

Nuclear Lattice Effective Field Theory – Introduction and Perspectives – Ulf-G. Meißner, Univ. Bonn & FZ Jülich

- Ulf-G. Meißner, NLEFT - Introduction and Perspectives, CCAST, Beijing, April 17, 2024 -

Contents

- Very brief Introduction
- Chiral EFT on a lattice
- \bullet The minimal nuclear interaction $\ \rightarrow$ Bing-Nan Lu's talk
 - Foundations
 - Applications
 - Extension to hyper-nuclei
 - EoS of neutron matter & neutron stars
- \bullet Chiral interactions at N3LO $~\rightarrow$ Dean Lee's talk
 - Foundations
 - Applications to nuclear structure
 - Applications to scattering
- Summary & outlook

Very brief Introduction

Our goal: Ab initio nuclear structure & reactions

• Nuclear structure:

- ★ limits of stability
- ★ 3-nucleon forces
- * alpha-clustering
- ★ EoS & neutron stars

- Nuclear reactions, nuclear astrophysics:
 - * alpha-particle scattering
 - ★ triple-alpha reaction
 - * alpha-capture on carbon
 - de Boer et al, Rev. Mod. Phys. 89 (2017) 035007

Chiral EFT on a lattice

ີ≌ຼີ≌ Lähde∙Meißne Lecture Notes in Physics 957 Timo A. Lähde Ulf-G. Meißner **Nuclear** Lattice 2 **Effective Field Nuclear Lattice Effective Field Theory** Theory An Introduction Deringer

T. Lähde & UGM

Nuclear Lattice Effective Field Theory - An Introduction Springer Lecture Notes in Physics **957** (2019) 1 - 396

- Ulf-G. Meißner, NLEFT - Introduction and Perspectives, CCAST, Beijing, April 17, 2024 -

More on EFTs

• Much more details on EFTs in light quark physics:

Effective Field Theories

AUTHORS:

Ulf-G Meißner, Rheinische Friedrich-Wilhelms-Universität Bonn and Forschungszentrum Jülich Akaki Rusetsky, Rheinische Friedrich-Wilhelms-Universität Bonn DATE PUBLISHED: August 2022 AVAILABILITY: Available FORMAT: Hardback ISBN: 9781108476980 Rate & review

https://www.cambridge.org/de/academic/subjects/physics/theoretical-physics-and-mathematical-physics/effective-field-theories

Nuclear lattice effective field theory (NLEFT)

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 315 - 630\,{
m MeV}\,[{
m UV}\,{
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

ullet physics independent of the lattice spacing for $a=1\dots 2$ fm

Alarcon, Du, Klein, Lähde, Lee, Li, Lu, Luu, UGM, EPJA 53 (2017) 83; Klein, Elhatisari, Lähde, Lee, UGM, EPJA 54 (2018) 121

Transfer matrix method

- Correlation–function for A nucleons: $Z_A(\tau) = \langle \Psi_A | \exp(-\tau H) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$E_A(au) = -rac{d}{d au}\,\ln Z_A(au)$$

- \rightarrow ground state: $E_A^0 = \lim_{\tau \to \infty} E_A(\tau)$
- Exp. value of any normal–ordered operator \mathcal{O} $Z_A^{\mathcal{O}} = \langle \Psi_A | \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \, | \Psi_A
 angle$

 $\lim_{ au
ightarrow\infty} rac{Z_A^{\mathcal{O}}(au)}{Z_A(au)} = \langle \Psi_A | \mathcal{O} | \Psi_A
angle$

• Excited states: $Z_A(\tau) \rightarrow Z_A^{ij}(\tau)$, diagonalize, e.g. $0_1^+, 0_2^+, 0_3^+, \dots$ in ¹²C

Euclidean time

- \Rightarrow all *possible* configurations are sampled
- \Rightarrow preparation of *all possible* initial/final states
- \Rightarrow clustering emerges naturally

Auxiliary field method

• Represent interactions by auxiliary fields (Gaussian quadrature):

$$\exp\left[-rac{C}{2}\left(N^{\dagger}N
ight)^{2}
ight] = \sqrt{rac{1}{2\pi}}\,\int ds \exp\left[-rac{s^{2}}{2}+\sqrt{C}\,\,s\left(N^{\dagger}N
ight)
ight]$$

Comparison to lattice QCD

LQCD (quarks & gluons)	NLEFT (nucleons & pions)
relativistic fermions	non-relativistic fermions
renormalizable th'y	EFT
continuum limit	no continuum limit
(un)physical masses	physical masses
Coulomb - difficult	Coulomb - easy
high T/small $ ho$	small T/nuclear densities
sign problem severe	sign problem moderate

• For nuclear physics, NLEFT is the far better methodology!

Computational equipment

• Present = JUWELS (modular system) + FRONTIER + ...

The minimal nuclear interaction: Foundations

A minimal nuclear interaction

- Basic problem: Straightforward application of chiral EFT forces leads to problems when one goes beyond light nuclei (e.g. the radius problem)
- Main idea: Construct a minimal nuclear interactions that reproduces the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii
- This can be achieved by making use of Wigner's SU(4) spin-isospin symmetry Wigner, Phys. Rev. C 51 (1937) 106
- If the nuclear Hamiltonian does not depend on spin and isospin, then it is obviously invariant under SU(4) transformations [really $U(4) = U(1) \times SU(4)$]:

$$N o UN \;, \quad U \in SU(4) \;, \quad N = egin{pmatrix} p \ n \end{pmatrix}$$

 $N o N + \delta N \ , \ \ \delta N = i \epsilon_{\mu
u} \sigma^\mu au^
u \, N \ , \ \ \sigma^\mu = (1, \sigma_i) \ , \ \ au^\mu = (1, au_i)$

