

- overall quadrupole deformation and shape coexistence
- triaxiality
- octupole collectivity

Nuclear shapes

- general description of a shape: $R(\theta, \phi) = R_0 \left[1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} a_{\lambda,\mu} Y_{\lambda\mu}(\theta, \phi) \right]$
- important nuclear shapes:
 - a_{2,µ} quadrupole deformation (triaxial ellipsoid)
 - $a_{3,\mu}$ octupole deformation (pear shape)
- in the principal axes frame $a_{2,1} = a_{2,-1} = 0$ and only two parameters are enough to describe all possible quadrupole shapes:

$$a_{2,0} = \beta \cos \gamma$$

$$a_{2,2} = a_{2,-2} = \frac{\beta \sin \gamma}{\sqrt{2}}$$

$$\gamma = 60^{\circ}$$

$$y = 60^{\circ}$$

$$y = 0^{\circ}$$

$$y = 0^{\circ}$$

What observables are related to nuclear shapes?

- differences in root mean square charge radii (determined via laser spectroscopy for ground and isomeric states)
- level energies
 - energy of the first 2⁺ state: the simplest measure of collectivity
- transition probabilities: B(E2; $0^+ \rightarrow 2^+$) = ((3/4 π)eZR₀²)² β_2^2
- quadrupole moments: measure of the charge distribution in a given state (always zero for spin 0 and 1/2, even if there is non-zero intrinsic deformation)
 - laser spectroscopy for long-lived states
 - reorientation effect in Coulomb excitation for short-lived states: influence of the quadrupole moment of an excited state on its excitation cross section
- deformation lengths from inelastic scattering: need for accurate potentials to describe the nuclear interaction between collision partners
- complete sets of E2 matrix elements: possibility to determine quadrupole invariants and level mixing
- monopole transition strengths: enhancements observed for shape coexistence with strong mixing

Coulomb excitation cross sections

Dependence on:

- strength of the electromagnetic field: atomic number of the collision partner
- beam energy
- difference in excitation energy between the initial and final levels
- scattering angle
- transition probabilities
- transition multipolarities
 - E2 excitation dominates, followed by E3; other of multipolarities (including magnetic transitions) usually negligible in low-energy Coulomb-excitation process

Measuring quadrupole moments of excited states

 reorientation effect: influence of the quadrupole moment on the excitation cross section
 ⁷⁶Zn, HIE-ISOLDE data from: A. Illana, MZ et al., PRC 108, 044305 (2023)

- χ^2 comparison of measured cross sections with calculated ones
- independent lifetime measurements increase precision of extracted quadrupole moments

Quadrupole sum rules

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683 K. Kumar, PRL 28 (1972) 249

• electromagnetic multipole operators are spherical tensors – products of such operators coupled to angular momentum 0 are rotationally invariant

• in the intrinsic frame of the nucleus, the E2 operator may be expressed using two parameters Q and δ related to charge distribution:

$$E(2,0) = Q\cos\delta$$
$$E(2,2) = E(2,-2) = \frac{Q}{\sqrt{2}}\sin\delta$$
$$E(2,1) = E(2,-1) = 0$$

 $\langle Q^2 \rangle$: measure of the overall deformation;

for the ground state – extension of B(E2; $0^+ \rightarrow 2^+$) = ((3/4 π)eZR₀²)² β_2^2

Contributions to $\langle Q^2 \rangle$ in ¹⁰⁰Mo: K. Wrzosek-Lipska *et al.*, PRC 86 (2012) 064305

$\langle Q^2 \rangle$ for ^{96}Zr and ^{96}Ru ground states

- Extensive lifetime measurements for low-spin states in ⁹⁶Zr and ⁹⁶Ru:
- 96 Zr: (n,n' γ) + (e,e') for 2 $^+_2$; 96 Ru: (p,p' γ), (3 He,2n γ)
- ⁹⁶Zr:
 - B(E2; $2_1^+ \rightarrow 0_1^+$) = 2.3(3) W.u. $\rightarrow \langle 2_1^+ \parallel E2 \parallel 0_1^+ \rangle$ = 0.173(11) eb
 - B(E2; $2_2^+ \rightarrow 0_1^+$) = 0.26(8) W.u. $\rightarrow \langle 2_2^+ \parallel E2 \parallel 0_1^+ \rangle$ = 0.058(9) eb
 - $\langle Q^2 \rangle = 0.033(5)e^2b^2$, $\beta = 0.06(1)$

