

ICTP-AP International Centre for Theoretical Physics Asia-Pacific 国际理论物理中心-亚太地区

Dark Photon Dark Matter Searches at LIGO

郭怀珂

中国科学院大学 国际理论物理中心-亚太地区

2023-12-31

Dark Matter

2023 紫金山暗物质研讨会

Searches as of now:

2

- O1 Search: (Nature) Commun.Phys [1905.04316], HG, Keith Riles, Fengwei Yang, Yue Zhao
- O3 Search: LIGO-Virgo-KAGRA Collaborations, PRD [2105.13085]

The O3-Search Team

Andrew Miller Huaike Guo Cristiano Palomba Ornella Piccinni Keith Riles Fengwei Yang Yue Zhao

Acknowledgement: This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

Large numer density (local DM enery density $0.4 \text{GeV}/cm^3$)

3

Behaving like an oscillating classical field

中国脉冲星测时阵列(CPTA)

Michelson Interferometer

11

Cross-Correlation

- Significantly reduce noise
- Larger SNR for longer observation time

Method 1: Cross-Correlation

• Signal is approximately a peak in frequency space

• Data analyzed using coincident short-time Fourier transforms (SFTs)

Hanford + Livingston O1: 1786 pairs (1800s) O3: 7539 pairs (1800s)

13

 $N_{SFT} = T_{obs}/T_{SFT}$, where $T_{SFT} = 1800s$ complex SFT coefficient for SFT *i* and $S_j = \frac{1}{N_{\text{SFT}}} \Sigma_{i=1}^{N_{\text{SFT}}} \Re \left\{ \begin{array}{c} z_{1,ij} z_{2,ij}^* \\ P_{1,ij} P_{2,ij} \end{array} \right\}$ • Signal: frequency bin *j* and interferometer 1, 2 The signal is correlated! the noise power • Noise: $\sigma_j^2 = \frac{1}{N_{SFT}} \left\langle \frac{1}{2P_{1,j}P_{2,j}} \right\rangle_{N}$ (background might not be ideally Gaussian) $\text{SNR} \equiv \frac{S_j}{\sigma_i}.$ ~ sqrt(T)

Method 1: Background Estimation

Background is estimated using frequency offset (lags) when calculating cross-correlation statistics.

Ideally, the SNR from the background should follow a Gaussian distribution with mean=0 and variance = 1.

(bin size = 1/1800 Hz = 0.556 mHz)

Also veto the marked lines and combs provided by the CW group.

Method 1: O3 Search Summary

Method 1: O3 Search Summary

A total of 21 are found with SNR larger than 5, but no interesting candidates for DPDM.

11 are due to loud artifacts from one detector (inspecting the single detector PSD)

6 have elevated noise (with real or imaginary SNR exceeding 4 in magnitude for background) For 1800s SFT, 0.2 Hz control band, real and imaginary SNR, there are a total of 7200 measurements. Expect less than 1 event with real or imaginary SNR greater than 3.8. Existence of backgrounds with real or imaginary SNR greater than 3.8 suggests non-Gaussian artifacts.

4 remaining are consistent with Gaussian expectation

frequency (Hz)	SNR	SNR(Bkg)
483.872	0.53 + 5.03i	Re: [-3.62, 3.62] Im: [-3.52, 3.51]
853.389	-0.18+5.02i	Re: [-3.85, 3.85] Im: [-3.55, 3.90]
1139.590	-5.21 + 0.67i	Re: [-3.54, 3.39] Im: [-3.61, 3.58]
1686.598	5.01 + 1.63i	Re: [-3.50, 3.70] Im: [-3.65, 3.89]

16

Method 2: Excess Power

• BSD (banded sampled data) excess power method

Optimized Fourier Transform coherence time

Signal power is confined to one frequency bin

• Time/frequency map in 10-Hz bands over all of O3

Projected to frequency axis

• Candidates selection

On average one coincident candidate per 1Hz band in Gaussian noise.

• Coincidence check

Vetoed if CR<5 and if they are farther than 1 frequency bin from each other.

New in O3

 $CR = \frac{y}{2}$

Outliers (all vetoed, none exists for triple coincidence)

C /77			1 1.		J (112)
frequency (H	z) average CR	$T_{\rm FFT}$ (s)	baseline	source	
15.9000	5.29	44762	HL	unknown line in L	/ exa
17.8000	28.93	44762	LV	unidentified line in L (17.8 Hz)	/
36.2000	8.90	22382	HV	unidentified line in H (36.2 Hz)	
599.324	12.38	1492	HV	peakmap artifact; no significant candidate in L	
599.325	12.33	1492	HV	peakmap artifact; no significant candidate in L	,
1478.75	6.47	604	HL	noisy spectra in H	
1496.26	7.12	596	HL	noisy violin resonance regions	
1498.77	8.73	596	HL	noisy violin resonance regions	
1799.63	7.40	498	HV	unidentified line in H (1799.63904 Hz)	
1936.88	7.96	462	HL	noisy violin resonance regions	
1982.91	6.34	450	HL	noisy violin resonance regions	

O1 Result

O3 Result

(Nature) Commun.Phys [1905.04316], HG, Riles, Yang, Zhao

LIGO-VIRGO-KAGRA Collaborations, PRD [2105.13085]

New in O3 search:

1. Another search performed by the continuous wave group with a different method

2. An improvement factor included from finite light travel time (PRD.103.L051702, Morisaki, et al)

- GW experiments can be extended to directly search for dark matter
- Searches have been performed with LIGO-Virgo-KAGRA's O1 and O3 data
- Constraints set on dark photon coupling (best in relevant mass range)
 Possibly achieve 5-sigma discovery at unexplored parameter regimes