Remarks on Wigner's SU(4) symmetry

- Wigner SU(4) spin-isospin symmetry in the context of pionless nuclear EFT
 - → large scattering lengths Mehen, Stewart, Wise, Phys. Rev. Lett. 83 (1999) 931
- Wigner SU(4) spin-isospin symmetry is particularly beneficial for NLEFT
 - \hookrightarrow suppression of sign oscillations Chen, Lee, Schäfer, Phys. Rev. Lett. **93** (2004) 242302
 - ← provides a very much improved LO action when smearing is included Lu, Li, Elhatisari, Lee, Epelbaum, UGM, Phys. Lett. B **797** (2019) 134863
- Initimately related to α -clustering in nuclei
 - \hookrightarrow cluster states in ¹²C like the famous Hoyle state

Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. **106** (2011) 192501

← nuclear physics is close to a quantum phase transition Elhatisari et al., Phys. Rev. Lett. **117** (2016) 132501

Essential elements for nuclear binding

Lu, Li, Elhatisari, Epelbaum, Lee, UGM, Phys. Lett. B 797 (2019) 134863 [arXiv:1812.10928]

• Highly SU(4) symmetric LO action without pions, only four parameters

$$\begin{split} H_{\rm SU(4)} &= H_{\rm free} + \frac{1}{2!} C_2 \sum_n \tilde{\rho}(n)^2 + \frac{1}{3!} C_3 \sum_n \tilde{\rho}(n)^3 \\ \tilde{\rho}(n) &= \sum_i \tilde{a}_i^{\dagger}(n) \tilde{a}_i(n) + \frac{s_L}{|n'-n|=1} \sum_i \sum_{i=1}^n \tilde{a}_i^{\dagger}(n') \tilde{a}_i(n') \\ \tilde{a}_i(n) &= a_i(n) + \frac{s_{NL}}{|n'-n|=1} a_i(n') \\ &|n'-n|=1 \end{split}$$

 s_L controls the locality of the interactions, s_{NL} the non-locality of the smearing

 \rightarrow describes binding energies, radii, charge densities and the EoS of neutron matter

- Ulf-G. Meißner, NLEFT - Introduction and Perspectives, CCAST, Beijing, April 17, 2024 -

The minimal nuclear interaction: Applications

Wigner's SU(4) symmetry and the carbon spectrum 18

- Study of the spectrum (and other properties) of ¹²C
 - → spin-orbit splittings are known to be weak Hayes, Navratil, Vary, Phys. Rev. Lett. **91** (2003) 012502 Johnson, Phys. Rev. C **91** (2015) 034313
 - \hookrightarrow start with cluster and shell-model configurations \rightarrow next slide
- Fit the four parameters:
 - C_2, C_3 ground state energies of ⁴He and ¹²C
 - $s_{\rm L}$ radius of ¹²C around 2.4 fm
 - *s*_{NL} best overall description of the transition rates
- Calculation of em transitions
 requires coupled-channel approach
 e.g. 0⁺ and 2⁺ states

Configurations

• Cluster and shell model configurations

Transient energies

• Transient energies from cluster and shell-model configurations

Spectrum of ¹²C

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Improved description when 3NFs are included, amazingly good

 \rightarrow solidifies earlier NLEFT statements about the structure of the 0^+_2 and 2^+_2 states

Electromagnetic properties

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Radii (be aware of excited states), quadrupole moments & transition rates

	NLEFT	FM	ID α clu	ster E	BEC	RXMC	Exp.		
$r_c(0^+_1)$ [fm]	2.53(1)	2.5	53 2.5	4 2	2.53	2.65	2.47(2)	2)	
$r(0^+_2)$ [fm]	3.45(2)	3.3	3.7	1 3	8.83	4.00	-		
$r(0^+_3)$ [fm]	3.47(1)	4.6	62 4.7	5	_	4.80	-		
$r(2^+_1)$ [fm]	2.42(1)	2.5	50 2.3	7 2	2.38	_	-		
$r(2^+_2)$ [fm]	3.30(1)	4.4	4.4	3	—	—	_		
			NLEFT	FMD	α	cluster	NCSM	Exp.	
$Q(2^+_1)$ [$e{ m fm}^2$	²]		6.8(3)	_		_	6.3(3)	8.1(2.3)	3)
$Q(2^+_2)$ [$e{ m fm}^2$	²]		-35(1)	—		_	—	—	
$M(E0,0^+_1$ –	$ ightarrow 0^+_2)$ [e fm	$^{2}]$	4.8(3)	6.5		6.5	—	5.4(2))
$M(E0,0^+_1$ –	$ ightarrow 0^+_3)$ [e fm	[2]	0.4(3)	—		—	—	—	
$M(E0,0^+_2$ –	$ ightarrow 0^+_3)$ [e fm	[2]	7.4(4)	—		_	—	—	
$B(E2,2^+_1-$	$ ightarrow 0^+_1)$ [e^2 fm	า ⁴]	11.4(1)	8.7		9.2	8.7(9)	7.9(4))
$B(E2,2^+_1-$	$ ightarrow 0^+_2)$ [e^2 fm	า ⁴]	2.5(2)	3.8		0.8	_	2.6(4))

Electromagnetic properties cont'd

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Form factors and transition ffs [essentially parameter-free]:

Sick, McCarthy, Nucl. Phys. A 150 (1970) 631 Strehl, Z. Phys. 234 (1970) 416 Crannell et al., Nucl. Phys. A 758 (2005) 399 Chernykh et al., Phys. Rev. Lett. 105 (2010) 022501

Emergence of geometry

• Use the pinhole algorithm to measure the distribution of α -clusters/matter:

• equilateral & obstuse triangles $\rightarrow 2^+$ states are excitations of the 0^+ states

Emergence of duality

• ¹²C spectrum shows a cluster/shell-model duality

dashed triangles: strong 1p-1h admixture in the wave function

Sanity check

- Repeat the calculations w/ the time-honored N2LO chiral interaction
 - \hookrightarrow better NN phase shifts than the SU(4) interaction
 - \hookrightarrow but calculations are much more difficult (sign problem)

- spectrum as before (good agreement w/ data)
- density distributions as before (more noisy, stronger sign problem)

The ⁴He form factor puzzle

• Recent Mainz measurements of $F_{M0}(0^+_2 \rightarrow 0^+_1)$ appear to be in stark disagreement with *ab initio* nuclear theory Kegel et al., Phys. Rev. Lett. **130** (2023) 152502

Monopole transition ff

• low-momentum expansion

[calculations from 2013]

\Rightarrow A low-energy puzzle for nuclear forces?

