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1 – Role of nuclear deformation in heavy-ion collisions
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[Gelis, IJMPE 24 (2015) 10, 1530008]
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Snapshots of atomic nuclei

 “snapshot”
of the nucleon positions

Image of collapsed wave function of 10 Li atoms
[from S. Brandstetter (PI Heidelberg)]

[Miller et al., Ann.Rev.Nucl.Part.Sci. 57 (2007) 205-243]
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QGP
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nucleus A nucleus B* energy density

– THICKNESS FUNCTION:

– ENERGY DEPOSITION:

– TAKE HEAD-ON COLLISIONS (b=0).

ANALYTICAL INSIGHTS

Nucleon “form factor” at high energy.
w = nucleon size.

IP-Glasma (τ=0)
“IP-Jazma”
“binary collisions”
… 
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DENSITY CORRELATIONS IN THE OVERLAP REGION

nuclear n-body density:
(     = integrated over “z” )

TWO NUCLEI

x

y

GROUND STATE

NUCLEAR 
STRUCTURE

ENERGY DENSITY

NUCLEON
STRUCTURE

density field, ϵ

[Giacalone, EPJA 59 (2023) 12, 297]

┴
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BONUS: CONNECTION TO EXPERIMENTAL OBSERVATIONS

– ECCENTRICITY:

– PERTURBATIVE EXPANSION:

– MEAN SQUARED ANISOTROPY:

[Blaizot, Broniowski, Ollitrault, PLB 738 (2014) 166-171]

INITIAL STATE FINAL STATE

TWO-NUCLEON 
DENSITY
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MULTI-PARTICLE 
CORRELATIONS  IN FINAL STATEMULTI-NUCLEON 

CORRELATIONS  IN NUCLEI

1-nucleon density

MEAN SQUARED ANISOTROPY

MOMENTUM-ANISOTROPY CORRELATION

MEAN TRANSVERSE MOMENTUM

1 particle

2 particles

3 particles

QGP

2-nucleon density

3-nucleon density

Recent reviews:
[Ollitrault, EPJA 59 (2023) 10, 236]
[Giacalone, EPJA 59 (2023) 12, 297]
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All information in the one-body density:

208Pb

Independent fermions:

Information from nuclear structure = radial profile + number of nucleons

e.g. Woods-Saxon
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Correlations from random rotation of an intrinsic deformed object

E = B J(J+1)

However, nuclei display strong spatial correlations = shapes

DEFORMATION

EULER ANGLES [STAR collaboration, arXiv:2401.06625]
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body-body tip-tip238U
LARGE-SCALE

FLUCTUATIONS!
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body-body

tip-tip

“Seeing” the deformation of 238U

[STAR collaboration, arXiv:2401.06625]
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2 – Implementations of nuclear deformation in high energy collisions
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[Bally et al., PRL 128 (2022) 8, 082301]
[Bally, Giacalone, Bender, EPJA 58 (2022) 9, 187]
[Bally, Giacalone, Bender EPJA 59 (2023) 3, 58]
[Ryssens et al., PRL 130 (2023) 21, 212302]

,

e.g. Woods-Saxon

Implementation from energy density functional theory

Intrinsic one-body density from mean-field states

Fit some appropriate function
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Deformation of 129Xe at the LHC

[Bally et al., PRL 128 (2022) 8, 082301]
[Jia, PRC 105 (2022) 4, 044905]

MEAN SQUARED ANISOTROPYNUCLEAR TWO-BODY DENSITY
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Evidence of triaxiality in 129Xe

[Bally et al., PRL 128 (2022) 8, 082301]
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[ATLAS Collaboration, PRC 107 (2023) 5, 054910]

MOMENTUM-ANISOTROPY CORRELATIONNUCLEAR THREE-BODY DENSITY

[ALICE Collaboration, PLB 834 (2022) 137393]

[Jia, PRC 105 (2022) 4, 044905]
[Giacalone, EPJA 59 (2023) 12, 297]

Probing three-body correlations

-
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X and Y are isobars.

X+X collisions produce QGP with 
same properties as Y+Y collisions.

Breakthrough of 2021: data from “isobar collisions” is released.

Ratios of observables (O) should be unity… 

Departure from unity is mainly due to nuclear structure.

Extremely precise measurements.

[STAR collaboration, PRC 105 (2022) 1, 014901]
[Giacalone, Jia, Somà, PRC 104 (2021) 4, L041903]

TALK BY J. JIA
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Quadrupole and octupole deformations

Isobar ratio and Taylor expand around unity:

Low-energy nuclear physics:
2 2

[STAR collaboration, PRC 105 (2022) 1, 014901]
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 o
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v

n

RHIC data:
2 2

[Giacalone, Jia, Zhang, PRL 127 (2021) 24, 242301]
[Jia, PRC 105 (2022) 1, 014905]
[Jia, Zhang, PRL 128 (2022) 2, 022301]

deformation
QGP

response

spherical
baseline

positive coeff

2 2TALK BY M. ZIELIŃSKA
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Octupole requires correlations “beyond mean field”. A feature of the 2-body density.

PROJECTIONMIXING DEFORMED
MF STATE

[Bertsch, Robledo, J. Phys. G 42 (2015) 5, 055109]

0.01 MeV

2.5 MeV

But how do we sample it?