⁹⁶Ru:

- B(E2; 2^+_1 \to 0^+_1) = 18.4(4) W.u. \to \langle 2^+_1 \parallel E2 \parallel 0^+_1 \rangle = 0.490(5) eb
- B(E2; $2_2^+ \rightarrow 0_1^+$) = 0.16(4) W.u. $\rightarrow \langle 2_2^+ \parallel$ E2 $\parallel 0_1^+ \rangle$ = 0.050(6) eb
- $\langle Q^2 \rangle = 0.243(6)e^2b^2$, $\beta = 0.155(4)$
- $\langle Q^2 \rangle = q_0^2 \langle \beta_2^2 \rangle$; $q_0 = \frac{3}{4\pi} ZeR_0^2$ and $R_0 = 1.2A^{1/3}$ fm
- includes both dynamic and static deformation and assumes that mass and charge distributions are the same
- errors in ENSDF for ⁹⁶Ru: wrong B(E2; $2_2^+ \rightarrow 0_1^+$)=35 W.u, 2_4^+ lifetime 0.15 fs, 15 fs (it is 0.15 ps)

Shape coexistence: experimental information for $A \approx 100$

- dramatic increase of ground-state deformation at N=60
- multitude of coexisting shapes predicted by theory

	⁹⁵ Ri	⁹⁶ Ru	⁹⁷ Ru	⁹⁸ Ru	⁹⁹ Ru	¹⁰⁰ Ru	¹⁰¹ Ru	¹⁰² Ru	¹⁰³ Ru	¹⁰⁴ Ru	¹⁰⁵ Ru	level energies
	⁹⁴ Tc	⁹⁵ Tc	⁹⁶ Tc	⁹⁷ Tc	⁹⁸ Tc	⁹⁹ Tc	¹⁰⁰ Tc	¹⁰¹ Tc	¹⁰² Tc	¹⁰³ Tc	¹⁰⁴ Tc	E2 strengths E0 strengths
	⁹³ Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	⁹⁹ Mo	¹⁰⁰ Mo	¹⁰¹ Mo	¹⁰² Mo	¹⁰³ Mo	transfer cross sections
	⁹² Nb	⁹³ Nb	⁹⁴ Nb	⁹⁵ Nb	⁹⁶ Nb	⁹⁷ Nb	⁹⁸ Nb	⁹⁹ Nb	¹⁰⁰ Nb	¹⁰¹ Nb	¹⁰² Nb	quadrupole invariants
	⁹¹ Zr	⁹² Zr	⁹³ Zr	⁹⁴ Zr	⁹⁵ Zr	⁹⁶ Zr	^{}7} Zr	⁹⁸ Zr	⁹⁹ Zr	¹⁰⁰ Zr	¹⁰¹ Zr	
	⁹⁰ Y	⁹¹ Y	⁹² Y	⁹³ Y	⁹⁴ Y	⁹⁵ Υ	⁹⁶ Y	⁹⁷ Y	⁹⁸ Y	⁹⁹ Y	¹⁰⁰ Y	
	⁸⁹ Sr	⁹⁰ Sr	⁹¹ Sr	⁹² Sr	⁹³ Sr	⁹⁴ Sr	⁹⁵ Sr	⁹⁶ Sr	⁹⁷ Sr	⁹⁸ Sr	⁹⁹ Sr	
P. Garrett, MZ, E. Clément, Prog. Part, Nucl. Phys. 124, 123931 (2022)												

Shape coexistence in ⁹⁶Zr – experimental information

- B(E2; 2⁺₂ → 0⁺₁) measured using electron scattering, combined with known branching and mixing ratios:
 →transition strengths from the 2⁺₂ state
- B(E2; 2⁺₁ → 0⁺₁) = 2.3(3) Wu vs B(E2; 2⁺₂ → 0⁺₂) = 36(11) Wu: nearly spherical and a well-deformed structure (β ≈ 0.24)
- very low mixing of coexisting structures: $\cos^2\theta_0 = 99.8\%$, $\cos^2\theta_2 = 97.5\%$,

Shape coexistence and type-II shell evolution in Zr isotopes

- p-n tensor interaction reduces the Z=40 gap when $\nu g_{7/2}$ is being filled
- 0⁺₂ states created by 2p-2h
 (+ 4p-4h...) excitation across Z=40
- very different configurations and small mixing of 0⁺₁ and 0⁺₂

