Ab initio description of deformed intermediate-mass nuclei

Benjamin Bally

Exploring nuclear physics across energy scales Beijing - 16/04/2024

Nuclear theory: hierarchy of scales

• Nuclear matter made of quarks and gluons

Cez

Nuclear theory: hierarchy of scales

- Nuclear matter made of quarks and gluons
- But description from QCD:
 - \diamond Impossible except $A \sim 1$
 - Even if possible, would be very inefficient
 - What would we learn?

Cez

Nuclear theory: hierarchy of scales

- Nuclear matter made of quarks and gluons
- But description from QCD:
 - ♦ Impossible except $A \sim 1$
 - Even if possible, would be very inefficient
 - What would we learn?
- Define appropriate degrees of freedom for the scale
- Connect different scales
 - \rightarrow Tower of Effective Field Theories

- Fundamental principles:
 - 1. Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)

- Fundamental principles:
 - 1. Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)
 - 2. Internucleon interaction rooted in QCD through Effective Field Theory (EFT)

- Fundamental principles:
 - 1. Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)
 - 2. Internucleon interaction rooted in QCD through Effective Field Theory (EFT)
 - 3. Solve as exactly as possible the A-body Schrödinger equation: $H|\Psi\rangle = E|\Psi\rangle$

- Fundamental principles:
 - 1. Nuclei made of A interacting structureless nucleons (Z protons, N neutrons)
 - 2. Internucleon interaction rooted in QCD through Effective Field Theory (EFT)
 - 3. Solve as exactly as possible the A-body Schrödinger equation: $H|\Psi\rangle$ = $E|\Psi\rangle$

Courtesy of P. Arthuis

• Follow seminal work of Weinberg

Weinberg, Phys. Lett. B 251, 288 (1990)

cea

- Follow seminal work of Weinberg Weinberg, Phys. Lett. B 251, 288 (1990)
- Write the most general Lagragian compatible with symmetries of QCD
- Order terms by importance: $(Q/\Lambda)^n$ (power counting)

- Follow seminal work of Weinberg Weinberg, Phys. Lett. B 251, 288 (1990)
- Write the most general Lagragian compatible with symmetries of QCD
- Order terms by importance: $(Q/\Lambda)^n$ (power counting)

Epelbaum et al., Front. Phys. 8, 98 (2020)

<u>cea</u>

- Terms come with parameters: Low-Energy Constants (LEC)
 - $\diamond~$ Not fixed by the theory
 - $\diamond~$ Fit to data: scattering, few-body, recently heavier systems ($^{16}\text{O})$
 - Future: matching with LQCD?

- Terms come with parameters: Low-Energy Constants (LEC)
 - $\diamond~$ Not fixed by the theory
 - ◊ Fit to data: scattering, few-body, recently heavier systems (¹⁶O)
 - Future: matching with LQCD?
- Several variants of EFT
 - \diamond With π (pionful) or without π (pionless)
 - $\diamond~$ Without Δ (deltaless) or with Δ (deltaful)

- Terms come with parameters: Low-Energy Constants (LEC)
 - Not fixed by the theory
 - ◊ Fit to data: scattering, few-body, recently heavier systems (¹⁶O)
 - Future: matching with LQCD?
- Several variants of EFT
 - \diamond With π (pionful) or without π (pionless)
 - \diamond Without Δ (deltaless) or with Δ (deltaful)
- Nice for many-body theorists: $H = H^{LO} + \sum_{p=1}^{\infty} H^{NpLO}$
 - \Rightarrow Evaluate order by order to assess convergence and uncertainty

- Terms come with parameters: Low-Energy Constants (LEC)
 - Not fixed by the theory
 - \diamond Fit to data: scattering, few-body, recently heavier systems (¹⁶O)
 - Future: matching with LQCD?
- Several variants of EFT
 - \diamond With π (pionful) or without π (pionless)
 - $\diamond~$ Without Δ (deltaless) or with Δ (deltaful)
- Nice for many-body theorists: H = H^{LO} + ∑_{p=1}[∞] H^{NpLO}
 ⇒ Evaluate order by order to assess convergence and uncertainty
- Not free of questions or problems!
 - o Original "Weinberg" power counting not renormalizable!
 - $\diamond~$ Interactions not alway built consistently (different orders for 2N and 3N)
 - Need to go at N?LO
 - Multiplication of the number of interactions ("Skyrmization")

• Same strategy can be applied to transition operators (weak, electromagnetic)

Systematic tool: EFT for decays

- Same strategy can be applied to transition operators (weak, electromagnetic)
- Example: neutrinoless double-beta decay ⇒ see talk by Jiangming

Cirigliano et al., J. Phys. G 49, 120502 (2022)

Many-body theories

- In the past, only quasi-exact methods with computational scaling $O(e^A)$
 - ◊ No-Core Shell Model (NCSM)
 - ◊ Quantum Monte-Carlo variants

٥ ...

