

in High Scale Supersymmetry

arXiv: 2308.14438 (to appear in *Physical Review D*)

with Chengcheng Han (韩成成), Mengchao Zhang (张孟超), Jin Min Yang (杨金民)

Peiwen WU (吴 培文)

Southeast University (东南大学)

2023年紫金山暗物质研讨会

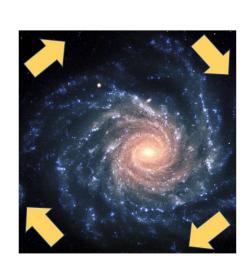
Dec. 29-31, 2023, Nanjing

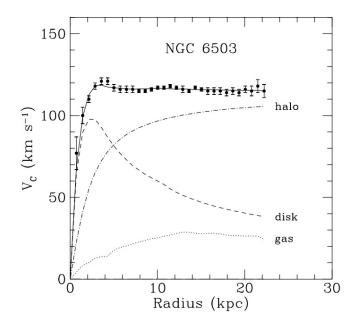
Outline

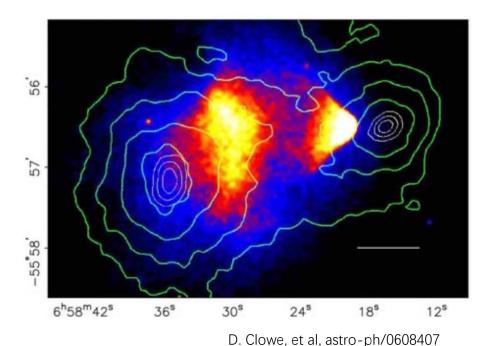
- Motivation
 - Freeze-In bino DM in SUSY
- Model setup and phenomenology
 - particle spectrum: modified High Scale SUSY
 - interactions: dim-5 vs dim-6
 - DM production feature: UV vs IR
- Results and discussion
- Summary

Supersymmetry

Theoretically important

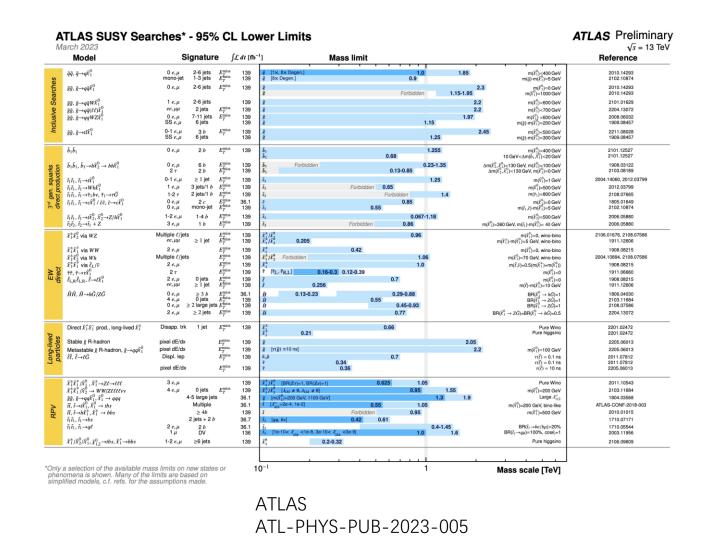

- Haag-Łopuszański-Sohnius (HLS) theorem
 SUSY is the only way to nontrivially mix 4-D Minkowski spacetime and continuous internal symmetries, when both anti-/commutating generators are considered
- necessary for string theory
- may solve the naturalness problem (aesthetical choice)


Phenomenologically rich


- viable DM candidate
- SM gauge coupling unification
- possible origins of exp. anomalies

Nature of DM is still unknow

- cosmological / astrophysical hints of existence of DM are strong
- among various possibilities, particle nature of DM is under search in many experiments



Begeman et al, 1991, MNRAS, 249, 523.

Some SUSY particles seems to be heavy

Esthetical requirement about naturalness problem may need to be relaxed

200 400 600 800 150 200 300 CMS Preliminary CMS Preliminary 137 fb⁻¹ (13 TeV) 137 fb⁻¹ (13 TeV) ···· Expected ···· Expected - Observed - Observed Hadr. WX B($\widetilde{\chi}_{0}^{0}$ → $Z\widetilde{\chi}_{s}^{0}$)=B($\widetilde{\chi}_{0}^{0}$ → $H\widetilde{\chi}_{s}^{0}$)=0.5 (comb.) Combined 400 300 300 200 200 100 400 600 800 400 600 800 **CMS** SUS-21-008-pas

137 fb⁻¹ (13 TeV)

- Observed

CMS Preliminary

400

300

2/3I soft

- Hadr. WX

Combined

CMS Preliminary

 $pp \rightarrow \widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0} \rightarrow WZ\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{2}^{0}$

- 2/3l soft

137 fb⁻¹ (13 TeV)

···· Expected

- Observed

DM-focused SUSY particle spectrum, concerning exp. results

• High Scale SUSY, Split SUSY, other variations...

