \times 10^{-2}$ /ton/day/PE,

Mai Qiao, Chen Xia, YFZ, 2307.12820 (JCAP)

Summary

- ❑ Astrophysical observables can provide alternative constraints on DMnucleon/electron scattering cross sections.
- ❑ The constraints are weaker but can be applied to broader range of DM particle masses.
- ❑ Many astrophysical boosting mechanism exist, which help the current underground DM experiments to explore light (sub-GeV) DM particles
- ❑ The morphology of the boosted DM flux can be useful to improve the constraints and distinguish different DM models. CRDM provides a good example for it.
- ❑ DM directional search are important to uniquely identify DM and distinguish different DM models. observing the diurnal modulation of electron events from DM-nucleus scattering (through Migdal effect) is possible, after considering all the current constraints

Thank you for your attention !