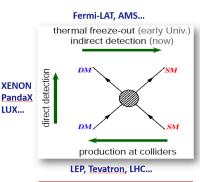
Singlino DM in General Next-to-Minimal Supersymmetric Standard Model

Junjie Cao


junjiec@alumni.itp.ac.cn

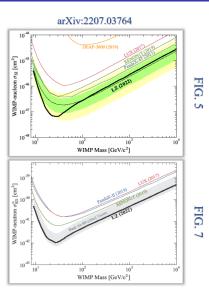
Shandong University Department of Physics

December 30, 2023

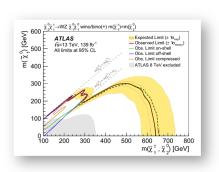
- Cruicial experimental restrictions
- 2 Why does Bino-dominated DM become less attractive?
- 3 Why does Z_3 -NMSSM not naturally explain DM experiments?
- 4 Advantages of Singlino-dominated DM in GNMSSM
- 6 Conclusion

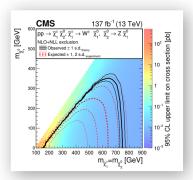
Experimental Restrictions: DM DD experiments

No new physics signal !


Simple WIMP DM Theory:

DM mass: $m_{\rm DM} \sim 100 \; {\rm GeV}$


Relic density: $\langle \sigma v \rangle \simeq 10^{-26} \text{cm}^3 s^{-1}$


SI scattering: $\sigma_{\tilde{\chi}-N}^{\rm SI} \sim 10^{-45} {\rm cm}^2$,

SD scattering: $\sigma_{\tilde{\chi}-N}^{\rm SD} \sim 10^{-39} {\rm cm}^2$.

Experimental Restrictions: LHC's search for SUSY

Latest LHC searches for Tri- and Bi-lepton signals.

- Simplified model for a specified process.
- 2 Invalid for a specific theory: complex decay chain, multiple production processes, and various signals to be analyzed.
- 3 Elaborated Monte Carlo simulations are necessary.

Why Does Bino-dominated DM Become Less Attract.?

• MSSM: Full expression complicated; $\mu/m_{\tilde{\chi}^0_1}$ is Higgsino/DM mass.

$$\begin{split} &\sigma_{\tilde{\chi}_{1}^{0}-N}^{\rm SI} \simeq 5 \times 10^{-45}~{\rm cm}^{2} \left(\frac{{\rm C}_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}{\rm h}}}{0.1}\right)^{2} \left(\frac{{\rm m_{h}}}{125 {\rm GeV}}\right)^{2} \\ &\sigma_{\tilde{\chi}_{1}^{0}-N}^{\rm SD} \simeq 10^{-39}~{\rm cm}^{2} \left(\frac{{\rm C}_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}{\rm Z}}}{0.1}\right)^{2} \\ &C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h} \simeq e \tan \theta_{W} \frac{m_{Z}}{\mu \left(1-m_{\tilde{\chi}_{1}^{0}}^{2}/\mu^{2}\right)} \left(\sin 2\beta + \frac{m_{\tilde{\chi}_{1}^{0}}}{\mu}\right) \\ &C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z} \simeq \frac{e \tan \theta_{W} \cos 2\beta}{2} \frac{m_{Z}^{2}}{\mu^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}} \end{split}$$

• Conservative bounds on Higgsino mass:

LZ Experiment:
$$\mu \gtrsim 380 \text{ GeV}$$
, LZ + LHC + a_{μ} : $\mu \gtrsim 500 \text{ GeV}$.

Higgsino mass is related with electroweak symmetry breaking!

$$m_Z^2 = 2(m_{H_d}^2 - m_{H_u}^2 \tan^2 \beta)/(\tan^2 \beta - 1) - 2\mu^2.$$

A tuning of 1% in EWSB. Significantly worsen in Giudice-Masiero Mechan

Why Does Bino-dominated DM Become Less Attract.?

Solutions: Go beyond minimal realizations of WIMP miracle.

