The cosmological gravitational wave background from Pulsar timing array observations

Ding Ran

Ding Ran & Tian chi, arXiv: 2309.01643

紫金山暗物质研讨会

29-31 Dec 2023

Outline

- Introduction to CGWB
- CGWB anisotropies based on PTA observations
- Cross-correlations of CGWB with CMB and gravitational lensing
- Outlooks: Challenges and opportunities

Space-based:LISA, Taiji, Tianqin, BBO, DECIGO

Pulsar timing array observations

Pulsar

Gravitational waves from supermassive black-hole mergers in distant galaxies subtly shift the position of Earth.

Θ

NEW MILLISECOND PULSARS

An all-sky map as seen by the Fermi Gamma-ray Space Telescope in its first year

0 0

2 Telescopes on Earth measure tiny differences in the arrival times of the radio bursts caused by the jostling.

> 3 Measuring the effect on an array of pulsars enhances the chance of detecting the gravitational waves.

Monopole measurement (isotropy) : Hellings-Downs Curve

The Detections of the Hellings-Downs Curve

Multipoles measurement (anisotropies)

power of the GWB has anisotropies

$$\Gamma(f,\xi_{ab}) \propto \int_{S^2} d^2 \hat{\Omega} \Phi(f,\hat{\Omega}) \left[\mathcal{F}^+\left(\hat{p}_a,\hat{\Omega}\right) \mathcal{F}^+\left(\hat{p}_b,\hat{\Omega}\right) + \mathcal{F}^{\times}\left(\hat{p}_a,\hat{\Omega}\right) \mathcal{F}^{\times}\left(\hat{p}_b,\hat{\Omega}\right) \right] \\ = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \int_{S^2} d^2 \hat{\Omega} a_{lm}(f) Y_{lm}(\hat{\Omega}) \left[\mathcal{F}^+\left(\hat{p}_a,\hat{\Omega}\right) \mathcal{F}^+\left(\hat{p}_b,\hat{\Omega}\right) + \mathcal{F}^{\times}\left(\hat{p}_a,\hat{\Omega}\right) \mathcal{F}^{\times}\left(\hat{p}_b,\hat{\Omega}\right) \right] \text{ spherical harmonic basis}$$

while taking into account angular resolution

$$l_{\rm max} \sim \sqrt{N_{\rm p}}$$

The NANOGrav Collaboration, arXiv:2306.16221

SGWB spectra of typicl new physics models

From sources

From propagation

Anisotropies in the CGWB

C. R. Contaldi, PLB, 771 (2017) 9–12

N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ricciardone, A. Riotto & G. Tasinato, PRD 100 no. 12, (2019) 121501 N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ricciardone, A. Riotto & G. Tasinato, PRD 102 no. 2, (2020) 023527 A. Ricciardone, L. V. Dall' Armi, N. Bartolo, D. Bertacca, M. Liguori, & S. Matarrese, PRL, 127 no. 27, (2021) 271301 Yongping Li ,Fa Peng Huang ,Xiao Wang & Xinmin Zhang, PRD, 105, 083527 (2022)

F. Schulze, L. V. Dall' Armi, J. Lesgourgues, A. Ricciardone, N. Bartolo, D. Bertacca, C. Fidler & S. Matarrese, arXiv:2305.01602

Anisotropies in the CGWB

The NANOGrav 15-year Data

- assuming single power-law function $\Omega_{\rm GW} h^2 = A_{\rm GW} (f/{\rm Hz})^{\gamma_{\rm GW}}$
- Weighted a non-gaussion PDF according to violin plot for each data point
- Construct likelihood to perform MCMC fitting

- GW energy density $\rho_{\rm GW}(\vec{x},\eta) = \int d\ln p \, d\Omega_{\hat{p}} \, p^4 f_{\rm GW}(\vec{x},p,\hat{p},\eta)$
- GW spectrum $\Omega_{\rm GW}(\vec{x}, p, \eta) \equiv \frac{1}{\rho_{\rm c}} \frac{d\rho_{\rm GW}}{d\ln p} = \int d\Omega_{\hat{p}} \frac{p^4}{\rho_{\rm c}} f_{\rm GW}(\vec{x}, p, \hat{p}, \eta)$
- expand the distribution function $f_{\text{GW}} = \bar{f}_{\text{GW}}(p,\eta) - p \frac{\partial \bar{f}_{\text{GW}}}{\partial p} \mathcal{G}(\vec{x},p,\hat{p},\eta)$
- separate GW spectrum into isotropic + fluctuation