Ab initio calculation of the ⁴He transition form factor ²⁸

UGM, Shen, Elhatisari, Lee, Phys. Rev. Lett. 132 (2024) 062501 [2309.01558 [nucl-th]]

- Use the essential elements action, all parameters fixed!
- Calculate the transition ff and its low-energy expansion form the transition density

$$egin{aligned} &
ho_{ ext{tr}}(r) = \langle 0_1^+ | \hat{
ho}(ec{r}) | 0_2^+
angle \ &F(q) = rac{4\pi}{Z} \int_0^\infty
ho_{ ext{tr}}(r) j_0(qr) r^2 dr = rac{1}{Z} \sum_{\lambda=1}^\infty rac{(-1)^\lambda}{(2\lambda+1)!} q^{2\lambda} \langle r^{2\lambda}
angle_{ ext{tr}} \ &rac{Z |F(q^2)|}{q^2} = rac{1}{6} \langle r^2
angle_{ ext{tr}} \left[1 - rac{q^2}{20} \mathcal{R}_{ ext{tr}}^2 + \mathcal{O}(q^4)
ight] \ &\mathcal{R}_{ ext{tr}}^2 = \langle r^4
angle_{ ext{tr}} / \langle r^2
angle_{ ext{tr}} \end{aligned}$$

• The first excited state sits in the continuum & close to the ${}^{3}H$ -p threshold

 \hookrightarrow use large volumes L=10,11,12 or L=13.2 fm, 14.5 fm, 15.7 fm

 \hookrightarrow the lattice spacing is fixed to a=1.32 fm, corresponding $\Lambda=\pi/a=465\,{
m MeV}$

The first excited state

- 3 coupled channels with 0⁺ q.n's \rightarrow accelerates convergence as $L_t \rightarrow \infty$
- Shell-model wave functions (4 nucleons in $1s_{1/2}$, twice 3 in $1s_{1/2}$ and 1 in $2s_{1/2}$)

<i>L</i> [fm]	$E(0^+_1)$ [MeV]	$E(0^+_2)$ [MeV]	$\Delta E [{ m MeV}]$
13.2	-28.32(3)	-8.37(14)	0.28(14)
14.5	-28.30(3)	-8.02(14)	0.42(14)
15.7	-28.30(3)	-7.96(9)	0.40(9)

 \hookrightarrow statistical and large- L_t errors

 \hookrightarrow agreement w/ experiment: $E(0^+_1)=28.3\,{ ext{MeV}},\,\Delta E=0.4\,{ ext{MeV}}$

 $\hookrightarrow \Delta E$ consistent w/ no-core Gamov shell model (no 3NFs)

Michel, Nazarewicz, Ploszajczak, Phys. Rev. Lett. 131 (2023) 242502

 \hookrightarrow consistent w/ the Efimov tetramer analysis $\Delta E = 0.38(2)$ MeV

von Stecher, D'Incao, Greene, Nat. Phys. 5 (2009) 417; Hammer, Platter, EPJA 32 (2007) 113

The transition form factor

• Transition charge density

• Transition form factor

- → agrees with the reconstructed one
 from Kamimura PTEP 2023 (2023) 071D01
- \hookrightarrow very small central depletion (no zero)
- \hookrightarrow excellent description of the data
- → Coulomb required plus smaller uncertainty (improved signal)
- \hookrightarrow 3NFs important!

The transition form factor II

• Small momentum expansion

	$\langle r^2 angle_{ m tr}$ [fm 2]	$\mathcal{R}_{ ext{tr}}$ [fm]
Experiment	1.53 ± 0.05	4.56 ± 0.15
Th (AV8'+ centr. 3N)*	1.36 ± 0.01	4.01 ± 0.05
Th (AV18 + UIX)	1.54 ± 0.01	3.77 ± 0.08
Th (NLEFT)	1.49 ± 0.01	4.00 ± 0.04

*Hiyama, Gibson, Kamimura, PRC 70 (2004) 031001

 \hookrightarrow Also consistent description of the low-energy data

 \hookrightarrow **No puzzle** to the nuclear forces!

 \hookrightarrow Can be improved using N3LO action + wave function matching

Elhatisari et al., 2210.17488 [nucl-th]

The minimal nuclear interaction: Extension to hyper-nuclei

The minimal interaction with strangeness I

Tong, Elhatisari, UGM, in progress

• Baryon-baryon interaction (consider nucleons and Λ 's plus non-local smearing):

$$\begin{split} & \left(V_{\Lambda N} = \mathbf{c}_{N\Lambda} \sum_{\vec{n}} \tilde{\rho}(\vec{n}) \tilde{\xi}(\vec{n}) + \mathbf{c}_{\Lambda\Lambda} \frac{1}{2} \sum_{\vec{n}} \left[\tilde{\xi}(\vec{n}) \right]^2 \right) \\ \tilde{\rho}(\vec{n}) = \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}) \tilde{a}_{i,j}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n} - \vec{n}'|^2 = 1} \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}') \tilde{a}_{i,j}(\vec{n}') \\ \tilde{\xi}(\vec{n}) = \sum_{i=0,1} \tilde{b}_{i}^{\dagger}(\vec{n}) \tilde{b}_{i}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n} - \vec{n}'|^2 = 1} \sum_{i=0,1} \tilde{b}_{i}^{\dagger}(\vec{n}') \tilde{b}_{i}(\vec{n}') \end{split}$$

