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Standard	model	backgrounds

Sensi8vity	on	invisible	dark	photon	models

1 New	dark	ma?er	channel	@	Belle	II

in	collabora9on	with	Jinhan	Liang	and	Lan	Yang	[2212.04252]
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Searches	for	dark	matter	in	particle	physics	experiments
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Previous	dark	matter	detection	channels	at	colliders
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Most	studies	focus	on	mono-X	channel	with	SM	X	produced	at	the	primary	vertex
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Most	studies	focus	on	mono-X	channel	with	SM	X	produced	at	the	primary	vertex

SM SM

SM

DM DM

Different	mono-X	channels

• mono-photon

• mono-jet

• mono-Higgs

• mono-Z

• mono-top
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• e+e− → e+e−

• 	deposit	energy	in	ECLe−

• 	interact	with	ECL	to	produce	DMe+

disappearing	positron	track
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missing	energy:	<5%	 	energy	in	ECLe+

• CDC:	 	&	e− e+

• ECL:	 	&	e− e+

CDC:	 	for	 	GeV
δpT

pT
≃ 0.4 % pT ≃ 3

Equal	&	opposite	momenta		
for	 	&	 	in	the	CM	framee− e+

KLM



Positron	interaction	with	ECL
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Use	the	ECL	barrel	region	as	the	fixed	target
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ECL	barrel:	32.2∘ < θ < 128.7∘

Less	non-instrumented	setups		
(e.g.,	magne8c	wires)		
between	ECL	&	KLM

Be?er	hermi8city	
(non-projec8ve	gaps	
between	ECL	crystals)

More	beam	BG	in	Endcaps



Positrons	in	Bhabha	scattering
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Standard	model	backgrounds
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BG:	 	+	ECL	 		
which	then	escape	detec8on

e+ → SM

KLM

SM

e−e+

ECL

CDC

• Charged	par8cles	(e,	 ,	 ):	likely	
detected	by	ECL	and/or	KLM

μ π±

• Neutral	par8cles	(n,	 ,	 ):	
more	difficult	to	detect

γ ν

Neutrino	BG	is	negligible	(xsec	is	small)	

Main	BG	is	due	to	 	n/γ



Photon-induced		background
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ECL	=	16- 	CsI	crystals,	w/	 	cmX0 X0 = 1.86
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KLM

γ

e−e+

ECL

CDC

Photon	energy	measured	in	ECL

ECL	=	16- 	CsI	crystals,	w/	 	cmX0 X0 = 1.86

Photon	can	also	be	detected	by	KLM

KLM	=	alterna8ng	sandwich	of	4.7-cm	iron	
plates	and	ac8ve	detectors



Photon	escapes	ECL
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CDC

dNγ

dxγ
(t, xγ) ≃

1
xγ

(1 − xγ)(4/3)t − e−(7/9)t

7/9 + (4/3)ln(1 − xγ)

Photon	energy	spectrum	due	to	 	collision	with	ECLe+

[Tsai	&	Whi9s	1966]

xγ = Eγ /Ee 	is	the	distancetX0
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dxγ
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dxγ
(t = 16,xγ) ≃ 4.7 × 10−8

	 -BG	ager	ECL	for	∼ 2.8 × 104 γ 6 × 1011 e+

dNγ

dxγ
(t, xγ) ≃

1
xγ

(1 − xγ)(4/3)t − e−(7/9)t

7/9 + (4/3)ln(1 − xγ)

Photon	energy	spectrum	due	to	 	collision	with	ECLe+

[Tsai	&	Whi9s	1966]

xγ = Eγ /Ee 	is	the	distancetX0
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KLM

γ

e−e+

ECL

CDC

GeV	 	is	unlikely	to	penetrate	the	KLMγ

However,	 	can	be	absorbed	by	non-
instrumented	setups	(e.g.,	magnet	coil)

γ

KLM	veto	power	is	limited

IFR	@	BaBar,	veto	eff	=	4.5 × 10−4

13	photon	BG	(conserva8ve)