 $\Omega_{\rm GW}(\vec{x}, p, \eta) \equiv \overline{\Omega}_{\rm GW}(p, \eta) \left[1 + \delta_{\rm GW}(\vec{x}, p, \eta)\right]$

$$\delta_{\rm GW}(\vec{x}, p, \hat{p}, \eta) = \left[4 - \frac{\partial \ln \overline{\Omega}_{\rm GW}(p, \eta)}{\partial \ln p} \right] \mathcal{G}(\vec{x}, p, \hat{p}, \eta)$$
$$\Rightarrow \Omega_{\rm GW}^{\rm I} h^2 = A_{\rm GW} (f/{\rm Hz})^{\gamma_{\rm GW}}$$
$$\partial \ln \overline{\Omega}_{\rm GW}(p, \eta) / \partial \ln p = \gamma_{\rm GW}$$

- Conformal Newtonian gauge
- Boltzmann equation
- Boltzmann-Einstein equation
- Line-of-sight integration

assuming adiabatic

perturbations:

$$\mathcal{G}_{0}(k,\eta_{\mathrm{in}}) \simeq -\frac{2\Psi(k,\eta_{\mathrm{in}})}{4-\gamma_{\mathrm{GW}}}$$

$$\mathcal{G}_{\ell}(k,p,\eta_{\mathrm{o}}) = T_{\ell}^{\mathrm{GW}}(k,p,\eta_{\mathrm{in}},\eta_{0}) = T_{\ell}^{\mathrm{GW}}(k,p,\eta_{\mathrm{in}},\eta_{0}) = T_{\ell}^{\mathrm{GW}}(k,p,\eta_{\mathrm{in}},\eta_{0}) = T_{\ell}^{\mathrm{GW}}(k,p,\eta_{\mathrm{in}},\eta_{0}) + T_{\ell}^{\mathrm{ISW}}(k,\eta_{\mathrm{in}},\eta_{0}),$$
Transfer function
$$\mathcal{T}_{\ell}^{\mathrm{ISW}}(k,p,\eta_{\mathrm{in}},\eta_{0}) = \left[1 - \frac{2}{4-\gamma_{\mathrm{GW}}(p)}\right] \frac{\Psi(k,\eta_{\mathrm{in}})}{\mathcal{R}(\vec{k})} j_{\ell} \left[k\left(\eta_{0} - \eta_{\mathrm{in}}\right)\right],$$

$$T_{\ell}^{\mathrm{ISW}}(k,\eta_{\mathrm{in}},\eta_{0}) = \int_{\eta_{\mathrm{in}}}^{\eta_{0}} d\eta \frac{\left[\Psi'(k,\eta) + \Phi'(k,\eta)\right]}{\mathcal{R}(\vec{k})} j_{\ell} \left[k\left(\eta_{0} - \eta\right)\right].$$