Two-state mixing model

• we assume that physical states are linear combinations of pure spherical and deformed configurations:

$$| I_1^+ \rangle = +\cos \theta_I \times | I_d^+ \rangle + \sin \theta_I \times | I_s^+ \rangle$$
$$| I_2^+ \rangle = -\sin \theta_I \times | I_d^+ \rangle + \cos \theta_I \times | I_s^+ \rangle$$

with transitions between the pure spherical and deformed states forbidden:

 $\langle 2_d^+ \| E2 \| 0_s^+ \rangle = \langle 2_d^+ \| E2 \| 2_s^+ \rangle = \langle 2_s^+ \| E2 \| 0_d^+ \rangle = \mathbf{0}$

• the measured matrix elements can be expressed in terms of the "pure" matrix elements and the mixing angles:

```
 \langle 2_1^+ || E2 || 0_1^+ \rangle = 
 \sin \theta_0 \sin \theta_2 \langle 2_s^+ || E2 || 0_s^+ \rangle + \cos \theta_0 \cos \theta_2 \langle 2_d^+ || E2 || 0_d^+ \rangle 
 \langle 2_1^+ || E2 || 0_2^+ \rangle = 
 \cos \theta_0 \sin \theta_2 \langle 2_s^+ || E2 || 0_s^+ \rangle - \sin \theta_0 \cos \theta_2 \langle 2_d^+ || E2 || 0_d^+ \rangle 
 \langle 2_2^+ || E2 || 0_1^+ \rangle = 
 \sin \theta_0 \cos \theta_2 \langle 2_s^+ || E2 || 0_s^+ \rangle - \cos \theta_0 \sin \theta_2 \langle 2_d^+ || E2 || 0_d^+ \rangle 
 \langle 2_2^+ || E2 || 0_2^+ \rangle = 
 \cos \theta_0 \cos \theta_2 \langle 2_s^+ || E2 || 0_s^+ \rangle + \sin \theta_0 \sin \theta_2 \langle 2_d^+ || E2 || 0_d^+ \rangle
```


"Exploring nuclear physics across energy scales 2024", Beijing, China, April 24, 2024 - p. 11/44

E0 strengths, shape coexistence and mixing

- E0 transitions are sensitive to the changes in the nuclear charge-squared radii
- their strengths depends on the mixing of configurations that have different mean-square charge radii:

$$\rho^{2}(E0) = \frac{Z^{2}}{R^{4}} \cos^{2}\theta_{0} \sin^{2}\theta_{0} \left(\langle r^{2} \rangle_{A} - \langle r^{2} \rangle_{B} \right)^{2}$$

= $\left(\frac{3Z}{4\pi}\right)^{2} \cos^{2}(\theta_{0}) \sin^{2}(\theta_{0}) \cdot \left[\left(\beta_{1}^{2} - \beta_{2}^{2} \right) + \frac{5\sqrt{5}}{21\sqrt{\pi}} \left(\beta_{1}^{3} \cos\gamma_{1} - \beta_{2}^{3} \cos\gamma_{2} \right) \right]^{2}$
J.L. Wood *et al.*, NPA 651, 323 (1999)

Example of ⁴²Ca: K. Hadyńska-Klęk *et al.*, PRC 97 (2018) 024326 (Coulomb excitation), J.L. Wood *et al.*, NPA 651, 323 (1999) (E0)

	from E2 matrix elements [KHK]	from $ ho^2(E0)$ [JLW]			
		+ sum rules results [KHK]			
$\cos^2(\theta_0)$	0.88(4)	0.84(4)			

• good agreement of the $\cos^2(\theta_0)$ values obtained with the two methods

E0 strengths in Zr and Ru isotopes

T. Kibedi et al., Prog. Part. Nucl. Phys. 120 (2021)

• ¹⁰⁰Ru: 11(2) 10^{-3} between 0^+_2 and 0^+_2 , no data for lighter Ru isotopes

Shape coexistence in ⁹⁴Zr

T. Togashi et al, PRL 117, 172502 (2016)

- MCSM calculations suggest a variety of shapes appearing at low excitation energy in Zr nuclei
- ⁹⁴Zr selected as the first candidate for a detailed experimental investigation
- oblate deformed structure predicted to be built on the 0⁺₂ state

 high-statistics β-decay study at TRIUMF: observation of a strong
 2⁺₂ → 0⁺₂ transition (19 W.u.)
 – a deformed band built on 0⁺₂