Neutron-induced	backgrounds:	GEANT4	simulations
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KLM

n

e−e+

ECL

CDC

GEANT4	simula8on	of	 	 	with	4.35	
GeV	onto	a	CsI	target	with	1	

109 e+

X0

• Full	simula8on	with	16	 	is	8me-
consuming

X0

• Neutrons	with	significant	energy	are	
likely	to	be	produced	in	the	1st	 	
(confirmed	in	simula8ons	with	2- )

X0
X0



Selection	in	GEANT4	simulations
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KLM

n

e−e+
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CDC

At	least	1	neutron	with	energy	>	3	GeV

Energy	deposi8on	in	ECL	<	5%

Veto	 	with	momentum	>	0.6	GeV	(either	
deposit	energy	in	ECL	or	produce	tracks	in	KLM)

p/π±

Count	#	of	neutrons	with	K.E.	>	280	MeV	
(hadronic	shower	threshold)	



Probability	for	a	neutron	to	penetrate	ECL	&	KLM
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Prob	to	penetrate	a	target	with	length	L

P = exp(−L/λ0)

	=	hadronic	interac8on	lengthλ0

KLM	has	 ∼ 3.9 λ0

ECL	has	 ∼ 0.8 λ0
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KLM

n

e−e+

ECL

CDC

Prob	to	penetrate	a	target	with	length	L

P = exp(−L/λ0)

	=	hadronic	interac8on	lengthλ0

KLM	has	 ∼ 3.9 λ0

ECL	has	 ∼ 0.8 λ0

Prob	to	penetrate	ECL	&	KLM	is	about	1%

about	81	neutron	background	in	total



Summary	on	background	estimation
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BG:	 	+	ECL	 	which	escape	detec8one+ → γ/n

• photon	BG	events:	 	
• neutron	BG	events:	

∼ 13
∼ 81

[Liang,	ZL,	Yang,	2212.04252]

Use	KLM	to	veto	such	BG

KLM

n/γ

e−e+

ECL

CDC



3 Sensi8vity	on	invisible	dark	photon
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Invisible	dark	photon
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ℒint = A′ μ(eQfϵf̄γμ f + gχ χ̄γμχ)

dark	photon	A′ μ

gauge	coupling	to	hidden	fermion	 :	χ gχ ≫ eϵ

suppressed	coupling	 	to	SM	fermionϵ

mA′ 
= 3mχ

[Holdom	1986]

[Foot	&	He	1991]

[Kors	&	Nath	2004]

[Feldman,	ZL,	Nath,	hep-ph/0702123,	373	cites]

https://arxiv.org/abs/hep-ph/0702123


Annihilation	with	atomic	electrons
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annihila8on	process:	e+e−
A → A′ → χχ̄

σann( s) =
e2ϵ2αD

3
s + 2m2

χ

(s − m2
A′ 

)2 + Γ2
A′ 

m2
A′ 

1 −
4m2

χ

s

αD = g2
χ /4π s = 2meE′ + 2m2

e = 2meEA′ 



Annihilation	with	atomic	electrons	(continued)
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Nann = ℒ∫
Emax

Emin

dE
dσB

dE ∫
E+me

0.95E
dEA′ 

neTe(E′ = EA′ 
− me, E, LT)σann(EA′ 

)

	is	the	Bhabha	xsec
dσB

dE

	is	the	electron	#	densityne

	is	the	 	differen8al	track	lengthTe(E′ , E, LT) e+

[Tsai	&	Whi9s	1966] [Bjorken	et	al,	1988]



Bremsstrahlung	with	target	nucleus
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dominated	by	on-shell	 	produc8onA′ 

Nbre = ℒ∫
Emax

Emin

dE
dσB

dE ∫
E−me

0.95E
dEA′ 

nNTe(E′ , E, X0)
dσbre

dEA′ 

	=	xsec	of	on-shell	produced	
dσbre

dEA′ 

A′ 

[Bjorken	et	al,	0906.0580]	
[Gninenko	et	al,	171205706]	
[Liu	&	Miller,	1705.01633]



Belle	II	sensitivity	on	invisible	dark	photon
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[Liang,	ZL,	Yang,	2212.04252]