DM EFTs	Examples	DM Abundance	$\tilde{\chi} - N$ Scattering	Remarks
	$\mathrm{SM}{+}S_{real}$	Weak/contact	$\sigma_{\rm SI} \gtrsim 10^{-45} {\rm cm}^2$ and/or $\sigma_{\rm SD} \gtrsim 10^{-39} {\rm cm}^2$	Experimentally excluded.
SM+DM		interactions	Suppressed by cancellation	Symmetry!
		Feeble interaction:	Suppressed	Increasingly Fine-tuned:
		h/Z funnels	Suppressed	$\Delta > 150$.
SM+DM+X	MSSM with Light Gauginos	Coannihilation/Mediator	Suppressed	Fine-tuning: $\Delta > 30$;
			Suppressed	Tight LHC constraitns.
SM+DM+XY	GNMSSM	May form	Suppressed	No tuning;
	ISS-NMSSM	secluded DM sector	Dupplessed	three portals to SM.

Why is the dark matter still called WIMP?

Weak interactions in the DM sector to predict proper Ωh^2 , feeble connections between SM and DM sectors to suppress ...

At least two directions to build models:

- Realize naturally EWSB: $MSSM \rightarrow Z_3$ - $NMSSM \rightarrow General NMSSM$.
- $\bullet \ \ \text{Generate neutrino mass: } \textbf{Type-I NMSSM} \rightarrow \textbf{ISS-NMSSM} \rightarrow \textbf{B-L NMSSM}.$

Why Does Z_3 -NMSSM not naturally Explain DM Exp.?

• Field content and gauge group

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(\mathrm{U}(1)\otimes\mathrm{SU}(2)\otimes\mathrm{SU}(3)$
\hat{q}	$ ilde{q}$	q	3	$\left(\frac{1}{6},2,3\right)$
Î	Ĩ	l	3	$\left(-\frac{1}{2},2,1 \right)$
\hat{H}_d	H_d	\tilde{H}_d	1	$\left(-rac{1}{2},2,1 ight)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(\frac{1}{2}, 2, 1)$
\hat{d}	\tilde{d}_R^*	d_R^*	3	$(\overline{\frac{1}{3}}, 1, \overline{3})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$\left(-\frac{2}{3},1,\overline{3}\right)$
\hat{e}	\tilde{u}_R^* \tilde{e}_R^*	$\begin{array}{c} d_R^* \\ u_R^* \\ e_R^* \end{array}$	3	(1, 1, 1)
ŝ	S	$ ilde{S}$	1	(0, 1, 1)

• Superpotential — an ad hoc Z_3 discrete symmetry

$$W_{\text{NMSSM}} = W_{\text{Yukawa}} + \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3$$

Try to economically solve μ -problem and

• DM may be Bino- or Singlino-dominated. For Bino-dom. case: LZ Experiment: $\mu \gtrsim 380$ GeV, Higgs Data: $\lambda \mu \lesssim 100$ GeV. DM physics is the same as that of MSSM since $\lambda \lesssim 0.3$.

Z_3 -NMSSM: Neutralino Sector

Singlino-dominated DM:

 \bullet Neutralino mass matrix — diagonalized by a rotation matrix N

$$\mathcal{M} = \begin{pmatrix} M_1 & 0 & -\frac{g_1 v_d}{\sqrt{2}} & \frac{g_1 v_u}{\sqrt{2}} & 0\\ & M_2 & \frac{g_2 v_d}{\sqrt{2}} & -\frac{g_2 v_u}{\sqrt{2}} & 0\\ & & 0 & -\mu & -\lambda v_u\\ & & & 0 & -\lambda v_d\\ & & & \frac{2\kappa}{\lambda} \mu \end{pmatrix}$$

• DM mass and its couplings are approximated by: $\mu \equiv \frac{\lambda}{\sqrt{2}} v_s$

$$\begin{split} & m_{\tilde{\chi}_{1}^{0}} \approx \frac{2\kappa}{\lambda} \mu + \frac{\lambda^{2} v^{2}}{\mu^{2}} (\mu \sin 2\beta - \frac{2\kappa}{\lambda} \mu) \simeq \frac{2\kappa}{\lambda} \mu, \qquad N_{15} \simeq 1, \\ & \frac{N_{13}}{N_{15}} = \frac{\lambda v}{\sqrt{2} \mu} \frac{(m_{\tilde{\chi}_{1}^{0}}/\mu) \sin \beta - \cos \beta}{1 - \left(m_{\tilde{\chi}_{1}^{0}}/\mu\right)^{2}}, \qquad \frac{N_{14}}{N_{15}} = \frac{\lambda v}{\sqrt{2} \mu} \frac{(m_{\tilde{\chi}_{1}^{0}}/\mu) \cos \beta - \sin \beta}{1 - \left(m_{\tilde{\chi}_{1}^{0}}/\mu\right)^{2}}, \\ & C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} h_{i}} \simeq \frac{\sqrt{2} \mu}{v} \left(\frac{\lambda v}{\mu}\right)^{2} \frac{V_{h_{i}}^{\text{SM}} (m_{\tilde{\chi}_{1}^{0}}/\mu - \sin 2\beta)}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu)^{2}} + \dots, \\ & C_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} Z} \simeq \frac{m_{Z}}{\sqrt{2} v} \left(\frac{\lambda v}{\mu}\right)^{2} \frac{\cos 2\beta}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu)^{2}}, \end{split}$$