B. Bally

Many-body theories

- In the past, only quasi-exact methods with computational scaling ${\cal O}(e^A)$
 - No-Core Shell Model (NCSM)
 - Quantum Monte-Carlo variants

٥ ...

- In recent years, development of methods with gentler scaling
 - Many-Body Perturbation Theory (MBPT)
 - ◊ Coupled Cluster (CC)
 - Self-Consistent Green's Function (SCGF)
 - In-Medium Similarity Renormalization Group (IMSRG)
 - Valence-Space IMSRG (VS-IMSRG)
 - $\diamond~$ Nuclear Lattice EFT (NLEFT) \Rightarrow see talks by UIf and Dean
 - $\diamond \ \ \mathsf{Projected} \ \ \mathsf{Generator} \ \mathsf{Coordinate} \ \mathsf{Method} \ \ + \ \mathsf{Perturbation} \ \mathsf{Theory} \ (\mathsf{PGCM-PT})$

B. Bally

Many-body theories

- In the past, only quasi-exact methods with computational scaling ${\cal O}(e^A)$
 - No-Core Shell Model (NCSM)
 - Quantum Monte-Carlo variants

٥ . . .

- In recent years, development of methods with gentler scaling
 - Many-Body Perturbation Theory (MBPT)
 - ◊ Coupled Cluster (CC)
 - Self-Consistent Green's Function (SCGF)
 - In-Medium Similarity Renormalization Group (IMSRG)
 - Valence-Space IMSRG (VS-IMSRG)
 - $\diamond~$ Nuclear Lattice EFT (NLEFT) \Rightarrow see talks by UIf and Dean
 - \diamond Projected Generator Coordinate Method + Perturbation Theory (PGCM-PT)
- Variants/generalization of these methods to describe
 - \diamond singly open-shell nuclei → pairing (Bogoliubov formalism)
 - $\diamond~$ doubly open-shell nuclei $\rightarrow~$ deformation

• $H = T + V^{2N} + V^{3N} + \ldots + V^{AN}$

- $H = T + V^{2N} + V^{3N} + \ldots + V^{AN}$
- Large tensor: $V_{ijklmn}^{3N} \equiv \langle ijk | V^{3N} | lmn \rangle$ with $i, j, k, l, m, n \in [[1, M]]^6$

- $H = T + V^{2N} + V^{3N} + \ldots + V^{AN}$
- Large tensor: $V_{ijklmn}^{3N} \equiv \langle ijk | V^{3N} | lmn \rangle$ with $i, j, k, l, m, n \in [[1, M]]^6$
- Strategy 1: consider only max(i + j + k) = max(l + m + n) = P < 3M
 In general, we consider HO energy quanta → e_{3max} = max(e_i + e_j + e_k)

- $H = T + V^{2N} + V^{3N} + \ldots + V^{AN}$
- Large tensor: $V_{ijklmn}^{3N} \equiv \langle ijk | V^{3N} | Imn \rangle$ with $i, j, k, l, m, n \in [[1, M]]^6$
- Strategy 1: consider only max(i + j + k) = max(l + m + n) = P < 3M
 In general, we consider HO energy quanta → e_{3max} = max(e_i + e_j + e_k)
- Strategy 2: reduce to an effective 2-body through rank-reduction scheme (accurate at a few percent level) Roth *et al.*, Phys. Rev. Lett. 109, 052501 (2012) Frosini *et al.*, Eur. Phys. J. A 57, 151 (2021)

$$H \longrightarrow \tilde{H} = \tilde{H}^{0\mathsf{N}} + \tilde{H}^{1\mathsf{N}} + \tilde{H}^{2\mathsf{N}}$$

with, e.g.,
$$\tilde{H}^{2N}_{ijlm} = V^{2N}_{ijlm} + \sum_{kn} V^{3N}_{ijklmn} \rho_{kn}$$

• Recent breakthrough in the computation of the effective two-body

Miyagi et al., Phys. Rev. C 105, 014302 (2022)