Energy Scale

most SUSY sparticles are assumed to be heavy

$$\{\tilde{f},\tilde{G},H^0,A^0,H^\pm\}$$

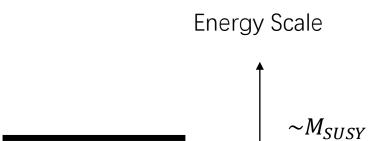
all/part of Electroweak-ino sector are light

$$\{\widetilde{B},\widetilde{W},\widetilde{H}_u,\widetilde{H}_d\}$$

 $\sim M_{EW}$

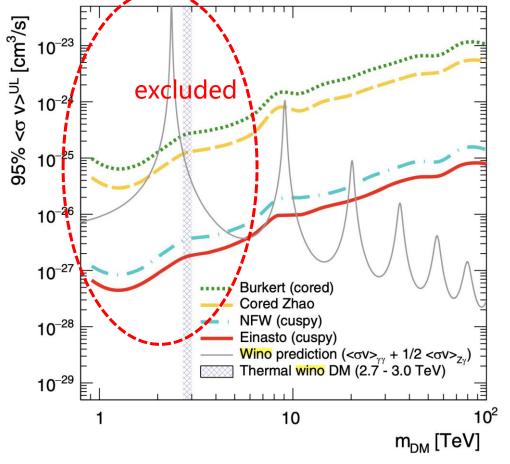
in this work

DM-focused MSSM particle spectrum


High Scale SUSY, Split SUSY, other variations...

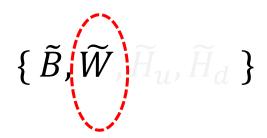
most SUSY sparticles are assumed to be heavy

$$\{\tilde{f}, \tilde{G}, H^0, A^0, H^{\pm}\}\ \{\tilde{H}_u, \tilde{H}_d\}$$
in this work

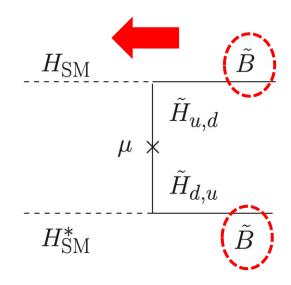

all/part of Electroweak-ino sector are light

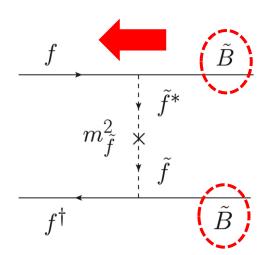
$$\{\widetilde{B},\widetilde{W},\widetilde{H}_u,\widetilde{H}_d\}$$
 in this work

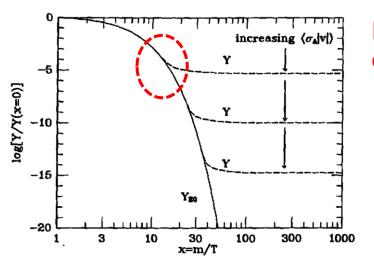
$$\sim M_{EW}$$


MSSM wino \widetilde{W} DM < 5 TeV is \underline{NOT} favored by indirect exp.

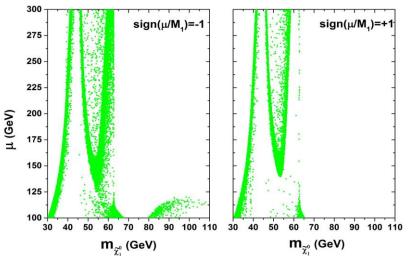
MAGIC 2212.10527

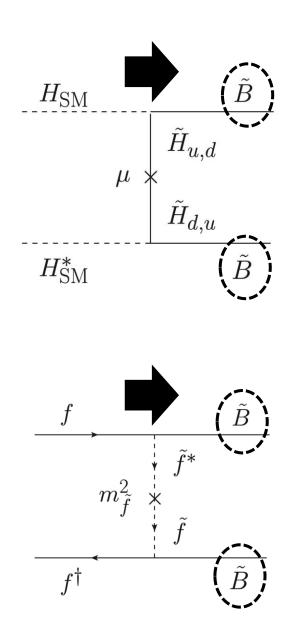

respective masses. Therefore, for the cuspy profiles, we can exclude wino annihilations for masses below 5 TeV and

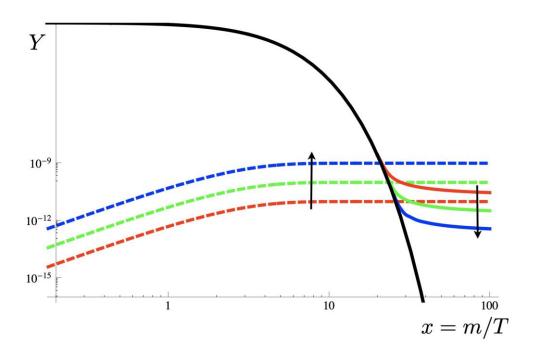

FIG. 3. Upper limits for the four DM density profiles considered in this Letter: the cuspy Einasto Galactic density profile (red solid line), the NFW profile (cyan dashed line), a DM core according to Ref. [56] (yellow dashed line), and the Burkert fit from Ref. [53] (green dotted line), compared against the total $\langle \sigma v \rangle$ corresponding to annihilation of two SUSY winos [i.e., SU(2)_L triplets] into a $\gamma\gamma$ pair according to Refs. [11,13–15] (gray solid line; see text for details). The vertical blue hatched region indicates wino masses from 2.7 to 3.0 TeV which are consistent with the observed DM relic density [14].