Z_3 -NMSSM: DM Properties

Singlino-dominated DM:

• DM-Nucleon Scattering in the alignment limit:

$$\begin{split} \sigma_{\tilde{\chi}_{1}^{0}-N}^{\rm SI} & \simeq & 5 \times 10^{-45} {\rm cm}^{2} \times \left(\frac{\mathcal{A}}{0.1}\right)^{2}, \quad \sigma_{\tilde{\chi}_{1}^{0}-N}^{\rm SD} \simeq 10^{-39} \; {\rm cm}^{2} \left(\frac{C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z}}{0.1}\right)^{2}, \\ \mathcal{A} & \simeq & \left(\frac{125 {\rm GeV}}{m_{h}}\right)^{2} V_{h}^{\rm SM} C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h} + \left(\frac{125 {\rm GeV}}{m_{h_{s}}}\right)^{2} V_{h_{s}}^{\rm SM} C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}h_{s}} \\ & \simeq & \sqrt{2} \left(\frac{125 {\rm GeV}}{m_{h}}\right)^{2} \lambda \frac{\lambda v}{\mu} \frac{(m_{\tilde{\chi}_{1}^{0}}/\mu - \sin 2\beta)}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu)^{2}}, \\ C_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}Z} & \simeq & \frac{m_{Z}}{\sqrt{2}v} (\frac{\lambda v}{\mu})^{2} \frac{\cos 2\beta}{1 - (m_{\tilde{\chi}_{1}^{0}}/\mu)^{2}}. \end{split}$$

• DM properties are described by **four** independent parameters:

$$\tan \beta$$
, λ , μ , $m_{\tilde{\chi}^0_1}$ or κ , and $2|\kappa|/\lambda < 1$.

Experiment: $\lambda \lesssim 0.1$, DM- \tilde{H} coannihilation to obtain proper abudance. Bayesian evidence is heavily suppressed \to A fine-tuning theory!

Advantages of Singlino-dominated DM in GNMSSM

• Chiral Superfields

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(\mathrm{U}(1)\otimes\mathrm{SU}(2)\otimes\mathrm{SU}(3)$
\hat{q}	$ ilde{ ilde{q}}$	q	3	$\left(rac{1}{6},2,3 ight)$
î	\tilde{l}	l	3	$\left(-rac{1}{2},2,1 ight)$
\hat{H}_d	H_d	\tilde{H}_d	1	$\left(-rac{1}{2},2,1 ight)$
\hat{H}_u	H_u	\tilde{H}_u	1	$(\frac{1}{2}, 2, 1)$
\hat{d}	$\begin{array}{c} \tilde{d}_R^* \\ \tilde{u}_R^* \\ \tilde{e}_R^* \end{array}$	d_R^*	3	$(\overline{\frac{1}{3}}, 1, \overline{3})$
\hat{u}	\tilde{u}_R^*	u_R^*	3	$\left(-\frac{2}{3},1,\overline{3}\right)$
\hat{e}	\tilde{e}_R^*	$egin{array}{c} d_R^* \ u_R^* \ e_R^* \ ilde{m{S}} \end{array}$	3	(1, 1, 1)
\hat{s}	S	$ ilde{S}$	1	(0, 1, 1)

• Superpotential — no ad hoc symmetry!

$$W_{\text{GNMSSM}} = W_{\text{Y}} + \lambda \hat{S} \hat{H}_u \cdot \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3 + \mu \hat{H}_u \cdot \hat{H}_d + \frac{1}{2} \mu' \hat{S}^2 + \xi \hat{S}$$

- lacksquare Solving domain wall and tadpole problems in Z_3 -NMSSM.
- ② Z_3 -violating terms originate from unified theories with a Z_4^n or Z_8^n sym..
- 3 The $\xi \hat{S}$ term can be eliminated by field redefinitions.