Summary

28

We	propose	a	new	dark	ma?er	channel	at	colliders,	where	one	SM	par8cle	
interacts	with	the	detector	to	produce	DM	par8cles	

The	main	background	at	Belle	II	are	due	to	photon	and	neutron	events	that	
escape	detec8on

We	find	that	this	new	DM	channel	at	Belle	II	can	probe	new	parameter	space	of	
invisible	dark	photon,	surpassing	both	the	mono-photon	channel	at	Belle	II	and	
the	missing	momentum	search	at	NA64
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Track	length
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[1]	1802.03794	
[2]	1807.05884	
[3]	Tsai	&	Whi9s	1966



xsec	of	on-shell	dark	photon
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[71]	Bjorken	et	al,	0906.0580	
[72]	Gninenko	et	al,	171205706	
[73]	Liu	&	Miller,	1705.01633



Hypercharge	portal	models	 	dark	photon⟹
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SM 
sector

dark 
sector

SU(3)c × SU(2)L × U(1)Y U(1)X

[Holdom	1986] [Foot	&	He	1991] [Kors	&	Nath	2004] [Feldman,	ZL,	Nath,	hep-ph/0702123,	373	cites]

https://arxiv.org/abs/hep-ph/0702123


Hypercharge	portal	models	 	dark	photon⟹
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SM 
sector

dark 
sector

SU(3)c × SU(2)L × U(1)Y U(1)X

(1)	kine8c	mixing

(2)	Stueckelberg	mass	mixing

hypercharge	portal

U(1)Y × U(1)X

[Holdom	1986] [Foot	&	He	1991] [Kors	&	Nath	2004] [Feldman,	ZL,	Nath,	hep-ph/0702123,	373	cites]

https://arxiv.org/abs/hep-ph/0702123


Kinetic	mixing	&	mass	mixing
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SU(3)c × SU(2)L × U(1)Y × U(1)X

ℒ = −
1
4

BμνBμν −
1
4

XμνXμν + gDXμ χ̄γμχ−
δ̃
2

Bμν Xμν −
M2

1

2
(∂μσ + Xμ+ϵ̃ Bμ)2

[Feldman,	ZL,	Nath,	hep-ph/0702123,	373	cites]

https://arxiv.org/abs/hep-ph/0702123
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Kinetic	mixing	&	mass	mixing
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SU(3)c × SU(2)L × U(1)Y × U(1)X

kine8c	mixing

ℒ = −
1
4

BμνBμν −
1
4

XμνXμν + gDXμ χ̄γμχ−
δ̃
2

Bμν Xμν −
M2

1

2
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Kinetic	mixing	&	mass	mixing
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SU(3)c × SU(2)L × U(1)Y × U(1)X

kine8c	mixing mass	mixing

ℒ = −
1
4

BμνBμν −
1
4

XμνXμν + gDXμ χ̄γμχ−
δ̃
2

Bμν Xμν −
M2

1

2
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https://arxiv.org/abs/hep-ph/0702123


Kinetic	mixing	&	mass	mixing
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SU(3)c × SU(2)L × U(1)Y × U(1)X

kine8c	mixing mass	mixing

ℒ = −
1
4

BμνBμν −
1
4

XμνXμν + gDXμ χ̄γμχ−
δ̃
2

Bμν Xμν −
M2

1

2
(∂μσ + Xμ+ϵ̃ Bμ)2

[Feldman,	ZL,	Nath,	hep-ph/0702123,	373	cites]

kine8c	mixing	 	&	mass	mixing	 	are	degenerate	(w/o	 ):	only	 	is	physicalδ̃ ϵ̃ χ ϵ ∼ (ϵ̃−δ̃)

https://arxiv.org/abs/hep-ph/0702123


dark	photon	&	millicharged	particles
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If	 	or	 	is	massive,	 	is	millicharged	( )	only	when	A′ μ Z′ μ χ ϵeAμ χ̄γμχ ϵ̃ ≠ 0

https://arxiv.org/abs/hep-ph/0702123