Lifetime measurements in ⁹⁸Zr

- substantial differences in measured lifetimes and interpretations
- $2_2^+ \rightarrow 0_3^+$ is expected to be either enhanced in-band transition, or a forbidden three- to two-phonon transition
- combination of 2⁺₂ lifetime and branching ratio points to an unphysical value of 500 W.u.
- β -decay data from TRIUMF (under analysis) expected to resolve this issue

Coulomb excitation of ⁹⁶Zr with AGATA at LNL

- problems to get the ⁹⁶Zr material for the targets due to the Russia-Ukraine war; obtained targets with lower isotopic enrichement than reported
- data analysis: cut on excitation energy to remove the fusion-evaporation background
- analysis in progress
 (N. Marchini, F. Ercolano)
- aim: extraction of quadrupole moments in ⁹⁶Zr

Coulomb excitation with the Q3D spectrometer

- Coulomb-excitation measurements with magnetic spectrometers common in 1970s, but completely abandoned in favour of γ -ray spectroscopy
- still a very attractive option, especially to populate higher-lying low-spin states: very high beam intensities (100 pnA) can compensate for low cross sections
- campaigns with ¹²C, ¹⁶O beams: direct measurement of 2⁺ and 3⁻ population \rightarrow precise B(E2; 2⁺_i \rightarrow 0⁺₁) and B(E3; 3⁻_i \rightarrow 0⁺₁) values

Results: shape coexistence in ¹⁰²**Ru**

P. Garrett, MZ et al, PRC 106, 064307 (2022)

- first measurement of the B(E2; $2_3^+ \rightarrow 0_1^+$) value
- combined with known branching ratios yields B(E2) values in the two bands differing by a factor of 2
- coexistence of two structures with different overall deformation $(\beta \approx 0.24 \text{ and } \beta \approx 0.18)$

⁹⁸Ru level scheme a few years ago

- highly unlikely that there are three closely-lying 3⁺ states
- level scheme incomplete with missing decays and spin assignments

Reevaluation of ⁹⁸Ru level scheme

P. Garrett et al., PLB 809, 135762 (2020)

- combined β -decay study (iTHEMBA Labs) and (p,t) transfer (MLL)
- resulting level scheme suggestive of shape coexistence and triaxiality

Quadrupole sum rules: triaxiality

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683 K. Kumar, PRL 28 (1972) 249

 $\langle \cos 3\delta \rangle$: measure of triaxiality

• relative signs of E2 matrix elements are needed: can we get them experimentally?

Contributions to $\langle Q^3 cos 3\delta \rangle$ in ¹⁰⁰Mo: K. Wrzosek-Lipska *et al.*, PRC 86 (2012) 064305

Relative signs of E2 matrix elements

- Coulomb-excitation cross section are sensitive to relative signs of MEs: result of interference between single-step and multi-step amplitudes
- excitation amplitude of state A: $a_A \sim \langle A \| E2 \| g.s. \rangle + \langle B \| E2 \| g.s. \rangle \langle A \| E2 \| B \rangle$
- excitation probability ($\sim a_A^2$) contains interference terms $\langle A \| E2 \| g.s. \rangle \langle B \| E2 \| g.s. \rangle \langle A \| E2 \| B \rangle$

- negative $\langle 2_1^+ || E2 || 2_2^+ \rangle$ (solid lines): much higher population of 2_2^+ at high CM angles
- sign of a product of matrix elements is an observable

Quadrupole sum rules: triaxiality

A. Andrejtscheff et al, Phys. Lett. B 329 (1994) 1

For the ground state, two terms dominate the sum:

$$\begin{aligned} \langle \cos 3\delta \rangle \approx & -\sqrt{\frac{7}{10}} \langle Q_{0_1^+}^2 \rangle^{-3/2} \left(\left| \langle 0_1^+ \| E2 \| 2_1^+ \rangle \right|^2 \langle 2_1^+ \| E2 \| 2_1^+ \rangle \right. \\ & \left. + 2 \langle 0_1^+ \| E2 \| 2_1^+ \rangle \langle 2_1^+ \| E2 \| 2_2^+ \rangle \langle 2_2^+ \| E2 \| 0_1^+ \rangle \right) \end{aligned}$$

still, sign of the $\langle 0_1^+ || E2 || 2_1^+ \rangle \langle 2_1^+ || E2 || 2_2^+ \rangle \langle 2_2^+ || E2 || 0_1^+ \rangle$ product is necessary