GNMSSM: DM Mass and Couplings

Singlino-dominated DM:

• Neutralino mass matrix: $\mu_{eff} \equiv \frac{\lambda}{\sqrt{2}} v_s$, $\mu_{tot} \equiv \mu + \mu_{eff}$.

$$m_{\tilde{\chi}_i^0} = \begin{pmatrix} M_1 & 0 & -\frac{1}{2}g_1v_d & \frac{1}{2}g_1v_u & 0 \\ 0 & M_2 & \frac{1}{2}g_2v_d & -\frac{1}{2}g_2v_u & 0 \\ -\frac{1}{2}g_1v_d & \frac{1}{2}g_2v_d & 0 & -\mu_{\textbf{tot}} & -\frac{1}{\sqrt{2}}v_u\lambda \\ \frac{1}{2}g_1v_u & -\frac{1}{2}g_2v_u & -\mu_{\textbf{tot}} & 0 & -\frac{1}{\sqrt{2}}v_d\lambda \\ 0 & 0 & -\frac{1}{\sqrt{2}}v_u\lambda & -\frac{1}{\sqrt{2}}v_d\lambda & \mathbf{m_N} \end{pmatrix}$$

Mass and couplings of the singlino-dominated DM are given by:

$$\begin{split} m_{\tilde{\chi}_1^0} & \simeq & m_N + \frac{1}{2} \frac{\lambda^2 v^2 (m_{\tilde{\chi}_1^0} - \mu_{tot} \sin 2\beta)}{m_{\tilde{\chi}_1^0}^2 - \mu_{tot}^2} \simeq m_N, \quad \mathbf{m_N} \equiv \sqrt{2} \kappa \mathbf{v_s} + \mu', \\ C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 h_i} & = & C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 h_i}^{\mathbf{Z_3} - \mathrm{NMSSM}} |_{\mu \to \mu_{tot}}, \qquad C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 Z} = C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 Z}^{\mathbf{Z_3} - \mathrm{NMSSM}} |_{\mu \to \mu_{tot}}. \end{split}$$

• DM properties are described by **five** independent parameters:

Note: $\tan \beta$, λ , κ , μ_{tot} , and $m_{\tilde{\chi}_1^0}$. μ_{tot} : Higgsino mass.

Different from Z_3 -NMSSM, $m_{\tilde{\chi}_1^0}$, λ , and κ are not correlated!

• In the limit $\lambda \to 0$, matrix decomposition: $5 \times 5 = 4 \oplus 1$, decoupled!

GNMSSM: Higgs Sector

Soft-breaking terms:

$$-\mathcal{L}_{soft} = \left[\lambda A_{\lambda} S H_{u} \cdot H_{d} + \frac{1}{3} A_{\kappa} \kappa S^{3} + m_{3}^{2} H_{u} \cdot H_{d} + \frac{1}{2} m_{S}^{\prime 2} S^{2} + h.c. \right] + m_{H_{u}}^{2} |H_{u}|^{2} + m_{H_{d}}^{2} |H_{d}|^{2} + m_{S}^{2} |S|^{2}.$$

CP-odd Higgs mass matrix in bases $(A_{NSM}, Im(S))$:

$$\mathcal{M}_{P,11}^2 = \frac{2\left[\mu_{eff}(\lambda A_\lambda + \kappa \mu_{eff} + \lambda \mu') + \lambda m_3^2\right]}{\lambda \sin 2\beta} \equiv \mathbf{m_A^2},$$

$$\mathcal{M}_{P,22}^2 = \frac{(\lambda A_\lambda + 4\kappa \mu_{eff} + \lambda \mu')\sin 2\beta}{4\mu_{eff}} \lambda v^2 - \frac{\kappa \mu_{eff}}{\lambda} (3A_\kappa + \mu') - \frac{\mu}{2\mu_{eff}} \lambda^2 v^2 - 2m_S'^2$$

$$\mathcal{M}_{P,12}^2 = \frac{v}{\sqrt{2}} (\lambda A_{\lambda} - 2\kappa \mu_{eff} - \lambda \mu') \equiv \frac{\lambda \mathbf{v}}{\sqrt{2}} (\mathbf{A}_{\lambda} - \mathbf{m}_{\mathbf{N}}).$$