$$\begin{aligned} ds^{2} &= a^{2}(\eta) \left[-(1+2\Psi)d\eta^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j} \right] \\ & \text{collisionless} \\ \hline df_{\text{GW}} &= \frac{\partial f_{\text{GW}}}{\partial \eta} + \hat{p}^{i}\partial_{i}f_{\text{GW}} - p\frac{\partial f_{\text{GW}}}{\partial p} \left[\Phi' - \hat{p}^{i}\partial_{i}\Psi \right] = 0 \\ \hline g'(k,p,\mu,\eta) + ik\mu\mathcal{G}(k,p,\mu,\eta) \\ \hline \text{free-streaming} \\ \mathcal{G}_{l}(k,p,\eta_{0}) &\simeq \left[\mathcal{G}_{0}(k,p,\eta_{\text{in}}) + \Psi(k,\eta_{\text{in}}) \right] j_{l} \left[k\left(\eta_{0} - \eta_{\text{in}} \right) \right] \text{initial conformal time} \\ & \text{where GW is produced} \\ + \int_{\eta_{\text{in}}}^{\eta_{0}} d\eta \left[\Psi'(k,\eta) + \Phi'(k,\eta) \right] j_{l} \left[k\left(\eta_{0} - \eta \right) \right] \\ \hline \text{ISW} \\ \mathcal{G}_{\ell}(\vec{k},p,\eta_{0}) &= T_{\ell}^{\text{GW}}(\vec{k},p,\eta_{\text{in}},\eta_{0}) \mathcal{R}(\vec{k}) \\ (k,p,\eta_{\text{in}},\eta_{0}) &= T_{\ell}^{\text{SW}}(k,p,\eta_{\text{in}},\eta_{0}) + T_{\ell}^{\text{ISW}}(k,\eta_{\text{in}},\eta_{0}), \\ (k,p,\eta_{\text{in}},\eta_{0}) &= \left[1 - \frac{2}{4 - \gamma_{\text{GW}}(p)} \right] \frac{\Psi(k,\eta_{\text{in}})}{\mathcal{R}(\vec{k})} j_{\ell} \left[k\left(\eta_{0} - \eta_{\text{in}} \right) \right], \\ W(k,\eta_{\text{in}},\eta_{0}) &= \int_{\eta_{\text{in}}}^{\eta_{0}} d\eta \frac{\left[\Psi'(k,\eta) + \Phi'(k,\eta) \right]}{\mathcal{R}(\vec{k})} j_{\ell} \left[k\left(\eta_{0} - \eta_{\text{in}} \right) \right]. \end{aligned}$$

Anisotropic power spectrum

$$C_{\ell}^{\rm GW} = 4\pi \int \frac{dk}{k} \mathcal{P}_{\mathcal{R}}(k) \left| T_{\ell}^{\rm GW}(k, p, \eta_{\rm in}, \eta_0) \right|^2$$

We integrate metric perturbations generated by CLASS convoluted with spherical Bessel functions.

The anisotropies of the of CGWB has the following feature (and assumptions):

- 1. Homogeneous sources (?)
- 2. Start propagating at much earlier time ($\eta_{in} \ll \eta_{rec}$)
- 3. No collision terms (no diffusion damping)
- 4. Adiabatic initial perturbations(?)
- 5. SW term is modulated by the auto-spectrum