- $H = T + V^{2N} + V^{3N} + \ldots + V^{AN}$
- Large tensor: $V_{ijklmn}^{3N} \equiv \langle ijk | V^{3N} | lmn \rangle$ with $i, j, k, l, m, n \in [[1, M]]^6$
- Strategy 1: consider only max(i + j + k) = max(l + m + n) = P < 3M
 In general, we consider HO energy quanta → e_{3max} = max(e_i + e_j + e_k)
- Strategy 2: reduce to an effective 2-body through rank-reduction scheme (accurate at a few percent level) Roth *et al.*, Phys. Rev. Lett. 109, 052501 (2012) Frosini *et al.*, Eur. Phys. J. A 57, 151 (2021)

$$H \longrightarrow \tilde{H} = \tilde{H}^{0N} + \tilde{H}^{1N} + \tilde{H}^{2N}$$

with, e.g.,
$$\tilde{H}_{ijlm}^{2N} = V_{ijlm}^{2N} + \sum_{kn} V_{ijklmn}^{3N} \rho_{kn}$$

• Strategy 3: tensor factorization

Tichai et al., Phys. Rev. C 99, 034320 (2019)

Expansion methods: basic ideas

$$|\Psi\rangle = U(k = \infty)|\Phi\rangle$$

Expansion methods: basic ideas

$$|\Psi\rangle = U(k = \infty)|\Phi\rangle$$

- In theory, expansion exact if $k = \infty$ whatever $|\Phi\rangle$ (if possible)
- In practice, we truncate $k < \infty \Rightarrow$ choice of $|\Phi\rangle$ is important!

B. Bally

Expansion methods: basic ideas

$$|\Psi\rangle = U(k = \infty)|\Phi\rangle$$

- In theory, expansion exact if $k = \infty$ whatever $|\Phi\rangle$ (if possible)
- In practice, we truncate k < ∞ ⇒ choice of |Φ⟩ is important!
- Used deformed $|\Phi\rangle$ in the description of deformed nuclei
 - \diamond Much better starting point
 - ◊ Collective correlations difficult to include in expansions (many particle-hole)
 - $\diamond~$ Success of symmetry-breaking/restoration within energy functional methods

Expansion methods: basic ideas

$$|\Psi\rangle = U(k = \infty)|\Phi\rangle$$

- In theory, expansion exact if $k = \infty$ whatever $|\Phi\rangle$ (if possible)
- In practice, we truncate k < ∞ ⇒ choice of |Φ⟩ is important!
- Used deformed $|\Phi\rangle$ in the description of deformed nuclei
 - Much better starting point
 - Collective correlations difficult to include in expansions (many particle-hole)
 - $\diamond~$ Success of symmetry-breaking/restoration within energy functional methods
- Such deformed states break the symmetries of H
 ⇒ symmetries have to be restored
 Duguet, J. Phys. G 42, 025107 (2015)
 Duguet et al., J. Phys. G 44, 015103 (2017)
 Qiu et al., Phys. Rev. C 99, 044301 (2018)

<u>cea</u>

- Perturbation theory applied to a many-body reference state Tichai *et al.*, Front. Phys. 8, 164 (2020)
 - ♦ Partition the Hamiltonian: $H = H_0 + H_1 \rightarrow H_0$ solved exactly $\rightarrow |\Phi\rangle$

<u>cea</u>

- Perturbation theory applied to a many-body reference state Tichai *et al.*, Front. Phys. 8, 164 (2020)
 - ♦ Partition the Hamiltonian: $H = H_0 + H_1 \rightarrow H_0$ solved exactly $\rightarrow |\Phi\rangle$
 - $\langle |\Psi\rangle = \sum_{k=0}^{\infty} (RH_1)^k |\Phi\rangle$

cea

- Perturbation theory applied to a many-body reference state Tichai *et al.*, Front. Phys. 8, 164 (2020)
 - ♦ Partition the Hamiltonian: $H = H_0 + H_1 \rightarrow H_0$ solved exactly $\rightarrow |\Phi\rangle$
 - $\langle |\Psi\rangle = \sum_{k=0}^{\infty} (RH_1)^k |\Phi\rangle$
- Method is computationally cheap \rightarrow large-scale calculations possible
- Does it converge? At least deformed $|\Phi\rangle$ is a better starting point for deformed nuclei

Deformed MBPT (dMBPT)

• Application to deformed case ongoing

Alberto Scalesi et al., to be published (2024)

Deformed CC (dCC)