• Three-baryon forces (consider nucleons and Λ 's, no non-local smearing):

Petschauer, Kaiser, Haidenbauer, UGM, Weise, Phys. Rev. C 93 (2016) 014001

$$\left(V_{NN\Lambda}=oldsymbol{c_{NN\Lambda}}{1\over 2}~\sum_{ec n}\left[
ho(ec n)
ight]^2 \xi(ec n)~,~~V_{N\Lambda\Lambda}=oldsymbol{c_{N\Lambda\Lambda}}{1\over 2}~\sum_{ec n}
ho(ec n)~\left[\xi(ec n)
ight]^2
ight)
ight)$$

 \hookrightarrow must determine 4 LECs! [smearing parameters from the nucleon sector]

 \hookrightarrow first time that the $\Lambda\Lambda N$ three-body force is included

The minimal interaction with strangeness II

Tong, Elhatisari, UGM, in progress

 \hookrightarrow this defines our EoS of hyper-nuclear matter called **HMN(I)**

The minimal nuclear interaction: EoS & neutron star properties

Pure neutron matter

- Input: S-wave phase shifts (2N)
 & symmetric nuclear matter (3N)
- Note: extension of the minimal interaction (leading SU(4) breaking)

\Rightarrow Output: Pure neutron matter (PNM) EoS

– comparable to the renowned APR EoS

Akmal, Pandharipande, Ravenhall, Phys. Rev. C 58 (1998) 1804

less stiff than the recent AFDMC one

Gandolfi et al., Eur. Phys. J. A 50 (2014) 10

→ work out consequences for neutron stars based on this PNM EoS
Neutron star properties

Tong, Elhatisari, UGM, in progress

• Now solve the TOV equations for the PNM and HNM(I) EoSs:

EoS of hyper-neutron matter

Tong, Elhatisari, UGM, in progress

• Not surprisingly, we need more repulsion [as in the pure neutron matter case]

- \hookrightarrow this will move the threshold of $\mu_\Lambda=\mu_n$ up
- \hookrightarrow take $M_{
 m max}$ as data point: $M_{
 m max} = 1.9 M_{\odot}$ for HNM(II)

 $M_{
m max}=2.1M_{\odot}$ for HNM(III)

Finite temperature physics

• Just two teasers for finite T calculations

\hookrightarrow talks by Bing-Nan Lu and Dean Lee

PHYSICAL REVIEW LETTERS **125**, 192502 (2020)

Ab Initio Nuclear Thermodynamics

Bing-Nan Lu[®],¹ Ning Li[®],¹ Serdar Elhatisari[®],² Dean Lee[®],¹ Joaquín E. Drut[®],³ Timo A. Lähde[®],⁴ Evgeny Epelbaum⁹,⁵ and Ulf-G. Meißner[®],^{4,7}
 ¹Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ²Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
 ³Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
 ⁴Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
 ⁵Ruhr-Universität Bochum, Fakultät für Physik and Bethe Center for Theoretische Physik II, D-44780 Bochum, Germany
 ⁶Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany

(Received 11 April 2020; revised 6 August 2020; accepted 29 September 2020; published 3 November 2020)

We propose a new Monte Carlo method called the pinhole trace algorithm for *ab initio* calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first *ab initio* study of the density and temperature dependence of nuclear clustering.

Letter

Ab initio study of nuclear clustering in hot dilute nuclear matter Zhengxue Ren ^{a,b, O},*, Serdar Elhatisari ^{c,b}, Timo A. Lähde ^{a,d}, Dean Lee ^e, Ulf-G. Meißner ^{b,a,f} ^a Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics, Forschungssentrum Jülich, D-25425 Jülich, Germany ^b Hehmholer-situt für Karenphysik and Bethe Center for Theoretical Physics, Variestika Bonn, D-53115 Bonn, Germany ^b Hehmholer-situt für Karen Loipe Beams (CASA), Forschungssentrum Jülich, D-52425 Jülich, Germany ^c Faculty of Natural Sciences and Engineering, Gaziantep Islam Science and Technology University, Gaziantep 27010, Turkey ^c Gener for Advanced Simulation and Analytics (CASA), Forschungssentrum Jülich, D-52425 Jülich, Germany ^c Faculty of Natural Sciences and Degrament of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA ^c Tubilisi State University, 0186 Tbilisi, Georgia

Phys. Lett. B 850 (2024) 138463

Physics Letters B

ARTICLE INFO

Editor: A. Schwenk

ABSTRACT

nucleus collisions

We present a systematic *ab initio* study of clustering in hot dilute nuclear matter using nuclear lattice effective field theory with an SU(4)-symmetric interaction. We introduce a method called light-cluster distillation to determine the abundances of dimers, trimers, and alpha clusters as a function of density and temperature. Our lattice results are compared with an ideal gas model composed of free nucleons and clusters. Excellent agreement is found at very low density, while deviations from ideal gas abundances appear at increasing density due to cluster-nucleon and cluster-cluster interactions. In addition to determining the composition of hot dilute nuclear matter as a function of density and temperature, the lattice calculations also serve as benchmarks for virial

expansion calculations, statistical models, and transport models of fragmentation and clustering in nucleus

new pinhole trace algorithm

- \hookrightarrow liquid-vapor phase transition
- \hookrightarrow location of the critical point

- new light cluster distillation method
- \hookrightarrow abundances of dimers, trimers, tetramers
 - \hookrightarrow benchmark for virial calculations

Chiral Interactions at N3LO: Foundations

Towards precision calculations of heavy nuclei

• Groundbreaking work (Hoyle state, α - α scattering, ...) done at N2LO

- \hookrightarrow precision limited, need to go to N3LO
- Two step procedure:
 - 1) Further improve the LO action