Ground-state triaxiality in ^{96–100}**Mo**

MZ *et al.*, Nucl. Phys. A 712 (2002) 3 K. Wrzosek-Lipska *et al.*, PRC 86 (2012) 064305

- ground states of the Mo isotopes triaxial (average shape, may result from dynamic effects)
- shape coexistence of the deformed and triaxial ground state with a more axial 0⁺₂ increasing in deformation with N

W. Urban et al, PRC 100, 014319 (2019)

- "gamma" band proposed (related to the softness in the γ degree of freedom) and "triaxial" band (related to a rotation of an non-axial shape)
- transitions to low-spin states missing, or even candidates missing

• our new results from β decay at TRIUMF (D. Kalaydjieva, PhD thesis) suggest that the presumed head of the "gamma" band is instead a member of a deformed structure built on the 0_3^+ state

Energy systematics in Ru isotopes

- transition from potentially γ-rigid ^{110,112}Ru (D. Doherty et al, PLB 776, 334 (2017)) to γ-soft nuclei
- parabolic intrusion of potentially shape-coexisting shapes
- experimental data on shape coexistence less detailed than in the Zr, Mo isotopic chains

Higher-order quadrupole invariants – example of ^{72,76}**Ge**

• ⁷²Ge: much higher number of transitions observed in a new measurement \rightarrow slight change of the deduced invariants due to extra states entering the sum

Experimental information on octupole collectivity in even-even nuclei

- energy of the first 3⁻ state (first hint)
- B(E3; $3_1^- \rightarrow 0_1^+$) value; B(E3; $I_i \rightarrow I_f$) = $\frac{7}{16\pi}(I_f 030|I_i 0)^2 Q_3^2$ Q₃= $\frac{3}{\sqrt{7\pi}}$ Z e R₀³ β_3
- negative-parity states decay predominantly by fast E1 transitions; large B(E1) values usually correlate with octupole collectivity, but the inverse is not true
- lifetime of a negative-parity state is a very poor indicator of octupole collectivity
- direct E3 decay is rarely observed
- Coulomb excitation and inelastic scattering are the methods of choice to determine E3 strength

Rigid octupole deformation versus octupole vibration

- apart from actinides, E3 collectivity is usually attributed to surface vibrations
- rigid octupole deformation can be claimed on the basis of B(E3) values between the ground-state band and the negative-parity band, or identical rotational alignments in these bands (→ interleaving of positive and negative-parity states)

R. Ibbotson et al, PRL 71, 27 (1993)

More info: P. A. Butler and W. Nazarewicz Rev. Mod. Phys. 68, 349 (1996); P. Butler, Proc. R. Soc. A 476, 202 (2020)

J.F.C. Cocks et al. / Nuclear Physics A 645 (1999) 61-91

Octupole collectivity in Zr isotopes: anomalous value for ⁹⁶Zr

- evaluated B(E3; 3⁻₁ → 0⁺₁) strength for ⁹⁶Zr strikingly high (53(6) W.u.), comparable with those known for nuclei with rigid pear shapes
- observed trend of B(E3; 3⁻₁ → 0⁺₁) values in Zr isotopes inconsistent with 3⁻₁ energies and hard to explain

Revision of the E3 strength in ⁹⁶Zr

- determination of E3 strength in ⁹⁶Zr using gamma-ray spectroscopy requires two measurements:
 - lifetime (\approx 70ps plunger measurements)
 - branching ratio E3/E1
- if the 147 keV / 1897 keV intensity ratio is directly measured, the efficiency must be known precisely
 - walk effect, conversion at 147 keV

Octupole collectivity in Zr isotopes: new BR measurement for ⁹⁶Zr

new measurement of E1/E3 branching ratio in ⁹⁶Zr (Ł. Iskra et al, Phys. Lett. B 788 (2019) 396) points to lower octupole collectivity, but the overall trend remains puzzling

 $\rightarrow\,$ new systematic study of quadrupole and octupole collectivity in stable Zr isotopes at MLL

Results: octupole collectivity in Zr isotopes

• overall trend of B(E3; $3_1^- \rightarrow 0_1^+$) values in Zr more consistent with evolution of 3_1^- energies than that of evaluated values

- similarities with results of (α, α') (D. Rychel et al, Z. Phys. A 326, 455 (1987)
 the only other systematic study of β₃ in Zr)
- caution preliminary result of B(E3; 3⁻₁ → 0⁺₁) measurement in ⁹⁶Zr from AGATA much closer to the result of L. Iskra than to our new value; under investigation