Cross-correlation with CMB

CMB multipole moments

CMB transfer function

GW x CMB

Cross-correlation

 $\langle a_{\ell m}^{\rm GW} a_{\ell' m'}^{\rm CMB*} \rangle \equiv \delta_{\ell \ell'} \delta_{mm'} C_{\ell}^{\rm GW \times CMB}$ $\Theta_{\ell}(k,\eta_*,\eta_0) \simeq \underbrace{\left[\Theta_0(k,\eta_*) + \Phi(k,\eta_*)\right]}_{\text{SW}} j_{\ell} \left[k\left(\eta_0 - \eta_*\right)\right] + \underbrace{\frac{-iv_b(k,\eta_*)}{k}}_{k} j_{\ell}' \left[k\left(\eta_0 - \eta_*\right)\right]$ $+\underbrace{\int_{\eta_*}^{\eta_0} d\eta \left[\Psi'(k,\eta) + \Psi'(k,\eta)\right] j_\ell \left[k \left(\eta_0 - \eta\right)\right]}_{\text{ISW}}$ $\Delta_{\ell}^{\text{CMB}}(k,\eta_*,\eta_0) = \Delta_{\ell}^{\text{SW}}(k,\eta_*,\eta_0) + \Delta_{\ell}^{\text{DOP}}(k,\eta_*,\eta_0) + \Delta_{\ell}^{\text{ISW}}(k,\eta_*,\eta_0),$ $\Delta_{\ell}^{\mathrm{SW}}\left(k,\eta_{*},\eta_{0}\right) = \frac{\left[\Theta_{0}\left(k,\eta_{*}\right) + \Phi\left(k,\eta_{*}\right)\right]}{\mathcal{R}\left(\vec{k}\right)} j_{\ell}\left[k\left(\eta_{0} - \eta_{*}\right)\right],$ $\Delta_{\ell}^{\text{DOP}}\left(k,\eta_{*},\eta_{0}\right) = -\frac{iv_{b}(k,\eta_{*})}{k\mathcal{R}(\vec{k})}j_{\ell}'\left[k\left(\eta_{0}-\eta_{*}\right)\right],$ $\Delta_{\ell}^{\text{ISW}}(k,\eta_{*},\eta_{0}) = \int_{\eta_{0}}^{\eta_{0}} d\eta \frac{[\Psi'(k,\eta) + \Phi'(k,\eta)]}{\mathcal{R}(\vec{k})} j_{\ell} [k(\eta_{0} - \eta)].$ $C_{\ell}^{\mathrm{GW}\times\mathrm{CMB}} = 4\pi \int \frac{dk}{k} \mathcal{P}_{\mathcal{R}}(k) \left[T_{\ell}^{\mathrm{GW}}(k,\eta_{\mathrm{in}},\eta_{0}) \Delta_{\ell}^{\mathrm{CMB}}(k,\eta_{*},\eta_{0}) \right]$ $= C_{\ell}^{\mathrm{SW} \times \mathrm{SW}} + C_{\ell}^{\mathrm{SW} \times \mathrm{DOP}} + C_{\ell}^{\mathrm{SW} \times \mathrm{ISW}} + C_{\ell}^{\mathrm{ISW} \times \mathrm{SW}} + C_{\ell}^{\mathrm{ISW} \times \mathrm{DOP}} + C_{\ell}^{\mathrm{ISW} \times \mathrm{ISW}}$

GW x CMB Cross-correlation

CMB lensing

- $\psi = -2 \int_{\eta_0 \eta_*}^{\eta_0} \mathrm{d}\eta \frac{(\eta \eta_*)}{(\eta_0 \eta_*)(\eta_0 \eta)} \Psi(k, \eta)$ Lensing potential
- Lensing convergence
- $\kappa = \int_{\eta_0-\eta_*}^{\eta_0} \mathrm{d}\eta \frac{(\eta_0-\eta)(\eta-\eta_*)}{\eta_0-\eta_*} k^2 \Psi(k,\eta)$
- Lensing transfer function

$$\Delta_{\ell}^{\psi}(k,\eta_{*},\eta_{0}) = \int_{\eta_{0}-\eta_{*}}^{\eta_{0}} \mathrm{d}\eta \frac{\Psi(k,\eta)}{\mathcal{R}(\vec{k})} \frac{\eta - \eta_{*}}{(\eta_{0}-\eta_{*})(\eta_{0}-\eta)} j_{\ell} \left[k\left(\eta_{0}-\eta\right)\right],$$
$$\Delta_{\ell}^{\kappa}(k,\eta_{*},\eta_{0}) = \int_{\eta_{0}-\eta_{*}}^{\eta_{0}} \mathrm{d}\eta \frac{\Psi(k,\eta)}{\mathcal{R}(\vec{k})} \frac{(\eta_{0}-\eta)(\eta - \eta_{*})}{\eta_{0}-\eta_{*}} j_{\ell} \left[k\left(\eta_{0}-\eta\right)\right].$$

CMB lensing

Compared with AGWB

Summary

- Compute the anisotropic power spectrum of the CGWB based on the NANOGrav-15 years data
 - Anisotropies are at the same level with the CMB
- Cross-correlating with CMB and CMB-lensing
 - Suppressed cross-spectrum at lower ℓs
 - Unsuppressed cross-spectrum between the CGWB and the CMB-lensing

Outlooks

1: reconstruction from the CMB?

Reconstruction of δ_{GW} from the CMB

May not be feasible due to the suppressed CC. But CC with lensing is NOT suppressed!

2: Disentangle AGWB and CGWB

Does cross-correlation help disentangle AGWB and CGWB signal?

Traditional cosmological tracers:

- CMB
- CMB-lensing
- Galaxy clustering
- • •

3: Astrometric detections

Anisotropic GWB

 $N_{
m star} \sim 10^9$

Thanks for your attention