- In the limit $\lambda \to 0$, matrix decomposition: $2 \times 2 = 1 \oplus 1$, singlet decoupled!
- m_A : heavy doublet mass scale, $m_B \equiv \sqrt{M_{P,22}^2}$: CP-odd singlet Higgs mass.

$$m_{3}^{2} = \frac{\lambda \mathbf{m_{A}^{2}} \sin 2\beta - 2\kappa \mu_{\text{eff}}^{2} - 2\lambda \mu_{\text{eff}} \mu' - 2\lambda \mu_{\text{eff}} A_{\lambda}}{2\lambda}$$

$$m_{S}^{\prime 2} = -\frac{1}{2} \left[\mathbf{m_{B}^{2}} + \frac{\mu}{2\mu_{\text{eff}}} \lambda^{2} v^{2} + \frac{\kappa \mu_{\text{eff}}}{\lambda} \left(3A_{\kappa} + \mu' \right) - \frac{(\lambda A_{\lambda} + 4\kappa \mu_{\text{eff}} + \lambda \mu') \sin 2\beta}{4\mu_{\text{eff}}} \lambda v^{2} \right]$$

GNMSSM: Higgs Sector

CP-even Higgs mass matrix in bases $(H_{NSM}, H_{SM}, Re[S])$:

$$\begin{split} \mathcal{M}_{S,11}^2 &= m_A^2 + \frac{1}{2} (2m_Z^2 - \lambda^2 v^2) \sin^2 2\beta, \\ \mathcal{M}_{S,12}^2 &= -\frac{1}{4} (2m_Z^2 - \lambda^2 v^2) \sin 4\beta, \\ \mathcal{M}_{S,13}^2 &= -\frac{1}{\sqrt{2}} (\lambda A_{\lambda} + 2\kappa \mu_{eff} + \lambda \mu') v \cos 2\beta \equiv -\frac{\lambda}{\sqrt{2}} (A_{\lambda} + m_N) v \cos 2\beta, \\ \mathcal{M}_{S,22}^2 &= m_Z^2 \cos^2 2\beta + \frac{1}{2} \lambda^2 v^2 \sin^2 2\beta, \\ \mathcal{M}_{S,23}^2 &= \frac{v}{\sqrt{2}} \left[2\lambda (\mu_{eff} + \mu) - (\lambda A_{\lambda} + 2\kappa \mu_{eff} + \lambda \mu') \sin 2\beta \right], \\ &\equiv \frac{\lambda v}{\sqrt{2}} \left[2\mu_{\text{tot}} - (\mathbf{A}_{\lambda} + \mathbf{m}_N) \sin 2\beta \right], \\ \mathcal{M}_{S,33}^2 &= \frac{\lambda (A_{\lambda} + \mu') \sin 2\beta}{4\mu_{eff}} \lambda v^2 + \frac{\mu_{eff}}{\lambda} (\kappa A_{\kappa} + \frac{4\kappa^2 \mu_{eff}}{\lambda} + 3\kappa \mu') - \frac{\mu}{2\mu_{eff}} \lambda^2 v^2, \end{split}$$

- In the limit $\lambda \to 0$, matrix decomposition: $3 \times 3 = 2 \oplus 1$, singlet decoupled!
- $m_C \equiv \sqrt{\mathcal{M}_{S,33}^2}$: CP-even singlet Higgs mass.

$$A_{\kappa} \quad = \quad \frac{\mathbf{m_{C}^2} + \frac{\mu}{2\mu_{\mathrm{eff}}}\lambda^2 v^2 - \frac{\lambda(A_{\lambda} + \mu') sin2\beta}{4\mu_{\mathrm{eff}}}\lambda v^2 - \frac{4\kappa^2}{\lambda^2}\mu_{\mathrm{eff}}^2 - \frac{3\kappa}{\lambda}\mu_{\mathrm{eff}}\mu'}{\frac{\mu_{\mathrm{eff}}}{\lambda}\kappa}$$

GNMSSM: Input Parameters

Input parameters in the original Lagrangian:

- \bullet Soft-breaking masses: $m_{H_u}^2,\,m_{H_d}^2,\,{\rm and}~m_S^2;$
- Yukawa couplings in Higgs sector: λ and κ ;
- Soft-breaking trilinear coefficients A_{λ} and A_{κ} ;
- Bilinear mass parameters μ and μ' , and their soft-breaking parameters m_3^2 and $m_S'^2$.