TALK BY D. VRETENAR
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Evaluate mean field state at the maximum of g² / minimum of projected energy. Sample nucleons.

238U 
Mean field potential energy Collective wave function 

after projection

[Robledo et al., in preparation]

[Rong et al., PLB 840 (2023) 137896]

[Bally et al., PRL 128 (2022) 8, 082301]
[Bally, Giacalone, Bender EPJA 59 (2023) 3, 58]

“weight distribution”

g²(β2,β3)
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Transition densities computed within relativistic nuclear effective theory

Implementation from zero-point fluctuations

To leading order in the perturbation:

[Ring, Schuck, Nuclear Many Body Problem]

[Litvinova, Schuck, PRC 107 (2023) 2, 029903]

TALK BY P. RING
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Preliminary

[Giacalone, Litvinova, in preparation]
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Implementation from ab initio approaches

Describing nuclear systems:

TALK BY B. BALLY

[T. Duguet, ESNT workshop, Sep 2022]
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Opportunities from O+O

1 – Variational Monte Carlo – Auxiliary Field Diffusion Monte Carlo (VMC-AFDMC)

2 – Nuclear Lattice Effective Field Theory (NLEFT)

3 – ab initio Projected Generator Coordinate Method (ab initio PGCM)
Wave function from variational calculation
(as in density functional theory).

[Frosini et al., .EPJA 58 (2022) 4, 62
                      EPJA 58 (2022) 4, 63

             EPJA 58 (2022) 4, 64]Provides a deformed density.

MC solution of Schrödinger eq. on a lattice.

[Lu et al., PLB 797 (2019) 134863]
[Summerfield et al., PRC 104 (2021) 4, L041901]

MC solution of Schrödinger eq. from time evolution of trial wave function.

[Lonardoni et al., PRC 97 (2018) 4, 044318]
[Lim et al., PRC 99 (2019) 4, 044904]

sampled nucleons include up to A-body correlations

TALK BY U. MEISSNER

TALK BY B. BALLY
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Deformations?

NLEFT (similar for VMC)
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Oxygen-oxygen collisions will discern models of
 clustering and short-range correlations.

[Zhang et al., 2404.08385]

[Broniowski, Rybczyński, PRC 100 (2019) 6, 064912]

NLEFT

VMC

VMC has strongest clustering/short-range correlations
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3 – Studying and exploiting nuclear deformation at high energy

11 22 33 44
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t(b)

EIC (or UPC) program – Same paradigm?

[Caldwell, Kowalski, PRC 81 (2010) 025203]
[Giacalone, EPJA 59 (2023) 12, 297]

[Mäntysaari et al., PRL 131 (2023) 6, 062301]

gluon
density

Amplitude:

(coherent)

(incoherent)

( - Δ² = t )

11
TALK BY Z. XU
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208Pb

BAYESIAN ANALYSIS

Protons: density from low-energy scattering.

Neutrons: same R as protons, infer    from LHC data.

[Zenihiro et al., PRC 82 (2010) 044611]

Beautiful example and opportunity: The neutron distribution of 208Pb is poorly known.

[e.g. Paquet, arXiv:2310.17618]

Consistency of nuclear phenomena across scales

22
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[Giacalone, Nijs, van der Schee, PRL 131 (2023) 20, 20]

Generalize to deformation parameters - Refining initial-state model

Correlation between nuclear properties and initial-state parameters

[PREX Collaboration, PRL 126 (2021) 17, 172502]
[Hu et al., Nature Phys. 18 (2022) 10, 1196-1200]

TALK BY G. NIJS
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arXiv:2402.05995

NLEFTNLEFT

33
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Systematics are from hydrodynamics. Ideal to test physics beyond “standard model”.

Theory with reliable systematic error:

Error cancellations – Quantitative predictions for a small system

dNch/dη ≈ 150

20Ne 20Ne

16O16O

+

+

TALK BY G. NIJS
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The unexpected uses of a bowling pin – SMOG2

[LHCb Collaboration, JINST 17 (2022) 05, P05009]

TALK BY G. GRAZIANI
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Signal is gigantic.

off-target

<b> ≈ R
Ne

on-target

[W. Zhao et al., in preparation]

For deformed nuclei, flat eccentricity up to ~20% centrality

Unique potential of SMOG2 for imaging nuclei.
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Complementarity – Understanding the residual of QCD Complementarity – Understanding the residual of QCD 44
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Bayesian inference of
32 low-energy constants 

in Δ-full EFT at N³LO.

[Svensson, Ekström, Forssén, PRC 107 (2023) 1, 014001]

Bayesian inference of
26 hydro model parameters

from Pb-Pb data.

High-energy collisions and the quest for nuclear interactions

[Giacalone, Nijs, van der Schee, PRL 131 (2023) 20, 20]

TALK BY G. NIJS

TALKS BY K. GODBEY, X. ZHANG
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Parameters can be extracted from LHC and RHIC data on 16O collisions

Reconstructing the strong nuclear force

Is it important? Different nuclei offering different sensitivities?
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136Xe

164Dy

Unforeseen legacy 
of RHIC and LHC

Unforeseen legacy 
of RHIC and LHC

from https://www.nndc.bnl.gov/nudat3/ 
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