bino \tilde{B} DM is the opposite, interacting too weakly with SM

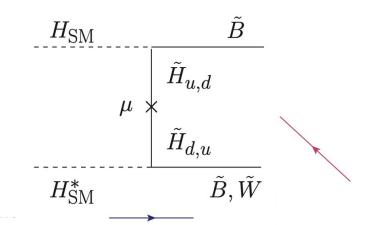

Freeze-*Out* scenario usually difficult to meet

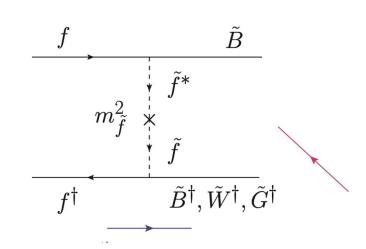

Freeze-*Out* too early, overly abundant

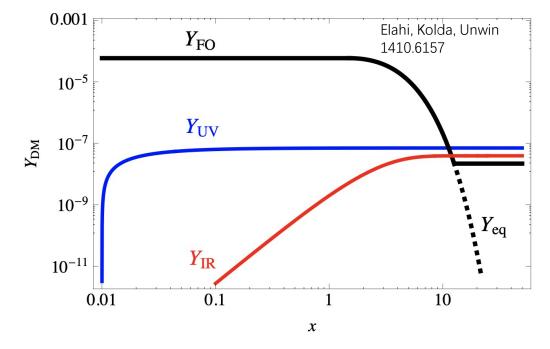

Abdughani, Wu, Yang 1705.09164

some Higgsino \widetilde{H}_u , \widetilde{H}_d components is needed in bino-dominated DM

bino \tilde{B} DM is the opposite, interacting too weakly with SM

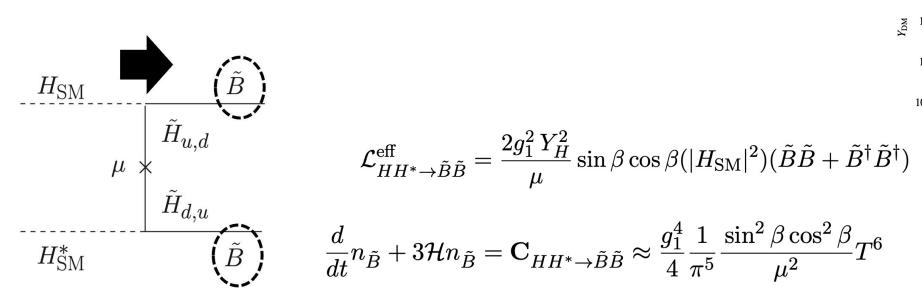



How about Freeze-In?


Hall, Jedamzik, March-Russell, West 0911.1120

Freeze-In Bino,

UV or **IR** type?


Boltzmann equation

$$\frac{d}{dt}n_{\tilde{B}} + 3\mathcal{H}n_{\tilde{B}} = \mathbf{C}$$

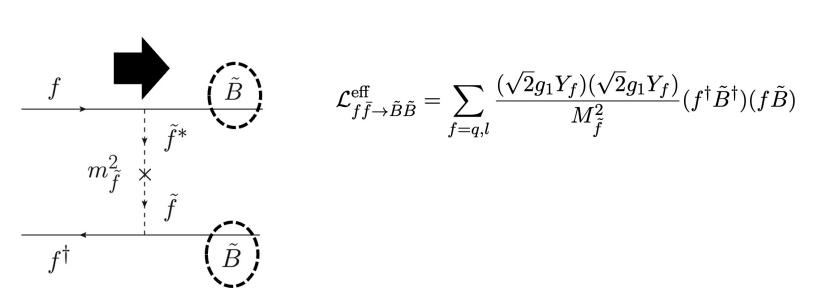
$$\frac{dY_{HH^* \to \tilde{B}\tilde{B}}(T)}{dT} = -\frac{\mathbf{C}_{HH^* \to \tilde{B}\tilde{B}}}{ST\mathcal{H}}$$

dependence behavior on temperature *T* determines production efficiency

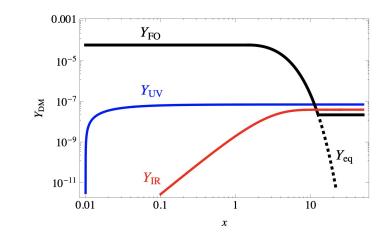
UV Freeze-In: dim-5, 2 → 2 fusion Halo.6157 Elahi, Kolda, Unwin 1410.6157

$$\mathcal{L}_{HH^* \to \tilde{B}\tilde{B}}^{\text{eff}} = \frac{2g_1^2 Y_H^2}{\mu} \sin \beta \cos \beta (|H_{\text{SM}}|^2) (\tilde{B}\tilde{B} + \tilde{B}^{\dagger}\tilde{B}^{\dagger})$$

$$H_{\mathrm{SM}}^{*} \qquad \qquad \underbrace{\left(\tilde{B}\right)}_{H_{\mathrm{SM}}^{*}} \qquad \frac{d}{dt}n_{\tilde{B}} + 3\mathcal{H}n_{\tilde{B}} = \mathbf{C}_{HH^{*} \to \tilde{B}\tilde{B}} \approx \frac{g_{1}^{4}}{4} \frac{1}{\pi^{5}} \frac{\sin^{2}\beta \cos^{2}\beta}{\mu^{2}} T^{6}$$


$$\frac{dY_{HH^* \to \tilde{B}\tilde{B}}(T)}{dT} = -\frac{\mathbf{C}_{HH^* \to \tilde{B}\tilde{B}}}{ST\mathcal{H}} \approx -(1.25 \times 10^{-3}) \times M_{\mathrm{Pl}} \frac{\mathbf{C}_{HH^* \to \tilde{B}\tilde{B}}}{T^6} \approx -(1 \times 10^{-6}) \times M_{\mathrm{Pl}} g_1^4 \frac{\sin^2\beta \cos^2\beta}{\mu^2}$$