Physical inputs: λ , κ , $\tan \beta$, v_s , $m_{H^{\pm}}$, m_{h_s} , m_{A_s} , $m_{\tilde{\chi}_1^0}$, and μ_{tot} .

- Vacuum expectation values: v_u , v_d , v_s ;
- Yukawa couplings in Higgs sector: λ and κ ;
- Electroweakino masses: $m_{\tilde{\chi}_1^0} \simeq m_N$, and Higgsino mass μ_{tot} ;
- Higgs boson masses: $m_{H^{\pm}}^2 \simeq m_A^2$, $m_{A_s} \simeq m_B$, and $m_{h_s} \simeq m_C$;
- Soft-breaking trilinear coefficients A_{λ} , which is an insensitive parameter for all observables.

GNMSSM: Key Features

Important applications of the Singlino-dominated DM:

- Bayesian analyses (assuming all inputs flat distributed):
 DM is primarily preferred to be Singlino-dominated.
- Singlet-dominated particles form a secluded DM sector: Measured DM abundance is generated by
 - s-wave process $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to h_s A_s$, occuring by s-channel exchange of Higgs bosons and t-channel exchange of neutralinos:

$$|C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 h_s}| = |C_{\tilde{\chi}_1^0 \tilde{\chi}_1^0 A_s}| = \sqrt{2\kappa} \simeq 0.2 \times \left(\frac{m_{\tilde{\chi}_1^0}}{300 \text{ GeV}}\right)^{1/2};$$

- p-wave process $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to h_s h_s, A_s A_s$, via adjusting κ ;
- h_s/A_s -funnels, via adjusting m_{h_s}/m_{A_s} .
- DM-nucleon scatterings suppressed by λ^4 : Current LZ experiment requires $\lambda \lesssim 0.1$. Future DD expt. will further suppress λ , but not affect GNMSSM phenomenology.

GNMSSM: Other Distinct Features

Characteristics:

- Free from the domain wall and tadpole problems;
- More stable vacuum than the MSSM;

$$V_{\min}^{\text{des}} = \dots - \frac{\kappa^2}{\lambda^4} \mu_{eff}^4 - \frac{1}{3} \frac{\kappa A_{\kappa}}{\lambda^3} \mu_{eff}^3.$$

- Significant alleviation of the LHC constraints. Heavy sparticles prefer to decay into NLSP or NNLSP first. Their decay chains are thus lengthened and their decay products become more complex.
- **1** Every EW parameter takes natural values. Considering LZ + LHC + a_{μ} , Z_3 -NMSSM: $m_{\tilde{\chi}_1^0} \gtrsim 260 {\rm GeV}, \; \mu \gtrsim 550 {\rm GeV}, \; v_s \gtrsim 2 \; {\rm TeV};$ GNMSSM: $m_{\tilde{\chi}_1^0} \gtrsim 100 {\rm GeV}, \; \mu_{tot} \gtrsim 200 {\rm GeV}, \; v_s < 1 \; {\rm TeV}.$
- **3** Bayesian evidence is much larger than that of \mathbb{Z}_3 -NMSSM.

GNMSSM: Possible problems and solutions

Possible problems:

- What's the origin of the S field?
- Why is λ small? Is there other reason than the Higgs data for it?
- Which value A_{λ} is preferred?
- What's the origin of neutrino mass?

Solution:

R-symmetry: the largest subgroup of automorphism group of supersymmetry algebra which commutes with Lorenz group.

R-symmetry + Seesaw mechanism!

Secluded DM sector: \hat{S} and $\hat{\nu}_R$ form ..., Higgs or Neutrino Portal. $\tilde{S}\tilde{S} \to \nu_R \bar{\nu}_R$ or $\tilde{\nu}_R \tilde{\nu}_R \to SS$.

Technical Support

Results are based on global fits of supersymmetric theories.

- SARAH suite for calculation.
 - Model building: SARAH-4.14.3;
 - Spectrum generator: SPheno-4.0.4;
 - DM physics calculator: MicrOMEGAs-5.0.4;
 - Higgs physics calculator: HiggsSingal-2.6.2, HiggsBounds-5.10.2;
 - Flavor physics calculator: FlavorKit;
 - MC simulation: MadGraph_aMC@NLO, PYTHIA8, and Delphes;
 - LHC SUSY search: SModelS-2.1.1, CheckMATE-2.0.29.
- Scan strategy: parallel MultiNest algorithm.
 - High performance:
 - Simultaneous computation of more than 10^6 programes.
- Members of the developers for the package CheckMATE. Reproduce more than 40 experimental analyses.
- Specially designed clusters → Different from GUM
 IB Network, Data transition speed: 200G/s.

