

Jiangyong Jia April 16, 2024

208Pb

238U

Lok University

Exploring nuclear physics across energy scales 2024: intersection between nuclear structure and high energy nuclear collisions

⁹⁶Zr

160

129Xe

Atomic nuclei and their shapes

- Emergent phenomena of a many-body quantum system
 - clustering, halo, skin, bubble...
 - quadrupole/octupole/hexdecopole deformations
 - Non-monotonic evolution with N and Z

 $0 \le \gamma \le \pi/3$

 β_2 -landscape

Nuclear shape in low-energy methods

Each DOF has zero-point fluctuations within an intrinsic timescale.

(non-invasive) spectroscopic methods probe a superposition of these fluctuations Instantaneous nuclear shapes are not directly seen \rightarrow intrinsic shape not observable

e+A scattering has very short timescales, but so far mostly imaged the one-body (charge) distribution. The impact of deformation appears as an increase in the radius

 $q \text{ (fm}^{-1})$

Taking a snapshot

To see event-by-event shape directly, one must have access to instantaneous many-body distribution $\rho(\mathbf{r_1}, \mathbf{r_2}...)$

But we will see all DOFs longer than this timescale: $\tau > \tau_{expo}$ Nucleons, hadrons, guark, gluons, gluon saturations

The concept of shape in principle collision energy dependent

Flow-assisted nuclear shape imaging at high-energy

Key: 1) fast snapshot, 2) linear response, 3) large multiplicity for many-body correlations

Collision dynamics

 $t \sim 10 \text{ fm/c} = 10^{-22} \text{ s}$

Credit: Bjoern Schenke

3D relativistic viscous hydrodynamics

Initial geometry to Collective flow

Shape-flow transmutation via pressure-gradient force: $F = -\nabla P(\epsilon)$

Observables for flow fluctuations

- Single particle distribution $egin{array}{ll} \displaystyle rac{d^2N}{d\phi dp_{
 m T}} &= N(p_T) iggl[1+2\sum_n \ v_{
 m n}(p_T)\cos n(\phi-\Psi_n(p_T)) iggr] \end{array}$ Flow vector: $oldsymbol{V}_n = v_n e^{\mathrm{i}n\Psi_n}$ $= \frac{N(p_T)}{\sum_{n=-\infty}^{\infty} V_n(p_T) e^{in\phi}}$ Radial flow Anisotropic flow One real event
- Two-particle correlation function

$$\left\langle rac{d^2 N_1}{d \phi d p_{\mathrm{T}}} rac{d^2 N_2}{d \phi d p_{\mathrm{T}}}
ight
angle \Rightarrow \left\langle oldsymbol{V}_n(p_{T1}) oldsymbol{V}_n^*(p_{T2})
ight
angle ~~n-n=0$$

Multi-particle correlation function

$$\left\langle \frac{d^2 N_1}{d\phi dp_{\mathrm{T}}} \cdots \frac{d^2 N_m}{d\phi dp_{\mathrm{T}}} \right\rangle \implies \left\langle V_{n_1} V_{n_2} \dots V_{n_m} \right\rangle \quad n_1 + n_2 + \dots + n_m = 0$$

These moments completely describe the pdf: $p(V_2, V_3...) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dV_2 dV_3...}$

Accessing information in intrinsic frame

$${\cal E}_2\equiv arepsilon_2 e^{2i\Phi_2}\propto \int_{f r}{f r}^2
ho({f r}) \qquad \qquad d_\perp=1/R_\perp \quad \delta d_\perp = \, d_\perp - \langle d_\perp
angle$$

• We measure moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$ via $p([p_T], v_2, v_3...)$...

- Mean $\langle d_{\perp} \rangle$ Variance: $\langle \varepsilon_n^2 \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^2 \rangle$ Skewness $\langle \varepsilon_n^2 \delta d_{\perp}/d_{\perp} \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^3 \rangle$ (untable conditions of $\delta d_{\perp}/d_{\perp} \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^3 \rangle$ (untable conditions of $\delta d_{\perp}/d_{\perp} \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^3 \rangle$
- Kurtosis $\langle \varepsilon_n^4 \rangle 2 \langle \varepsilon_n^2 \rangle^2, \left\langle (\delta d_\perp/d_\perp)^4 \right\rangle 3 \left\langle (\delta d_\perp/d_\perp)^2 \right\rangle^2$ $\langle v_n^4 \rangle 2 \langle v_n^2 \rangle^2, \left\langle (\delta p_{\rm T}/p_{\rm T})^4 \right\rangle 3 \left\langle (\delta p_{\rm T}/p_{\rm T})^2 \right\rangle^2$
- Higher moments probe the frame-independent many-body distributions 1902.07168