• Expands the eigenstate as $|\Psi\rangle = e^{T} |\Phi\rangle$ Hagen *et al.*, Rep. Prog. Phys. 77, 096302 (2014)

 $\diamond \quad T = T_1 + T_2 + T_3 + \ldots + T_A \text{ with, e.g., } T_2 = \frac{1}{4} \sum_{ijkl} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k$

Deformed CC (dCC)

- Expands the eigenstate as $|\Psi\rangle = e^{T} |\Phi\rangle$ Hagen *et al.*, Rep. Prog. Phys. 77, 096302 (2014)
 - $\diamond \quad T = T_1 + T_2 + T_3 + \ldots + T_A \text{ with, e.g., } T_2 = \frac{1}{4} \sum_{ijkl} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k$
 - ◊ Exponential ansatz is powerfull
 - ♦ Gold standard in quantum chemistry (even if born in nuclear physics)
 - ♦ In nuclear physics, we consider up to CCSDT (= stop at T_3)

Deformed CC (dCC)

- Expands the eigenstate as $|\Psi\rangle = e^{T} |\Phi\rangle$ Hagen *et al.*, Rep. Prog. Phys. 77, 096302 (2014)
 - $\diamond \quad T = T_1 + T_2 + T_3 + \ldots + T_A \text{ with, e.g., } T_2 = \frac{1}{4} \sum_{ijkl} t_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k$
 - Exponential ansatz is powerfull
 - ♦ Gold standard in quantum chemistry (even if born in nuclear physics)
 - ♦ In nuclear physics, we consider up to CCSDT (= stop at T_3)
- Extension to deformed reference states with symmetry projection!

Ekström et al., arXiv:2305.06955 (2023)

cea

- Block diagonalizes H by a unitary transformation Hergert *et al.*, Phys. Rep. 621, 165 (2016)
 - ♦ Continuous unitary transformation: $H(s) = U(s)H(0)U^{\dagger}(s)$

- Block diagonalizes H by a unitary transformation Hergert et al., Phys. Rep. 621, 165 (2016)
 - ♦ Continuous unitary transformation: $H(s) = U(s)H(0)U^{\dagger}(s)$
 - ♦ Evolve $s \to \infty$ to block diagonalize H(s) for reference state $|\Phi\rangle$

Cez

 Block diagonalizes H by a unitary transformation Hergert et al., Phys. Rep. 621, 165 (2016)

0p0h 1p1h 2p2h 3p3h

- ♦ Continuous unitary transformation: $H(s) = U(s)H(0)U^{\dagger}(s)$
- ♦ Evolve $s \to \infty$ to block diagonalize H(s) for reference state $|\Phi\rangle$
- ♦ Flow equation: $\frac{d}{ds}H(s) = [\eta(s), H(s)]$

Adapted from H. Hergert

- Block diagonalizes H by a unitary transformation Hergert et al., Phys. Rep. 621, 165 (2016)
 - ♦ Continuous unitary transformation: $H(s) = U(s)H(0)U^{\dagger}(s)$
 - ♦ Evolve $s \to \infty$ to block diagonalize H(s) for reference state $|\Phi\rangle$
 - ♦ Flow equation: $\frac{d}{ds}H(s) = [\eta(s), H(s)]$
 - \diamond Flow generates higher-body terms \rightarrow truncation IMSRG(k)

Adapted from H. Hergert

- Very versatile method
 - Used as a solving method for the Schrödinger equation
 - $\diamond~$ Used as a preprocessor of $H \rightarrow$ injected in other method

- Very versatile method
 - Used as a solving method for the Schrödinger equation
 - $\diamond~$ Used as a preprocessor of $H \rightarrow$ injected in other method
- Extension to deformed nuclei

Yuan et al., Phys. Rev. C 105, L061303 (2022)

Valence-Space IMSRG (VS-IMSRG)

• Ab initio re-interpretation of the traditional shell model (SM)

Stroberg et al., Anns. Rev. Nucl. Part. Sci. 69, 307 (2019)

Valence-Space IMSRG (VS-IMSRG)

- Ab initio re-interpretation of the traditional shell model (SM) Stroberg et al., Anns. Rev. Nucl. Part. Sci. 69, 307 (2019)
 - $\diamond~$ Uses IMSRG to decouple a valence space from a core
 - Exact diagonalization within the valence space

- Ab initio re-interpretation of the traditional shell model (SM) Stroberg et al., Anns. Rev. Nucl. Part. Sci. 69, 307 (2019)
 - $\diamond~$ Uses IMSRG to decouple a valence space from a core
 - Exact diagonalization within the valence space
- Can reuse SM know-how and numerical codes!
 ⇒ Large contribution to recent progress in *ab initio* reach

