CEPC WP -- SUSY session

Nanjing chat @ Oct 2023

Contributions

- * Five contributions collected since Sept-call
 - * 1.1 Off-shell smuon search (Peng-Xuan Zhu)
 - * 1.2 Lighting Electroweak-Violating ALP-Lepton Interactions at CEPC (Chih-Ting Lu)
 - * 1.3 CEPC tau weak electric dipole moment (Long Chen)
 - * 1.4 Muon g-2 (Peter Athron)
 - * 1.5 Explanation of muon (electron) g-2 anomaly (Fei Wang)
- * To be merged together with SNOWMASS contribution
 - Wino/higgsino/slepton search (Jiarong Yuan)

1 New Physics for CEPC White Paper

1.1 Off-shell smuon search (Peng-Xuan Zhu)

The excellent resolution of CEPC allows for an accurate determination of the missing energy and momentum p_{miss}^{μ} , which benefits the event reconstruction procedures in a Lorentz-invariant way. For the semi-invisible decaying particles pair-produced at lepton colliders shown in the left panel of Fig. 1 we can construct a geometric representation as illustrated in the right panel. Once a specific \vec{p}_{I_a} is selected, one can solve for all the unknown momenta. It is worth noting that the vector \vec{p}_{I_a} is constrained within a certain phase space (the yellow round disc in Fig. 1), further limiting the allowed range of particle masses m_{P} and m_{I} can be reconstructed solely based on kinematic information. The procedure is described in more detail in Ref. [1], which introduces a set of Lorentz invariant variables:

$$m_{\rm LSP}^{\rm max} = \sqrt{E_{\mathbf{I}_a}^2 - \frac{1}{4 \left| \vec{p}_{\rm miss} \right|^2} \left(\left| \vec{p}_{\rm miss} \right|^2 + E_{\mathbf{I}_a}^2 - E_{\mathbf{I}_b}^2 \right)^2}.$$
 (1)

$$m_{\rm RC}^{\rm min} = \sqrt{\frac{E_{\mathbf{PP}}^2}{4} - |PC|^2 - (|OC| + |OA|)^2},$$
 (2)

$$m_{\rm RC}^{\rm max} = \begin{cases} \sqrt{\frac{E_{\rm PP}^2}{4} - |PC|^2}, & \text{if point } C \text{ is inside the disc,} \\ \sqrt{\frac{E_{\rm PP}^2}{4} - |PC|^2 - (|OC| - |OB|)^2}, & \text{if point } C \text{ is outside the disc.} \end{cases}$$
(3)

Figure 1: The decay tree and three-momentum vectors of semi-invisibly decaying particles pair-produced at lepton collider. Three reconstructing masses $m_{\rm LSP}^{\rm max}$, $m_{\rm RC}^{\rm min}$, and $m_{\rm RC}^{\rm max}$ are build to benefit the relevant searches in [1].

For a given semi-invisibly decayed event, these variables follow the relation

$$0 \le m_{\rm RC}^{\rm min} \le m_{\rm P} \le m_{\rm RC}^{\rm max} \le \sqrt{s}/2, \quad 0 \le m_{\rm I} \le m_{\rm LSP}^{\rm max}. \tag{4}$$

Off-shell smuon search

Axion-like particles (ALPs) $e^+e^- \rightarrow \nu_e a \overline{\nu_e}$

Figure 3: The future bounds on the coupling c_e^A/Λ of eALPs from CEPC with $\mathcal{L}=5ab^{-1}$ within 95% confidence level or with a requirement of at least 10 survival events for background-free cases (dashed lines for the eALP prompt decay and dotted lines for the eALP as a long-lived particle) as well as existing bounds (bulk regions). Here we label " 2γ " and " J_{γ} " to identify two distinct signatures at CEPC. $\mathcal{B}_W \lesssim 10^{-5}$ represents $\mathcal{B}(W^{\pm} \to \ell^{\pm} \nu a) < 10^{-5}$ [1] (solid-black line). Several collider bounds are

tau weak electric dipole moment

 $e^+e^- \to \tau^+\tau^-$ Table 1: Ideal 1 s.d. statistical errors on $\text{Re}[d_{\tau}^w]$ and $\text{Im}[d_{\tau}^w]$.

$\delta \mathrm{Re}[d_{ au}^w] \left[e\mathrm{cm} ight]$			$\delta \mathrm{Im}[d_{ au}^w] [e \mathrm{cm}]$		
$\langle T_{33} \rangle$	$\langle \hat{T}_{33} angle$	$\langle O_R angle$	$\langle Q_{33} \rangle$	$\langle \hat{Q}_{33} angle$	$\langle O_I angle$
3.4×10^{-21}	3.4×10^{-21}	1.4×10^{-21}	3.2×10^{-19}	4.0×10^{-20}	2.1×10^{-21}

Muon g-2

Figure 4: A simple model with a new scalar and and a new fermion. The purple-orange contour colour contours show the minimum value of the coupling to right handed muons required to explain muon g-2. outside of this region muon g-2 cannot be explained with $1 - \sigma$. The shaded grey region shows LHC exclusions while the shaded orange region shows exclusions from compressed spectra. The shaded blue region in the top left is excluded because it predicts a stable charged particle.