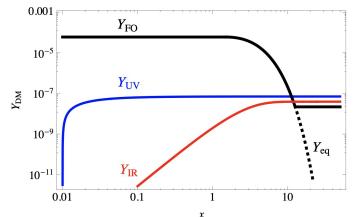
$$Y_{HH^* o \tilde{B}\tilde{B}}(\infty) \approx (1 \times 10^{-6}) \times M_{\rm Pl} \ g_1^4 \frac{\sin^2 \beta \cos^2 \beta}{\mu^2} T_{\rm RH}$$
 depending on Reheating Temperature T_{RH} , sensitive to UV physics,

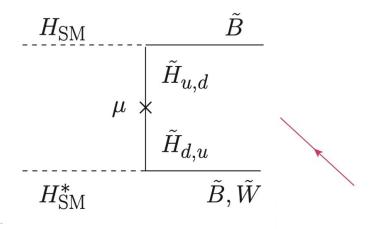

Thus UV Freeze-In

$$\left(\Omega_{\tilde{B}}h^2\right)_{HH^*\to\tilde{B}\tilde{B}} = M_1 \frac{Y_{HH^*\to\tilde{B}\tilde{B}}(\infty)S_0}{\rho_{cr}} \approx Y_{HH^*\to\tilde{B}\tilde{B}}(\infty) \left(\frac{M_1}{\text{TeV}}\right) \times (2.72 \times 10^{11})$$

UV Freeze-In: dim-6, 2 → 2 fusion Halo.6157 Elahi, Kolda, Unwin 1410.6157

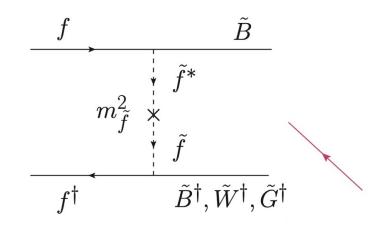
$$\mathcal{L}_{far{f} o ilde{B} ilde{B}}^{ ext{eff}} = \sum_{f=q,l} rac{(\sqrt{2}g_1Y_f)(\sqrt{2}g_1Y_f)}{M_{ ilde{f}}^2} (f^\dagger ilde{B}^\dagger)(f ilde{B}^\dagger)$$


$$\frac{dY_{HH^* \to \tilde{B}\tilde{B}}(T)}{dT} = -\frac{\mathbf{C}_{HH^* \to \tilde{B}\tilde{B}}}{ST\mathcal{H}} \approx -(1.25 \times 10^{-3}) \times M_{\mathrm{Pl}} \frac{\mathbf{C}_{f\bar{f} \to \tilde{B}\tilde{B}}}{T^6} \approx -(8.6 \times 10^{-5}) \times M_{\mathrm{Pl}} \frac{g_1^4}{M_{\tilde{f}}^4} T^2$$


$$Y_{far{f} o ilde{B} ilde{B}}(\infty) pprox (4.7 imes 10^{-7}) imes rac{M_{
m Pl}}{M_{ ilde{f}}^4} T_{
m RH}^3$$
 UV Freeze-In

$$(\Omega_{\tilde{B}}h^2)_{f\bar{f}\to\tilde{B}\tilde{B}} = M_1 \frac{Y_{f\bar{f}\to\tilde{B}\tilde{B}}(\infty)S_0}{\rho_{cr}} \approx Y_{f\bar{f}\to\tilde{B}\tilde{B}}(\infty) \left(\frac{M_1}{\text{TeV}}\right) \times (2.72 \times 10^{11})$$

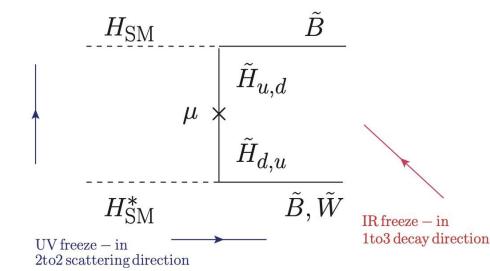
IR Freeze-In: decay production


Elahi, Kolda, Unwin 1410.6157

$$\frac{d}{dt}n_{\tilde{B}} + 3\mathcal{H}n_{\tilde{B}} = \mathbf{C}$$

$$\approx \frac{g_{\tilde{G}}M_3^2}{2\pi^2}TK_1(\frac{M_3}{T})\Gamma_{\tilde{G}\to f\bar{f}\tilde{B}} + \frac{g_{\tilde{W}}M_2^2}{2\pi^2}TK_1(\frac{M_2}{T})(\Gamma_{\tilde{W}\to f\bar{f}\tilde{B}} + \Gamma_{\tilde{W}\to HH^*\tilde{B}})$$
peaks at $x = \frac{M}{T} \sim 3$

Not sensitive to T_{RH} ,


IR-dominated production

$$Y_{\tilde{B}}^{1\to3}(\infty) \approx \int_{T_{min}}^{T_{\rm RH}} \frac{\mathbf{C}}{ST\mathcal{H}} dT$$