Cez

· Problems to take into account collectivity

Stroberg et al., Phys. Rev. c 105, 034333 (2022)

Valence-Space IMSRG (VS-IMSRG)

- Problems to take into account collectivity
 - $\diamond~$ Includes all correlations inside the valence space but \ldots
 - $\diamond \ \ldots$ still depends on $\mathsf{IMRSG}(\mathsf{k})$ for the decoupling

Stroberg et al., Phys. Rev. c 105, 034333 (2022)

Cez

$$|\Theta_{\epsilon}^{\Lambda M}\rangle = \sum_{qK} f_{\epsilon K}^{\Lambda M}(q) P_{MK}^{\Lambda} |\Phi(q)\rangle \quad \text{where} \quad \Lambda \equiv Z, N, J, \pi$$

Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\Lambda M}\rangle = \sum_{qK} f_{\epsilon K}^{\Lambda M}(q) P_{MK}^{\Lambda} |\Phi(q)\rangle \quad \text{where} \quad \Lambda \equiv Z, N, J, \pi$$

$$\frac{\delta}{\delta f_{\epsilon K}^{\Lambda M *}(q)} \left(\frac{\langle \Theta_{\epsilon}^{\Lambda M} | H | \Theta_{\epsilon}^{\Lambda M} \rangle}{\langle \Theta_{\epsilon}^{\Lambda M} | \Theta_{\epsilon}^{\Lambda M} \rangle} \right) = 0$$

Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\Lambda M}\rangle = \sum_{qK} f_{\epsilon K}^{\Lambda M}(q) P_{MK}^{\Lambda} |\Phi(q)\rangle \text{ where } \Lambda \equiv Z, N, J, \pi$$

$$\frac{\delta}{\delta f_{\epsilon\kappa}^{\Lambda M*}(q)} \left(\frac{\langle \Theta_{\epsilon}^{\Lambda M} | \mathcal{H} | \Theta_{\epsilon}^{\Lambda M} \rangle}{\langle \Theta_{\epsilon}^{\Lambda M} | \Theta_{\epsilon}^{\Lambda M} \rangle} \right) = 0$$

- Reference states:
 - Bogoliubov quasiparticle states
 - \diamond Series of constrained HFB minimization, e.g., $\langle \Phi(q) | Q | \Phi(q) \rangle = q$

Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\Lambda M}\rangle = \sum_{qK} f_{\epsilon K}^{\Lambda M}(q) P_{MK}^{\Lambda} |\Phi(q)\rangle \text{ where } \Lambda \equiv Z, N, J, \pi$$

$$\frac{\delta}{\delta f_{\epsilon\kappa}^{\Lambda M*}(q)} \left(\frac{\langle \Theta_{\epsilon}^{\Lambda M} | \mathcal{H} | \Theta_{\epsilon}^{\Lambda M} \rangle}{\langle \Theta_{\epsilon}^{\Lambda M} | \Theta_{\epsilon}^{\Lambda M} \rangle} \right) = 0$$

- Reference states:
 - Bogoliubov quasiparticle states
 - \diamond Series of constrained HFB minimization, e.g., $\langle \Phi(q) | Q | \Phi(q) \rangle = q$
- Advantages:
 - ◊ Multi-reference approach
 - $\diamond~$ Symmetry conserving \rightarrow good quantum numbers
 - ♦ Scales with A as mean field ... but with a LARGE prefactor

PGCM: schematic example

- <u>cea</u>
- PGCM good at capturing static/collective correlations (e.g. deformation)
- ... but not so good for dynamic correlations (few particle-hole excitations)

- PGCM good at capturing static/collective correlations (e.g. deformation)
- ... but not so good for dynamic correlations (few particle-hole excitations)
- Use PGCM state as reference state for an expansion

- PGCM good at capturing static/collective correlations (e.g. deformation)
- ... but not so good for dynamic correlations (few particle-hole excitations)
- Use PGCM state as reference state for an expansion
 - PGCM takes care of the static correlations
 - Expansion takes care the dynamic correlations

- PGCM good at capturing static/collective correlations (e.g. deformation)
- ... but not so good for dynamic correlations (few particle-hole excitations)
- Use PGCM state as reference state for an expansion
 - PGCM takes care of the static correlations
 - Expansion takes care the dynamic correlations
 - Expansion makes the scheme more systematic