 \hookrightarrow minimize the sign oscillations

 \hookrightarrow minimize the higher-body forces

 \hookrightarrow essentially done \checkmark \rightarrow as just discussed

2) Work out the corrections to N3LO

 \hookrightarrow first on the level of the NN interaction \surd

 \hookrightarrow new important technique: wave function matching \checkmark

- \hookrightarrow second for the spectra/radii/... of nuclei (first results) \checkmark
- \hookrightarrow third for nuclear reactions/astrophysics (first results) \checkmark

NN interaction at N3LO

Li et al., Phys. Rev. C **98** (2018) 044002; Phys. Rev. C **99** (2019) 064001 • np phase shifts including uncertainties for a = 1.32 fm (cf. Nijmegen PWA)

- Ulf-G. Meißner, NLEFT - Introduction and Perspectives, CCAST, Beijing, April 17, 2024 -

Wave function matching I

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]

• Graphical representation of w.f. matching

• W.F. matching is a "Hamiltonian translator": eigenenergies from H_1 but w.f. from $H_2 = U^{\dagger} H_1 U$

Wave function matching II

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]

- \bullet $H_{\rm soft}$ has tolerable sign oscillations, good for many-body observables
- H_{χ} has severe sign oscillations, derived from the underlying theory
- \hookrightarrow can we find a unitary trafo, that creates a chiral H_{χ} that is pert. th'y friendly?

$$H'_\chi = U^\dagger \, H_\chi \, U$$

 \Box Let $|\psi^0_{
m soft}
angle$ be the lowest eigenstate of $H_{
m soft}$

 \Box Let $|\psi_{\chi}^{0}
angle$ be the lowest eigenstate of H_{χ}

 \Box Let $|\phi_{soft}\rangle$ be the projected and normalized lowest eigenstate of H_{soft} $|\phi_{soft}\rangle = \mathcal{P} |\psi_{soft}^0\rangle/||\psi_{soft}^0\rangle||$

 \Box Let $|\phi_{\chi}
angle$ be the projected and normalized lowest eigenstate of H_{χ} $|\phi_{\chi}
angle = \mathcal{P} |\psi_{\chi}^0
angle / ||\psi_{\chi}^0
angle ||$

$$\hookrightarrow U_{R',R} = \theta(r-R)\delta_{R',R} + \theta(R'-r)\theta(R-r)|\phi_{\chi}^{\perp}\rangle\langle\phi_{\rm soft}^{\perp}|$$

Chiral Interactions at N3LO: Applications to nuclear structure

Wave function matching for light nuclei

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]], L. Bovermann, PhD thesis

• W.F. matching for the light nuclei

Nucleus	$B_{ m LO}$ [MeV]	B _{N3LO} [MeV]	Exp. [MeV]
$E_{oldsymbol{\chi},\mathbf{d}}$	1.79	2.21	2.22
$\langle \psi_{ m soft}^{0} H_{\chi, m d} \psi_{ m soft}^{0} angle $	0.45	0.62	
$\langle \psi^0_{ m soft} H^{\prime}_{\chi, m d} \psi^0_{ m soft} angle $	1.65	2.01	
$ig \langle \psi_{ m soft}^0 H_{\chi, { m t}} \psi_{ m soft}^0 angle $	5.96(8)	5.91(9)	8.48
$\langle \psi^0_{ m soft} H'_{m{\chi}, { m t}} \psi^0_{ m soft} angle$	7.97(8)	8.72(9)	
$ig \langle \psi_{ m soft}^0 H_{oldsymbol{\chi},oldsymbol{lpha}} \psi_{ m soft}^0 angle $	24.61(4)	23.84(14)	28.30
$\langle \psi_{ m soft}^{0} H_{\chi,lpha}^{\prime} \psi_{ m soft}^{0} angle $	27.74(4)	29.21(14)	

- reasonable accuracy for the light nuclei
- Tjon-band recovered with H'_{γ}

Platter, Hammer, UGM, Phys. Lett. B 607 (2005) 254

 \hookrightarrow now let us go to larger nuclei....

Nuclei at N3LO

• Binding energies of nuclei for a = 1.32 fm: Determining the 3NF LECs

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]

 \rightarrow excellent starting point for precision studies

Prediction: Charge radii at N3LO

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]

• Charge radii (a = 1.32 fm, statistical errors can be reduced)

Prediction: Neutron & nuclear matter at N3LO

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]

• EoS of pure neutron matter & nuclear matter (a = 1.32 fm)

 \hookrightarrow can be improved using twisted b.c.'s

Prediction: Isotope chains of carbon & oxyen

NLEFT collaboration, in progress

• Towards the neutron drip-line in carbon and oxygen:

ightarrow 3NFs of utmost importance for the n-rich isotopes!

Prediction: Be isotopes

Shen, ..., NLEFT collaboration, in progress

• Systematic study of the Be isotopes & their em transitions:

Prediction: Triton β **-decay at N3LO**

Elhatisari, Hildenbrand, UGM, in preparation

• Master formula:
$$(1 + \delta_R) t_{1/2} f_V = \frac{K/G_V^2}{\langle \mathsf{F} \rangle^2 + \frac{f_A}{f_V} g_A^2 \langle \mathsf{GT} \rangle^2}$$

Experiment:
$$\langle \mathsf{F} \rangle = \sum_{n=1}^{3} \langle {}^{3}\mathrm{He} \| au_{n,+} \| {}^{3}\mathrm{H} \rangle = 0.9998$$
 [theory!]
 $\langle \mathsf{GT} \rangle = \sum_{n=1}^{3} \langle {}^{3}\mathrm{He} \| \sigma_{n} au_{n,+} \| {}^{3}\mathrm{H} \rangle = 1.6474(23)$