$$\left\langle \varepsilon_{2}^{2} \right\rangle = \left\langle \mathcal{E}_{2} \mathcal{E}_{2}^{*} \right\rangle \approx \frac{\int_{\mathbf{r}_{1},\mathbf{r}_{2}} \left(\mathbf{r}_{1}\right)^{2} \left(\mathbf{r}_{2}^{*}\right)^{2} \rho\left(\mathbf{r}_{1},\mathbf{r}_{2}\right)}{\left(\int_{\mathbf{r}} |\mathbf{r}|^{2} \left\langle \rho(\mathbf{r}) \right\rangle\right)^{2}} \qquad \left\langle \varepsilon_{2}^{2} \delta d_{\perp}/d_{\perp} \right\rangle \approx -\frac{\int_{\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}} \left(\mathbf{r}_{1}\right)^{2} \left(\mathbf{r}_{2}^{*}\right)^{2} |\mathbf{r}_{3}^{2}| \rho\left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}\right)}{\left(\int_{\mathbf{r}} |\mathbf{r}|^{2} \left\langle \rho(\mathbf{r}) \right\rangle\right)^{2} \int_{\mathbf{r}} |\mathbf{r}|^{2} \left\langle \rho(\mathbf{r}) \right\rangle}$$

 $\rho(\mathbf{r}_1, \mathbf{r}_2) = \langle \delta \rho(\mathbf{r}_1) \delta \rho(\mathbf{r}_2) \rangle = \langle \rho(\mathbf{r}_1) \rho(\mathbf{r}_2) \rangle - \langle \rho(\mathbf{r}_1) \rangle \langle \rho(\mathbf{r}_2) \rangle \qquad \rho(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = \langle \delta \rho(\mathbf{r}_1) \delta \rho(\mathbf{r}_2) \delta \rho(\mathbf{r}_3) \rangle$

Coulomb Explosion Imaging in Chemistry

Instantaneous stripping of electrons (thin foil or x-ray laser), and then let atoms explode under mutual coulomb repulsion

Fig. 1. A schematic view of a Coulomb explosion experiment. When a swift molecule passes through a thin solid film, it loses all of its binding electrons. The remaining positive ions repel each other, thus transforming the microstructure (as seen in the magnified view) into a macrostructure that can be measured precisely with an appropriate detector. The measured traces (x, γ, t) of each fragment nucleus for individual molecules are then transformed into the original molecular structure.

"Nuclear explosion imaging" is 10⁶-10⁹ times faster.

Applications of nuclear structure imaging

- Demonstration of methodology \rightarrow deformation of Uranium238
- Layout the general strategy of structure imaging
- Establishing the precision via isobar collisions: ⁹⁶Ru+⁹⁶Ru vs ⁹⁶Zr+⁹⁶Zr
- Future opportunities.

Impact of quadrupole deformation in U+U

Deformation enhances the fluctuations of v_2 and $[p_T]$. Also leads to anticorrelation between v_2 and $[p_T]$.

Impact of quadruple deformation

Seen directly by comparing ²³⁸U+²³⁸U with near-spherical ¹⁹⁷Au+¹⁹⁷Au

2401.06625

Near-spherical \rightarrow flat ρ_2 vs centrality Strongly prolate \rightarrow decreasing ρ_2 vs centrality

Ratio of observables $R_{\mathcal{O}} = \langle \mathcal{O} \rangle_{U+U} / \langle \mathcal{O} \rangle_{Au+Au}$

Ratios isolate impacts of the initial state, including nuclear structures!