- PGCM good at capturing static/collective correlations (e.g. deformation)
- ... but not so good for dynamic correlations (few particle-hole excitations)
- Use PGCM state as reference state for an expansion
 - PGCM takes care of the static correlations
 - Expansion takes care the dynamic correlations
 - Expansion makes the scheme more systematic
 - Expansion on top of multi-reference state is more complicated/costly

- PGCM good at capturing static/collective correlations (e.g. deformation)
- ... but not so good for dynamic correlations (few particle-hole excitations)
- Use PGCM state as reference state for an expansion
 - PGCM takes care of the static correlations
 - Expansion takes care the dynamic correlations
 - Expansion makes the scheme more systematic
 - Expansion on top of multi-reference state is more complicated/costly
- Two methods recently developed
 - $\diamond \ \mathsf{IMSRG} + \mathsf{PGCM} \rightarrow \mathsf{In}\text{-}\mathsf{Medium} \ \mathsf{GCM}$

Yao et al., Phys. Rev. Lett. 124, 232501 (2020)

- PGCM + Perturbation Theory (PGCM-PT)
 Frosini *et al.*, Eur. Phys. J. A 58, 62 (2022), Frosini *et al.*, Eur. Phys. J. A 58, 63 (2022), Frosini *et al.*, Eur. Phys. J. A 58, 64 (2022)
- ◊ (the two can be combined!)

Frosini et al., Eur. Phys. J. A 58, 64 (2022)

In-Medium GCM: application to ⁷⁶Ge

cea

- Workflow:
 - ♦ Perform PGCM calculation $\rightarrow |\Phi^{ZNJ\pi}\rangle$
 - ♦ Evolve *H* through IMSRG using $|\Phi^{ZNJ\pi}\rangle$ as reference state → $H(\infty)$
 - $\diamond~$ Perform new PGCM calculation with $H(\infty)$

 \Rightarrow see talk by Jiangming

In-Medium GCM: application to ⁷⁶Ge

- Workflow:
 - ♦ Perform PGCM calculation $\rightarrow |\Phi^{ZNJ\pi}\rangle$
 - ♦ Evolve *H* through IMSRG using $|\Phi^{ZNJ\pi}\rangle$ as reference state → $H(\infty)$
 - ♦ Perform new PGCM calculation with $H(\infty)$

\Rightarrow see talk by Jiangming

Belley et al., arXiv:2308.15634 (2023) + Phys. Rev. Lett., in production (2024)

PGCM-PT: application to ²⁰Ne

- Perturbation Theory on top of PGCM state
 - Multi-reference & symmetry conserving
 - ◊ State dependent PT
 - Scaling much worse than PGCM (need better partitioning)

Frosini et al., Eur. Phys. J. A 58, 64 (2022)

PGCM-PT: application to ²⁰Ne

- Perturbation Theory on top of PGCM state
 - Multi-reference & symmetry conserving
 - $\diamond \ \ \mathsf{State} \ \ \mathsf{dependent} \ \mathsf{PT}$
 - Scaling much worse than PGCM (need better partitioning)
- Plain PGCM enough for relative quantities

Frosini et al., Eur. Phys. J. A 58, 64 (2022)

- State-of-the-art PGCM and NLEFT calculations for ¹⁶O and ²⁰Ne Giacalone *et al.*, arXiv:2402.05995 (2024)
- The two methods agree quite well!

Calculations for ion-ion collisions

Conclusion

• Intrinsic deformation is an important feature of atomic nuclei

⇒ see talks by Peter, Dario, Magda

<u>cea</u>

• Intrinsic deformation is an important feature of atomic nuclei

 \Rightarrow see talks by Peter, Dario, Magda

- Development of new ab initio schemes to tackle it
- Good strategy for expansion methods:
 - include static deformation correlations in the reference states
 - include dynamic correlations through the expansion
 - ◊ need to restore the symmetries!

cea

• Intrinsic deformation is an important feature of atomic nuclei

 \Rightarrow see talks by Peter, Dario, Magda

- Development of new ab initio schemes to tackle it
- Good strategy for expansion methods:
 - include static deformation correlations in the reference states
 - include dynamic correlations through the expansion
 - ◊ need to restore the symmetries!
- Collaboration with heavy-ion community started but could be reinforced Summerfield et al., PRC 104, L041901 (2021)
 Mäntysaari et al., PRL 131, 062301 (2023)
 Giacalone et al., arXiv:2402.05995 (2024)