Chiral Interactions at N3LO: Applications to scattering

Scattering: Methods I

- The time-honored Lüscher approach: Lüscher, Commun. Math. Phys. **105** (1986) 153; Nucl. Phys. B **354** (1991) 531 Phase shifts from the volume dependence of the energy levels
- \hookrightarrow works in many cases, problems w/ partial-wave mixing and cluster-cluster scattering
- Spherical wall technique: impose spherical b.c.'s on the lattice
 - Carlson et al., Nucl. Phys. A **424** (1984) 47; Borasoy et al., Eur. Phys. J. A **34** (2007) 185
- \hookrightarrow not too small lattices, partial-wave mixing under control
- Improved spherical wall method:
 - Lu, Lähde, Lee, UGM, Phys. Lett. B 760 (2016) 309
 - perform angular momentum projection
 - impose an auxiliary potential behind $R_{
 m wall}$
 - $\hookrightarrow \text{much improved precision}$

Scattering: Methods II

• Adiabatic projection method :

Rupak, Lee, Phys. Rev. Lett. **111** (2013) 032502; Pine, Lee, Rupak, Eur. Phys. J. A **49** (2013) 151; Elhatisari et al., Eur. Phys. J. A **52** (2016) 174;

- Construct a low-energy effective theory for clusters
- Use initial states parameterized by the relative separation between clusters

$$ert ec{R}
angle = \sum_{ec{r}} ert ec{r} + ec{R}
angle \otimes ec{r}$$

 project them in Euclidean time with the chiral EFT Hamiltonian H

$$ert ec{R}
angle_{ au} = \exp(-H au) ert ec{R}
angle$$

- \rightarrow "dressed cluster states" (polarization, deformation, Pauli)
- Adiabatic Hamiltonian (requires norm matrices)

$$[H_{ au}]_{ec{R}ec{R}'}={}_{ au}\langleec{R}|H|ec{R}'
angle_{ au}$$

Scattering: Neutron-deuteron scattering at N3LO

Elhatisari, Hildenbrand, UGM, in progress

• Use Lüscher's method to calculate spin doublet *n*-*d* scattering

\hookrightarrow shows good convergence

Scattering: Neutron-alpha scattering at N3LO

Elhatisari, Hildenbrand, UGM, in progress

• Use Lüscher's method to calculate n- α scattering

• R-matrix results from G. Hale, private communication

 \hookrightarrow Some fine-tuning of three-body forces for $^2P_{1/2}$ needed

Scattering: Alpha-carbon scattering at N3LO

Elhatisari, Hildenbrand, UGM, ... NLEFT, in progress

- Use the APM, first step for the holy grail of nuclear astrophysics
 - \hookrightarrow different Euclidean times & different initial states

Plaga et al., Nucl. Phys. A 465 (1987) 291

Summary & outlook

- Nuclear lattice simulations: a new quantum many-body approach
 - \rightarrow based on the successful continuum nuclear chiral EFT
 - \rightarrow a number of highly visible results already obtained
- Recent developments
 - \rightarrow highly improved LO action based on SU(4)
 - \hookrightarrow a number of interesting application (¹²C, ⁴He,...)
 - \hookrightarrow towards the neutron matter EoS at high denstities

 \rightarrow more in the talk by Bing-Nan Lu

- \rightarrow NN interaction at N3LO w/ wave function matching
 - \hookrightarrow first promising results for nuclear structure and scattering
 - \hookrightarrow hyper-nculei are under investigation

 \rightarrow more in the talk by Dean Lee

SPARES

The hidden spin-isospin exchange symmetry

Nucleon-nucleon interaction in large- N_C

Kaplan, Savage, Phys. Lett. 365B (1996) 244; Kaplan, Manohar, Phys. Rev. C 56 (1997) 96

• Performing the large- N_C analysis:

$$V_{\text{large}-N_c}^{2N} = V_C + W_S \,\vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2 + W_T \, S_{12} \vec{\tau}_1 \cdot \vec{\tau}_2 + \dots$$

- Leading terms are $\sim N_C$
- First corrections are $1/N_C^2$ suppressed, fairly strong even for $N_C = 3$
- Velocity-dependent corrections can be incorporated
- Based on spin-isospin exchange symmetry of the nucleon w.f. $d_\uparrow \leftrightarrow u_\downarrow$ or on the nucleon level $n_\uparrow \leftrightarrow p_\downarrow$
- Constraints on 3NFs: Phillips, Schat, PRC 88 (2013) 034002; Epelbaum et al., EPJA 51 (2015) 26

Hidden spin-isospin symmetry: Basic ideas

Lee, Bogner, Brown, Elhatisari, Epelbaum, Hergert, Hjorth-Jensen, Krebs, Li, Lu, UGM, Phys. Rev. Lett. 127 (2021) 062501 [2010.09420 [nucl-th]]

• $V_{large-N_c}^{2N}$ is not renomalization group invariant:

$$rac{dV_{\mu}(p,p')}{d\mu}
eq 0$$

 \simeq implicit setting of a preferred renormalization/resolution scale

- How does this happen?
 - high energies: corrections to the nucleon w.f. are $\sim v^2$
 - ightarrow these high-energy modes must be $\mathcal{O}(1/N_C^2)$ in our low-energy EFT
 - ightarrow momentum resolution scale $\Lambda \sim m_N/N_C \sim {\cal O}(1)$
 - ightarrow consistent with the cutoff in a Δ less th'y $\sim \sqrt{2m_N(m_\Delta-m_N)}$
 - low energies: the resolution scale must be large enough,
 - so that orbital angular momentum and spin are fully resolved
 - ightarrow as nucleon size is independent of N_C , so should be $\Lambda_-\sqrt{}$
- as will be shown, the optimal scale (where corrections are $\sim 1/N_C^2$) is:

 $\Lambda_{\mathrm{large}-N_c}\simeq 500\,\mathrm{MeV}$

Nucleon-nucleon phase shifts – lattice

Lee, Bogner, Brown, Elhatisari, Epelbaum, Hergert, Hjorth-Jensen, Krebs, Li, Lu, UGM, Phys. Rev. Lett. **127** (2021) 062501 [2010.09420 [nucl-th]]