U deformation dominates the UCC (ultra-central collisions) \rightarrow 50%-70% modification on $\langle v_2^2 \rangle$ and $\langle (\delta p_T)^2 \rangle$, 300% for $\langle v_2^2 \delta p_T \rangle$ More smooth centrality dependence for $\langle (\delta p_T)^2 \rangle$ than $\langle v_2^2 \rangle$ v_2 is dominated by v_2^{RP} (unaffected by deformation), which has residual impact in UCC

Ratio of observables $R_{\mathcal{O}} = \langle \mathcal{O} \rangle_{U+U} / \langle \mathcal{O} \rangle_{Au+Au}$

Compare with state-of-the-art IPGlasma+Music+UrQMD hydro model 2005.14682

- Increase of $\langle v_2^2 \rangle$ in model is less sharp \rightarrow overestimate ratio of $v_2^{RP} \rightarrow$ lower bound β_{2U} .
- The $\langle (\delta p_T)^2 \rangle$ and $\langle v_2^2 \delta p_T \rangle$ data seem to prefer values close to $\beta_{2U} = 0.28$.
- $\langle v_2^2 \delta p_T \rangle$ has additional sensitivity to $\gamma_U \rightarrow$ simultaneously constrain the β_{2U} and γ_U .

Constraining Uranium shape parameters 2401.06625

low energy estimate $\beta_{2\rm U} = 0.287 \pm 0.009$ Value could be smaller due to possible β_4 . $\beta_{2\rm U} \sim 0.25 - 0.26$ 2302.13617

Structure models suggest triaxiality, which seems to be preferred by the HI data. PRC 54, 2356 (1996)

arXiv:2303.11299

But we cannot distinguish between rigid triaxiality and triaxial fluctuations This can be done in the future using six-particle correlations: v_2 {6}, $<v_2^4 \delta p_T^2 >_c$.

> 2301.03556 2403.07441

Ratios cancel final state effects

- Vary the shear/bulk viscosity in Music hydro model
 - Flow signal change by more than factor of 2, yet the ratio unchanged.

A general strategy for nuclear shape imaging

Compare two systems of similar mass but different structure

Two-particle observable:
$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Deviation from unity depends only on their structure differences

arXiv: 2111.15559

Available collision systems

Nuclear Structure $\leftarrow \rightarrow$ Initial Condition $\leftarrow \rightarrow$ QGP dynamics/properties RHIC \sqrt{s} =200GeV LHC \sqrt{s} =5000 GeV

¹⁹⁷ Au+ ¹⁹⁷ Au vs ²³⁸ U+ ²³⁸ U β _{2U} γ _U β _{3U} β _{4U}	12 Establish methodology • Large sensitivity See ta	$\begin{array}{c} {}^{29}\text{Xe} + {}^{129}\text{Xe} \text{ vs } {}^{208}\text{Pb} + {}^{208}\text{Pb} \\ \beta_{2Xe} \boldsymbol{\gamma}_{Xe} & \text{Neutron skin} \\ alk of G. Nils, C. Zhang, Y. Zhou, H. Xu \end{array}$
$\begin{array}{c} {}^{96}\text{Ru} + {}^{96}\text{Ru} \text{ vs} & {}^{96}\text{Zr} + {}^{96}\text{Zr} \\ \beta_{2\text{Ru}} & \beta_{3\text{Zr}} \\ {}^{\beta_{3\text{Zr}}} \\ {}^{\text{large skin}} \end{array}$	Establish precision0.2% measurement error vs 5-1High-order observables	5% signal See talk of C. Zhang, H. Xu
d+ ¹⁹⁷ Au vs ¹⁶ O+ ¹⁶ O	Structure of light nucleiCluster, subnucleon structure.Benchmark ab-initio models	¹⁶ O+ ¹⁶ O vs ²⁰ Ne+ ²⁰ Ne? See talk of G. Giacolone
p+p, p+ ²⁷ Al, p+ ¹⁹⁷ Au, ³ He+ ¹⁹⁷ Au, ⁶³ Cu+ ⁶³ Cu, ⁶³ Cu+ ¹⁹⁷ Au	What can we learn from these	e? p+p, p+ ¹⁶ O, p+ ²⁰⁸ Pb

What interesting species to consider & what questions do they answer?

Isobar ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr collisions at RHIC 200 GeV

QM2022 poster, Chunjian Zhang

 $R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}}$

Structure influences everywhere

Nuclear structure is inherently part of Heavy ion problem

Nuclear structure via v₂-ratio and v₃-ratio

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Simultaneously constrain four structure parameters

Nuclear structure via v₂-ratio and v₃-ratio

- $\beta_{2Ru} \sim 0.16$ increase v_2 , no influence on v_3 ratio
- $\beta_{3Zr} \sim 0.2$ decrease v_2 and v_3 ratio
- $\Delta a_0 = -0.06$ fm increase v₂ mid-central,
- Radius $\Delta R_0 = 0.07$ fm slightly affects v_2 and v_3 ratio.