Technical Support

Table 1: Experimental analyses of the electroweakino production processes.

Scenario	Final State	Name
$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \to W Z \tilde{\chi}_1^0 \tilde{\chi}_1^0$	$n\ell(n\geq 2) + nj(n\geq 0) + \mathrm{E_T^{miss}}$	$\begin{array}{l} {\rm CMS-SUS-20-001}(137fb^{-1}) \\ {\rm ATLAS-2106-01676}(139fb^{-1}) \\ {\rm CMS-SUS-17-004}(35.9fb^{-1}) \\ {\rm CMS-SUS-16-039}(35.9fb^{-1}) \\ {\rm ATLAS-1803-02762}(36.1fb^{-1}) \\ {\rm ATLAS-1806-02293}(36.1fb^{-1}) \end{array}$
$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \to \ell \tilde{\nu} \ell \tilde{\ell}$	$n\ell(n=3) + {\rm E}_{\rm T}^{\rm miss}$	$\begin{array}{c} \text{CMS-SUS-16-039}(35.9fb^{-1}) \\ \text{ATLAS-1803-02762}(36.1fb^{-1}) \end{array}$
$\tilde{\chi}_2^0 \tilde{\chi}_1^\pm \to \tilde{\tau} \nu \ell \tilde{\ell}$	$2\ell + 1 au + \mathrm{E_T^{miss}}$	${\tt CMS-SUS-16-039}(35.9fb^{-1})$
$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \to \tilde{\tau} \nu \tilde{\tau} \tau$	$3 au + \mathrm{E_T^{miss}}$	${\tt CMS-SUS-16-039}(35.9fb^{-1})$
$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} \rightarrow W h \tilde{\chi}_1^0 \tilde{\chi}_1^0$	$n\ell(n\geq 1) + nb(n\geq 0) + nj(n\geq 0) + \mathcal{E}_{\mathcal{T}}^{\text{miss}}$	$\begin{array}{l} {\rm ATLAS-1909-09226(139fb^{-1})} \\ {\rm CMS-SUS-17-004(35.9fb^{-1})} \\ {\rm CMS-SUS-16-039(35.9fb^{-1})} \\ {\rm ATLAS-1812-09432(36.1fb^{-1})} \\ {\rm CMS-SUS-16-034(35.9fb^{-1})} \\ {\rm CMS-SUS-16-045(35.9fb^{-1})} \end{array}$
$\tilde{\chi}_1^{\mp} \tilde{\chi}_1^{\pm} \rightarrow WW \tilde{\chi}_1^0 \tilde{\chi}_1^0$	$2\ell + E_T^{miss}$	$\begin{array}{c} {\tt ATLAS-1908-08215} (139 fb^{-1}) \\ {\tt CMS-SUS-17-010} (35.9 fb^{-1}) \end{array}$
$\tilde{\chi}_1^{\mp} \tilde{\chi}_1^{\pm} \rightarrow 2 \tilde{\ell} \nu (\tilde{\nu} \ell)$	$2\ell + E_T^{miss}$	$\begin{array}{l} {\tt ATLAS-1908-08215} (139fb^{-1}) \\ {\tt CMS-SUS-17-010} (35.9fb^{-1}) \end{array}$

Conclusion

- The so-called WIMP crisis just means that the simplest realizations of the WIMP miracle are facing challenges → More elaborate theories are encouraged.
- **Q** Occam razor was incorrectly applied to the NMSSM. Specifically, the Z_3 -NMSSM is too restricted to exhibit all the essential characteristics of the NMSSM.
- **③** It is time to explore the phenomenon of GNMSSM, which is one of the simplest supersymmetric theories to naturally coincide with current experiments.
 - Singlino DM is primarily preferred by Bayesian statistics!
 - The GNMSSM has many distinct theoretical advantages!
- Seemingly independent problems may have common physical origins! DM correlates with SUSY search!
 Go forward to explore them with fancy ideas and more sophisticated techniques.