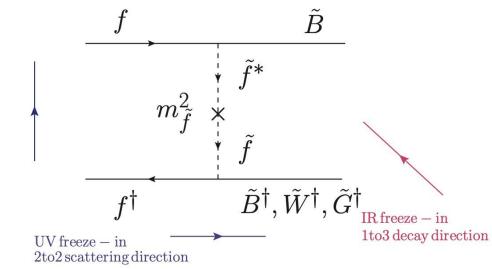
$$\approx (3 \times 10^{-4}) \times M_{\rm Pl} \left(\frac{1}{M_3^2} g_{\tilde{G}} \Gamma_{\tilde{G} \to f\bar{f}\tilde{B}} + \frac{1}{M_2^2} g_{\tilde{W}} \Gamma_{\tilde{W} \to f\bar{f}\tilde{B}} + \frac{1}{M_2^2} g_{\tilde{W}} \Gamma_{\tilde{W} \to HH^*\tilde{B}} \right)$$

MSSM setup in this work

Mass spectrum and DM production processes

• Heavy sector, inactive after cosmological reheating

Mass: $M \sim M_{\rm SUSY} \gg T_{RH}$


- \star Higgs bosons not in SM: $H_{\rm NP}^0,\,A,\,H_{\rm NP}^\pm$
- \star Sfermions \tilde{f}
- \star Higgsinos \tilde{H}_u, \tilde{H}_d

 M_{SUSY}

Energy

Scale

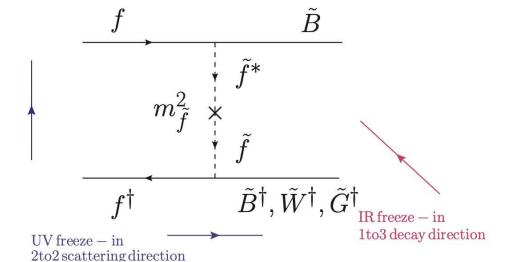
 T_{RH} —

• Light sector, active after cosmological reheating

Mass: $M \sim \mathcal{O}(1) \text{ TeV} \ll M_{\text{SUSY}}$

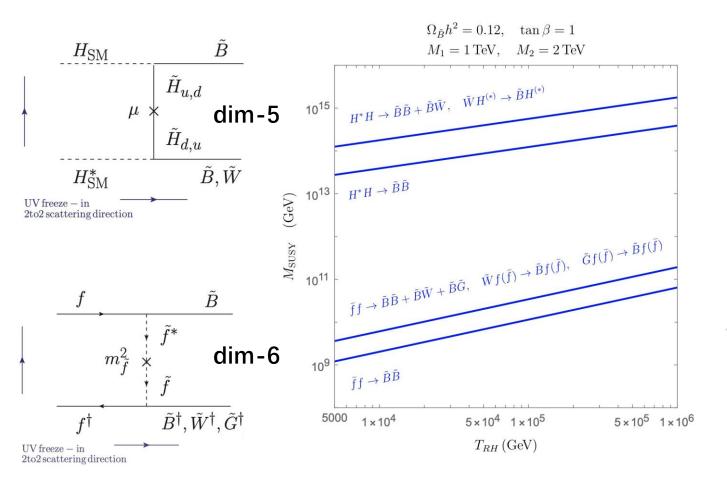
- * SM particles
- \star Bino \tilde{B}
- \star Winos \tilde{W} , with mass M_2
- \star Gluinos \tilde{G} , with mass M_3

O(1) TeV —


cosmic evolution t, 1/T

Phenomenology

- to meet the observed DM abundance
 - interplay with Big Bang Nuclear-synthesis (BBN)


- collider constraints on Long-Lived particle (LLP)
 - disappearing / displaced track

- DM direct/indirect signal
 - negligible for bino in our setup

Main results

DM abundance, mass scale of heavy sector

• Heavy sector, inactive after cosmological reheating Mass: $M \sim M_{\rm SUSY} \gg T_{RH}$

* Higgs bosons not in SM:
$$H_{\rm NP}^0$$
, A , $H_{\rm NP}^{\pm}$

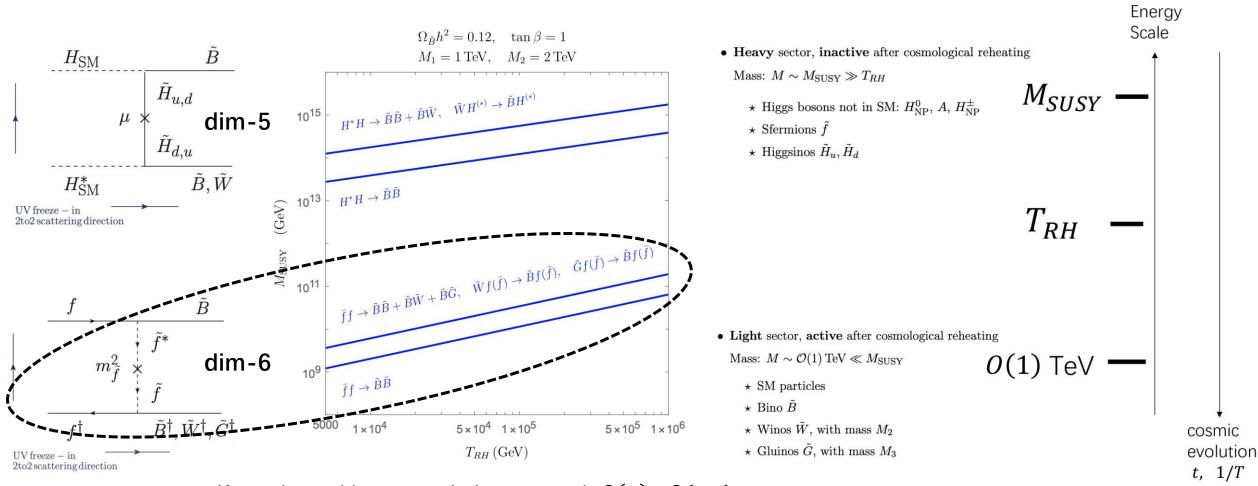
- r Higgs bosons not in SW. H_{NP}
- \star Sfermions \tilde{f}
- \star Higgsinos \tilde{H}_u, \tilde{H}_d