Is ⁹⁶Zr octupole deformed?

Simultaneously constrain four structure parameters

Imaging the radial structures

Radial parameters R_0 , a_0 are properties of one-body distribution $\rightarrow \langle \mathbf{p}_T \rangle$, $\langle \mathbf{N}_{ch} \rangle$, $\mathbf{v}_2^{RP} \sim \mathbf{v}_2 \{4\}$, σ_{tat} ,

Opportunities

Low-energy: complexity & interpretation depend on location in nuclide chart High-energy: fast snapshot of nucleon distribution for any collision species.

Current extraction of QGP properties are limited by the initial condition

s/L 0.2

0.1

0.0

0.15

0.20

0.25

T[GeV]

0.30

0.05

0.00

0.15

0.20

0.25

T[GeV]

0.30

0.35

Many potential applications

Odd mass nuclei

. . .

- 2) Higher-order deformations
- 3) Shape fluctuations/coexistence
- Neutrinoless double-beta decay 4)

0.35

How to obtain the shape of nuclei of interest

 $\langle \varepsilon_2^2 \rangle = 1.3/A + 0.23\beta_2^2$

0.03

0-1% centrality

Glauber model

In central collisions $\left<\epsilon_2^2\right>=a'+b'\beta_2^2 \qquad a'=\left<\varepsilon_2^2\right>_{\mid\beta_2=0}\propto 1/A$ $ig\langle v_2^2
angle = a + b eta_2^2 \qquad a = \langle v_2^2
angle_{|eta_2=0} \propto 1/A$

b', b are ~ independent of system

Transition from nearly-spherical to well-deformed nuclei when size increase by less than 7%. Using HI to access the multi-nucleon correlations leading to such shape evolution,

 $\epsilon_2 - \beta_2$ plot

²³⁸U

¹⁵⁴Sm

0.1

 β_2^2

How to constrain triaxiality

Use variance to constrain β_2 , then use skewness to constrain γ

System scan to map out this trajectory: calibrate coefficients with species with known β , γ , then predict for species of interest.

Odd N or Z nuclei

nuclear shape is often presumed to be similar to adjacent even-even nuclei.

their spectroscopic data are more complex e.g. by the coupling of the single unpaired nucleon with the nuclear core.

by comparing the flow observables of odd-mass nuclei to selected even-even neighbors with established shapes, the high-energy approach avoids this complication.

Higher-order deformations β_3 and β_4

Ratio of v_n in UCC region are mainly sensitive to β_n

 β_{4U} constrained using v₄ ratio in central region

order of v₃ reversed by considering non-zero $\beta_{3U}\beta_{4U}$

 v_2 ratio is mostly affected by β_{2U} , but also β_{3U}

Shape fluctuation and coexistence

nuclei can have several low-lying states with different intrinsic shapes probe the shape entanglement?

Each collision picks out one shape component of the ground state WF

186Pb

Shape fluctuations via high-order correlations.

Neutrinoless double-beta decay

Nuclear matrix element

Need to know the overlap of nuclear wavefunction between initial nuclei and its final isobar nuclei.

x2-3 difference in matrix element leads to x10 change in lifetime

Challenge: modeling nucleon correlations in nuclear structure including quadruple and pairing correlations HI collision could measure structure differences precisely

Talks by CF Jiao, J.M Yao

Summary

- Nuclear structure imaging could be a discovery tool for nuclear structure and high-energy nuclear physics
- High- and low-energy techniques together enable study of evolution of nuclear structure across energy and time scales.
- Future research could leverage collider facilities to conduct experiments with selected isobaric or isobar-like pairs

A	isobars	A	isobars	A	isobars	A	isobars	Α	isobars	Α	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, Hi
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm,Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm,Gd	184	W, Os
50	$\mathrm{Ti},\mathrm{V},\mathrm{Cr}$	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	Gd,Dy	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	Gd,Dy	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	Gd,Dy	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	Er,Yb	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb, Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

2102.08158

Correlation between initial and final state

Connecting initial condition to nuclear shape

Shape depends on Euler angle $\Omega = \phi \theta \psi$

Sensitivity to other structure parameters

In ultra-central collisions, ratios are controlled by β_{2U} and γ_U .

In non-central collisions, v₂ ratio is sensitive to nuclear skin