• Use N3LO action (w/ TPE absorbed in contact interactions) at a=1.32 fm

 $\hookrightarrow \Lambda = \pi/a = 470\,\mathrm{MeV}$

- \bullet compare S=0, T=1 w/ S=1, T=0
- S-waves: switch off the tensor force in 3S_1
- D-waves: average the spin-triplet channel
- NLEFT low-energy constants

ch., order	LEC (l.u.)	ch., order	LEC (l.u.)
${}^1\mathrm{S}_0, Q^0$	1.45(5)	$^3\mathrm{S}_1, Q^0$	1.56(3)
$^1\mathrm{S}_0, Q^2$	-0.47(3)	$^3\mathrm{S}_1,Q^2$	-0.53(1)
${}^1\mathrm{S}_0, Q^4$	0.13(1)	$^3\mathrm{S}_1,Q^4$	0.12(1)
$^{1}\mathrm{D}_{2},Q^{4}$	-0.088(1)	$^{3}\mathrm{D_{all}},Q^{4}$	-0.070(2)

 \Rightarrow works pretty well

Nucleon-nucleon phase shifts – continuum

• Consider various (chiral) continuum potentials \rightarrow also works $\sqrt{}$

····· IDAHO N3LO

--- IDAHO N4LO ($\Lambda = 500$ MeV)

• - • - CD-Bonn Bochum N4⁺LO ($\Lambda = 400 - 550$ MeV)

• • • Nijmegen PWA

Entem, Machleidt, PRC **68** (2003) 041001 Entem, Machleidt, Nosyk PRC **96** (2017) 024004 Machleidt, PRC **63** (2001) 024001 **eV)** Reinert, Krebs, Epelbaum, EPJA **54** (2018) 86 Wiringa, Stoks, Schiavilla, PRC **51** (1995) 38

Two-nucleon matrix elements

 Consider the ME between any two-nucleon states A and B. Both have total spin S and total isospin T. Then (for isospin-inv. H):

$$M(S,T) = rac{1}{2S+1} \sum_{S_z=-S}^{S} \langle A; S, S_z; T, T_z | H | B; S, S_z; T, T_z
angle$$

- Spin-isospin exchange symmetry: $\left(M(S,T) = M(T,S) \right)$
- Ex: ³⁰P has 1 proton + 1 neutron in the $1s_{1/2}$ orbitals (minimal shell model)
- ightarrow if spin-isospin exchange symmetry were exact, the S=0, T=1 & S=1, T=0 states should be degenerate
- Data: The 1⁺ g.s. is 0.677 MeV below the 0⁺ excited state ($E_{g.s.} \simeq 220$ MeV)
- ightarrow fairly good agreement, consistent w/ $1/N_C^2$ corrections
- \rightarrow explanation: interactions of the np pair with the ²⁸Si core are suppressing spatial correlations of the 1⁺ w.f. caused by the tensor interaction

Two-nucleon matrix elements in the s-d shell

- Test the spin-isospin echange symmetry for general two-body MEs 1s-0d shell
- Use the spin-tensor analysis developed by Kirson, Brown et al.
 Kirson, PLB 47 (1973) 110; Brown et al., JPhysG 11 (1985) 1191; Ann. Phys. 182 (1988) 191
- Seven two-body MEs for (S,T) = (1,0) and (S,T) = (0,1)

ME	L_1	L_2	L_3	L_4	L_{12}	L_{34}
1	2	2	2	2	0	0
2	2	2	2	2	2	2
3	2	2	2	2	4	4
4	2	2	2	0	2	2
5	2	2	0	0	0	0
6	2	0	2	0	2	2
7	0	0	0	0	0	0

 L_1, L_2 : orbital angular momenta of the outgoing orbitals of A L_{12} : total angular momentum of state A L_3, L_4 : orbital angular momenta of the outgoing orbitals of B L_{34} : total angular momentum of state AME 7 corresponds to the $1s_{1/2}$ orbitals discussed before set $L_Z = (L_{12})_z = (L_{34})_z$, average over L_z

 \rightarrow Work out M(S,T) for various forces at $\Lambda = 2.0, 2.5, 3.0, 3.5$ fm⁻¹

Two-nucleon matrix elements in the s-d shell

• Results for the AV18 and N3LO chiral potentials

Two-nucleon matrix elements: Conclusions

- As anticipated:
 - The optimal resolution scale is obviously $\Lambda \sim 500\,\text{MeV}$
 - For $\Lambda < \Lambda_{\mathrm{large}-N_c}$, the (S,T)=(1,0) channel is more attractive
 - For $\Lambda > \Lambda_{\mathrm{large}-N_c}$, the (S,T)=(0,1) channel is more attractive
 - These results do not depend on the type of interaction, while AV18 is local, chiral N3LO has some non-locality (and similar for more modern interactions like chiral N4⁺LO)
 - \hookrightarrow consistent with the results for NN scattering

 \Rightarrow Validates Weinberg's power counting! \checkmark

Three-nucleon forces

• Leading central three-nucleon force at the optimal resolution scale:

$$\begin{split} V^{3\mathrm{N}}_{\mathrm{large}-N_c} &= V^{3\mathrm{N}}_C + [(\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot \vec{\sigma}_3] [(\vec{\tau}_1 \times \vec{\tau}_2) \cdot \vec{\tau}_3] W^{3\mathrm{N}}_{123} \\ &+ \vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2 W^{3\mathrm{N}}_{12} + \vec{\sigma}_2 \cdot \vec{\sigma}_3 \vec{\tau}_2 \cdot \vec{\tau}_3 W^{3\mathrm{N}}_{23} \\ &+ \vec{\sigma}_3 \cdot \vec{\sigma}_1 \vec{\tau}_3 \cdot \vec{\tau}_1 W^{3\mathrm{N}}_{31} + \dots, \end{split}$$