 M_{SUSY} —

Energy Scale

 T_{RH} —

• Light sector, active after cosmological reheating


Mass:
$$M \sim \mathcal{O}(1) \text{ TeV} \ll M_{\text{SUSY}}$$

O(1) TeV

- * SM particles
- \star Bino \tilde{B} .
- \star Winos \tilde{W} , with mass M_2
- \star Gluinos \tilde{G} , with mass M_3

cosmic evolution t, 1/T

DM abundance, mass scale of heavy sector

if a universal heavy scale is assumed: $O(\mu) \sim O(m_{\tilde{f}})$ dim-6 contributions will be negligible

Wino Freeze-Out effects properly included

For benchmark wino mass $M_{\widetilde{W}} = 2 \text{ TeV}$

Hall, Jedamzik, March-Russell, West 0911.1120

 $\widetilde{W} \rightarrow \widetilde{B} \ h \ \text{contribute 25\% (1\%)}$ to $Y_{\widetilde{B}} \ \text{for} \ M_{\widetilde{B}} = 1 \ (0.1) \ \text{TeV}$

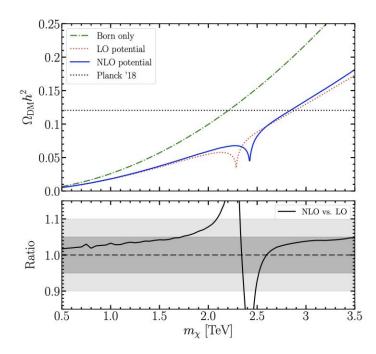
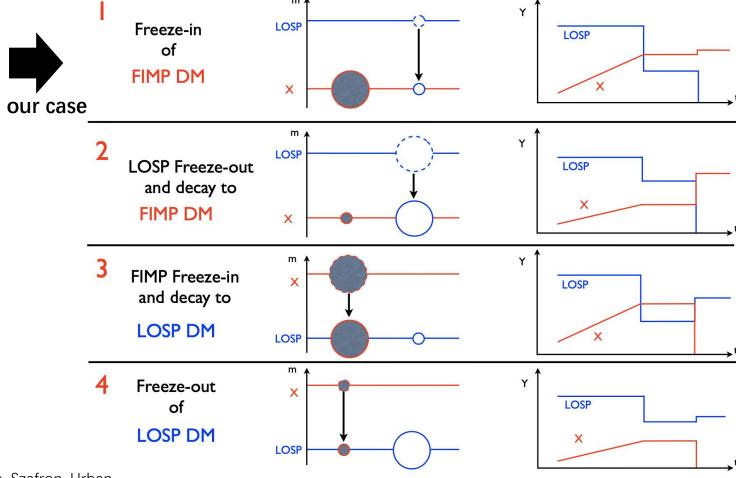
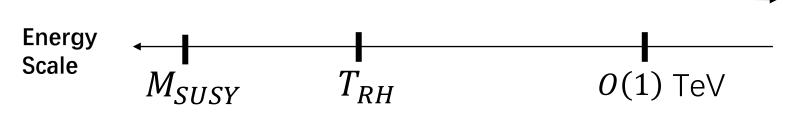
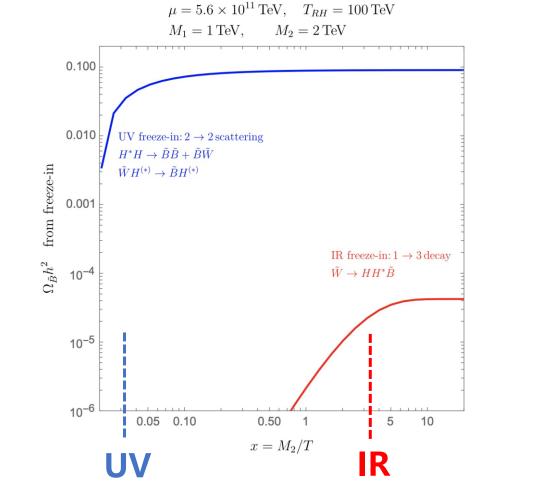




Figure 9. Wino DM relic abundance as function of DM mass m_χ computed with Born cross