Octupole collectivity in Ru isotopes

- no B(E3) values for Ru isotopes lighter than ¹⁰⁰Ru
- smooth evolution of 3⁻ energies
- conflicting B(E3) results in Ru and Mo nuclei

cea

13(2)

31(3)

 0^{+}

Remaining questions regarding ⁹⁶**Zr**

Revised branching and mixing ratios in ⁹⁶Zr: J. Wiśniewski et al, Phys. Rev. C 108, 024302 (2023)

- which 4⁺ belongs to which band? if 4⁺₁ is part of the deformed structure, why is its decay to the 2⁺₁ so strong (mixing between bands should be weak)?
- the 2⁺₃ →2⁺₂ decay seems surprisingly enhanced
- E1 transitions from presumably collective states compete with E2 ones; in particular, the 6⁺ state decays predominantly via E1; is it related to a two-phonon octupole vibration?

Remaining questions regarding ⁹⁶**Zr**

Revised branching and mixing ratios in ⁹⁶Zr: J. Wiśniewski et al, Phys. Rev. C 108, 024302 (2023)

- which 4⁺ belongs to which band? if 4⁺₁ is part of the deformed structure, why is its decay to the 2⁺₁ so strong (mixing between bands should be weak)?
- the 2⁺₃ →2⁺₂ decay seems surprisingly enhanced
- E1 transitions from presumably collective states compete with E2 ones; in particular, the 6⁺ state decays predominantly via E1; is it related to a two-phonon octupole vibration?

Outlook: complementary measurements on ⁹⁶Zr

- combination of a lifetime study with safe and unsafe Coulomb-excitation cross-section measurement with a ⁹⁶Zr beam (AGATA@LNL, MZ, N. Marchini et al) – to be performed with AGATA at LNL in May 2024
- (p,p') on ⁹⁶Zr (AGATA@LNL, November 2023, D. Stramaccioni et al) search for the direct 6⁺ → 3⁻ decay in order to verify the hypothesis of the 6⁺ state being a double octupole phonon state
- β decay into ⁹⁶Zr (TRIUMF, December 2023, M. Rocchini, MZ et al) precise measurement of branching and mixing ratios in the decay of spin-0,1,2,3 states

Coulomb excitation of ¹⁰⁰Ru

- low-energy Coulomb excitation of ¹⁰⁰Ru with a ³²S beam performed at HIL Warsaw in April 2022 (PI P. Garrett, K. Wrzosek-Lipska, MZ)
- in order to better constrain the properties of the 2⁺₂ state, data will be completed by a second measurement with a ¹⁴N beam
- additional lines in the spectrum due to target oxidation
- decay of the 3_1^- state at the observation limit

Outlook: challenges for future Coulomb-excitation studies

- abundance: 5.54% ⁹⁶Ru, 2.80% ⁹⁶Zr
- difficult to get material with high enrichment (even more since the war has started); to my knowledge, no suppliers offer ^{96,98}Ru
- difficult to produce Ru and Zr targets (material often available in oxide form, Ru targets produced by electrodeposition proven very fragile)
- high excitation energies in ⁹⁶Zr and ⁹⁶Ru with respect to other isotopes make it more difficult to populate levels of interest

Hexadecapole strength in A \approx 100 nuclei

M. Pignanelli et al. / Hexadecapole strength distributions

M. Pignanelli et al, NPA 540, 27 (1992)

Do we know all states that should enter the sum?

- especially for the (E2 x E2 x E2), where terms can cancel out can we say that terms involving higher lying levels (the 2⁺₄ state etc) do not significantly influence the rotational invariant?
 - if such state were coupled to the state in question via a large E2 matrix element, it would be populated in the experiment
 - comparison with GBH calculations for ¹⁰⁰Mo: (Q²), (Q³cos (3 δ)) calculated by acting with an operator on calculated wave functions and from theoretical values of matrix elements, limited to the same three intermediate states

 \Rightarrow difference below 3% for both 0⁺ states

PHYSICAL REVIEW C 86, 064305 (2012)

FIG. 15. Probability density [Eq. (26)] for the 0_1^+ and 0_2^+ states for the Skyrme SLy4 interaction. The contour interval is 0.3.

K. Wrzosek-Lipska, PRC 86 (2012) 064305

J. Xiang et al., PRC 93, 054324 (2016), 5DCH with PC-PK1 interaction