• Subleading central 3N interactions are of size $1/N_C$, of type

 $ec{\sigma}_1\cdotec{\sigma}_2[(ec{ au}_1 imesec{ au}_2)\cdotec{ au}_3]\,, \qquad [(ec{\sigma}_1 imesec{\sigma}_2)\cdotec{\sigma}_3]ec{ au}_1\cdotec{ au}_2$

- ⇒ helps in constraining the many short-range three-nucleon interactions that appear at higher orders in chiral EFT
- The spin-isospin exchange symmetry of the leading interactions also severely limits the isospin-dependent contributions of the 3N interactions to the nuclear EoS
- ⇒ relevant for calculations of the nuclear symmetry energy and its density dependence in dense nuclear matter

Ab Initio Nuclear Thermodynamics

 B. N. Lu, N. Li, S. Elhatisari, D. Lee, J. Drut, T. Lähde, E. Epelbaum, UGM, Phys. Rev. Lett. **125** (2020) 192502 [arXiv:1912.05105]

Phase diagram of strongly interacting matter

- Ulf-G. Meißner, NLEFT - Introduction and Perspectives, CCAST, Beijing, April 17, 2024 -
Pinhole trace algorithm (PTA)

- The pinhole states span the whole A-body Hilbert space
- The canonical partition function can be expressed using pinholes:

$$Z_A = \operatorname{Tr}_A \left[\exp(-\beta H) \right], \ eta = 1/T$$

 $= \sum_{n_1, \cdots, n_A} \int \mathcal{D}s \mathcal{D}\pi \langle n_1, \cdots, n_A | \exp[-\beta H(s, \pi)] | n_1, \cdots, n_A \rangle$

 allows to study: liquid-gas phase transition → this talk thermodynamics of finite nuclei
 thermal dissociation of hot nuclei
 cluster yields of dissociating nuclei

New paradigm for nuclear thermodynamics

- The PTA allows for simulations with fixed neutron & proton numbers at non-zero T
- \hookrightarrow thousands to millions times faster than existing codes using the grand-canonical ensemble ($t_{
 m CPU} \sim V N^2$ vs. $t_{
 m CPU} \sim V^3 N^2$)
- \bullet Only a mild sign problem \rightarrow pinholes are dynamically driven to form pairs
- Typical simulation parameters:

up to N = 144 nucleons in volumes $L^3 = 4^3, 5^3, 6^3$ \hookrightarrow densities from 0.008 fm⁻³ ... 0.20 fm⁻³ a = 1.32 fm $\rightarrow \Lambda = \pi/a = 470$ MeV , $a_t \simeq 0.1$ fm consider $T = 10 \dots 20$ MeV

 \bullet use twisted bc's, average over twist angles \rightarrow acceleration to the td limit

• very favorable scaling for generating config's:

$$\Delta t \sim N^2 L^3$$

Chemical potential

• Calculated from the free energy: $\mu = (F(N+1) - F(N-1))/2$

⁻ Ulf-G. Meißner, NLEFT - Introduction and Perspectives, CCAST, Beijing, April 17, 2024 -

Equation of state

• Calculated by integrating: $dP = \rho \, d\mu$

• Crtitical point: $T_c = 15.8(1.6)$ MeV, $P_c = 0.26(3)$ MeV/fm³, $\rho_c = 0.089(18)$ fm⁻³

- Ulf-G. Meißner, NLEFT - Introduction and Perspectives, CCAST, Beijing, April 17, 2024 -

3

0.06(2)

 $\rho_{\rm c}$

 $0.31(7) \text{MeV/fm}^3$ Experiment: T_c

Ъ_с fm

15.0(3) MeV,

Vapor-liquid phase transition

- Vapor-liquid phase transition in a finite volume $V \ \& \ T < T_c$
- ullet the most probable configuration for different nucleon number $oldsymbol{A}$

• the free energy

• chemical potential $\mu = \partial F / \partial A$

CENTER-of-MASS PROBLEM

 AFQMC calculations involve states that are superpositions of many different center-of-mass (com) positions

 $egin{aligned} Z_A(au) &= \langle \Psi_A(au) | \Psi_A(au)
angle \ &| \Psi_A(au)
angle &= \exp(-H au/2) | \Psi_A
angle \end{aligned}$

• but: translational invariance requires summation over all transitions

 $Z_A(au) = \sum_{i_{
m com}, j_{
m com}} \langle \Psi_A(au, i_{
m com}) | \Psi_A(au, j_{
m com})
angle, \ \ {
m com} = {
m mod}((i_{
m com} - j_{
m com}), L)$

 $i_{\rm com}~(j_{\rm com})=$ position of the center-of-mass in the final (initial) state

- \rightarrow density distributions of nucleons can not be computed directly, only moments
- \rightarrow need to overcome this deficieny

PINHOLE ALGORITHM

Solution to the CM-problem:

track the individual nucleons using the *pinhole algorithm*

 Insert a screen with pinholes with spin & isospin labels that allows nucleons with corresponding spin & isospin to pass = insertion of the A-body density op.:

$$egin{aligned} &
ho_{i_1,j_1,\cdots i_A,j_A}(\mathrm{n}_1,\cdots \mathrm{n}_A)\ &=:
ho_{i_1,j_1}(\mathrm{n}_1)\cdots
ho_{i_A,j_A}(\mathrm{n}_A): \end{aligned}$$

MC sampling of the amplitude:

$$\begin{array}{l} \text{MC sampling of the amplitude:} & & & \\ A_{i_1,j_1,\cdots i_A,j_A}(\mathbf{n}_1,\ldots,\mathbf{n}_A,L_t) & & \\ = \langle \Psi_A(\tau/2) | \rho_{i_1,j_1,\cdots i_A,j_A}(\mathbf{n}_1,\ldots,\mathbf{n}_A) | \Psi_A(\tau/2) \rangle \end{array}$$

- Allows to measure proton and neutron distributions
- Resolution scale $\sim a/A$ as cm position $\mathbf{r_{cm}}$ is an integer $\mathbf{n_{cm}}$ times a/A

 $\tau_i = \tau$