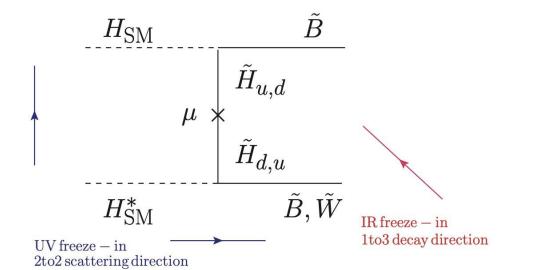
Beneke, Szafron, Urban 2009.00640

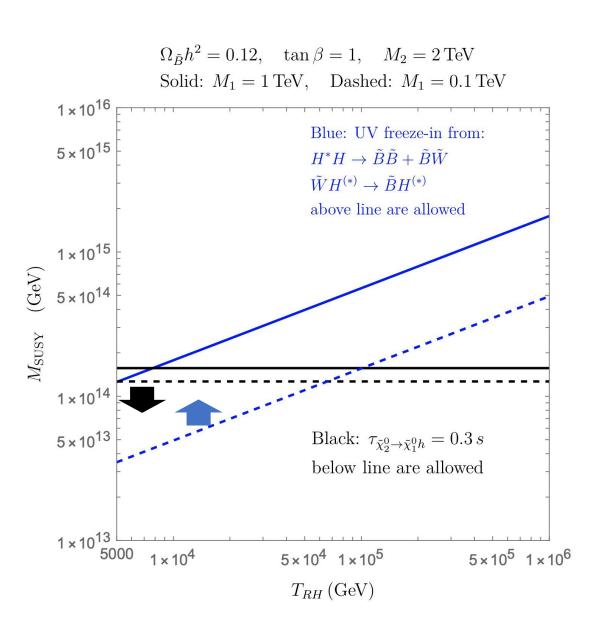
UV & IR feature of different Freeze-In processes

- we focus on dim-5 operators
- Bino mass choice can affect the specific IR/UV ratio

Interplay between DM abundance & BBN: $\underline{constrained} T_{RH}$ range:

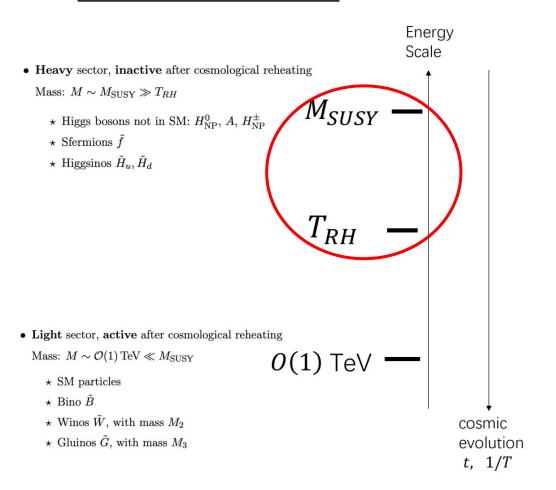
SUSY electroweak-inos must decay before BBN epoch


$$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_2^0 \pi^{\pm}$$


safely fast, generated by loop

$$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 h$$

 $\underline{\textit{dangerous}}, \, \mu \, \text{cannot be too large}$


$$ilde{\chi}_2^0 o ilde{\chi}_1^0 Z$$
 not helping decay, Γ has extra $\frac{{\scriptscriptstyle 1}}{\mu^2}$ suppresion

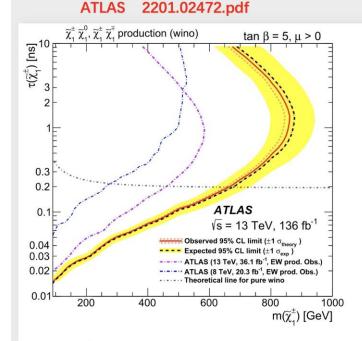
Interplay between DM abundance & BBN: $\underline{constrained} T_{RH}$ range:

Freeze-In bino scenario imply connection between the *two characteristic scales* in MSSM

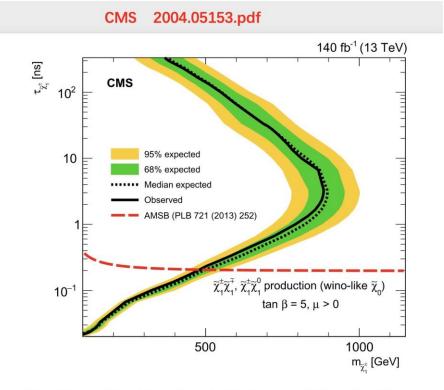
 $\Omega_{\tilde{B}}h^2 = 0.12$, $\tan \beta = 1$, $M_2 = 2 \text{ TeV}$ Solid: $M_1 = 1 \text{ TeV}$, Dashed: $M_1 = 0.1 \text{ TeV}$ 1×10^{16} Blue: UV freeze-in from: 5×10^{15} $H^*H \to \tilde{B}\tilde{B} + \tilde{B}\tilde{W}$ $\tilde{W}H^{(*)} \rightarrow \tilde{B}H^{(*)}$ above line are allowed 1×10^{15} (GeV) 5×10^{14} $M_{
m SUSY}$ Black: $\tau_{\tilde{\chi}^0_2 \to \tilde{\chi}^0_1 h} = 0.3 \, s$ below line are allowed $5 \times 10^4 1 \times 10^5$ $5 \times 10^5 \ 1 \times 10^6$ T_{RH} (GeV)

Collider signal profile

$$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_2^0 \pi^{\pm}$$


$$\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h$$

disappearing track, $M_{\widetilde{W}} > 0.5$ TeV is allowed. our benchmark $M_{\widetilde{W}} = 2$ TeV still allowed


 $au > O(10^{-2}) \, s$ making $ilde{\chi}^0$ leave the whole detector before decay.

BBN limits on our set-up result in NO displaced vertex at collider.

$pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}, \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$

Fig. 7 Exclusion limits at 95% CL obtained in the electroweak production channel with the pure-wino scenario. The limits are shown as a function of the chargino lifetime and mass. The black dashed line shows the median expected value, and the yellow band shows the 1σ uncertainty band around the expected limits. The red line shows the observed limits and the red dotted lines show the 1σ uncertainty from the signal cross-section. The blue and violet broken lines show the observed limits from the ATLAS results in Refs. [16,18] respectively. The dashed gray line shows the predicted chargino lifetime in the almost pure wino-LSP scenario at the two-loop level [7]

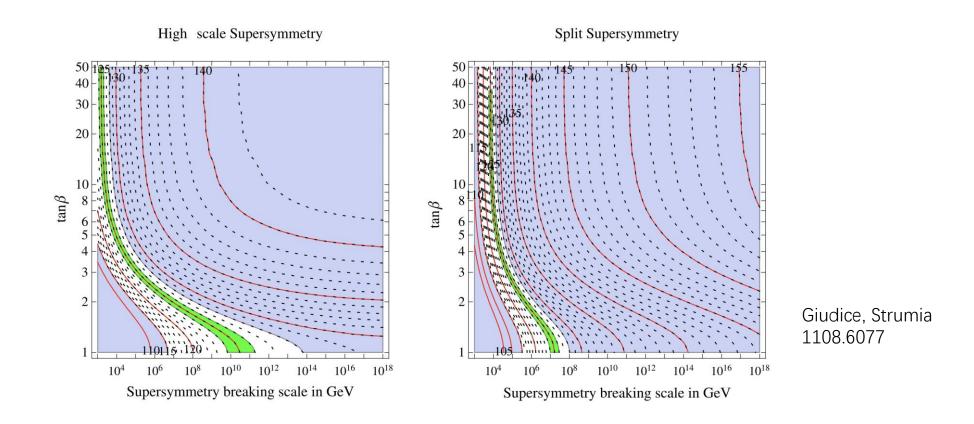


Fig. 2. The expected and observed constraints on chargino lifetime and mass for a purely wino LSP in the context of AMSB, where the chargino lifetime is explicitly varied. The chargino branching fraction is set to 100% for $\tilde{\chi}_1^\pm \to \tilde{\chi}_1^0 \pi^\pm$. Shown are the full Run 2 results, derived from the results of the search in the 2017 and 2018 data sets combined with those of Ref. [17], obtained in the 2015 and 2016 data sets. The region to the left of the curve is excluded at 95% CL. The prediction for the chargino lifetime from Ref. [28] is indicated as the dashed line.

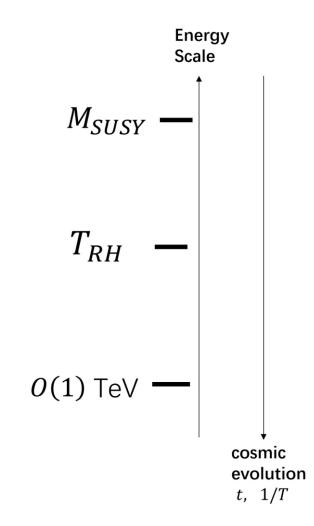
Discussion

Higgs sector

- current limits rely on the chosen uncertainty range of SM inputs (e.g. top Yukawa), relaxing e.g. to 3σ can easily make out setup compatible with 125 GeV Higgs
- fine tuned, as expected

Discussion

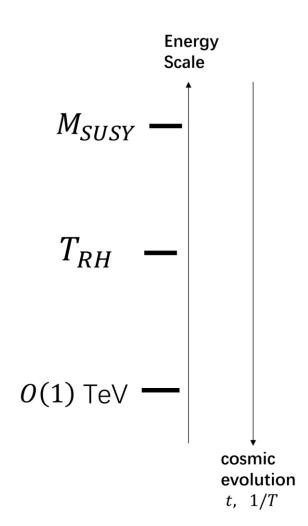
non-universal gaugino masses


• \widetilde{B} , \widetilde{W} at O(1) TeV, \widetilde{G} at high scale:

possible UV completion

- ascribing distinct representations to SUSY breaking superfield Φ with non-vanishing F-terms, then applying linear combination
- fine tuned, as expected

TABLE II. Ratios of gaugino masses for *F*-terms in representations of $SU(5) \subset SO(10)$, with the normal (nonflipped) embedding.


<i>SO</i> (10)	<i>SU</i> (5)	$M_1:M_2:M_3$
1	1	1:1:1
54	24	$-\frac{1}{2}$: $-\frac{3}{2}$:1
210	1	1:1:1
	24	$-\frac{1}{2}$: $-\frac{3}{2}$:1
	75	-5:3:1
770	1	1:1:1
	24	$-\frac{1}{2}$: $-\frac{3}{2}$:1
	75	-5:3:1
	200	10:2:1

Martin, 0903.3568

Summary

- Supersymmetry manifests the symmetry faith of modern physics,
 but may not meet aesthetical taste in pheno. studies
- if sparticles are heavy, Freeze-In bino can be a simple DM realization
 - only gauge couplings involved
 - UV / IR features highlighted in cosmic DM production
 - linking scales of $M_{SUSY} \sim 10^{13-14}$ GeV and $T_{RH} \sim 10^{4-6}$ GeV
 - cosmic history (e.g. BBN) apply further interplay between M_{SUSY} and T_{RH} which may reveal underlying details of SUSY breaking & inflation

