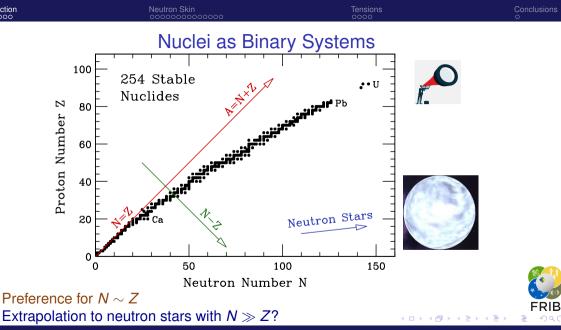
# Neutron Skin and Its Ties to Nuclear Equation of State

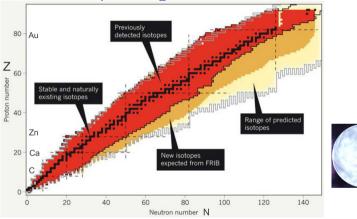
**Pawel Danielewicz** 


Facility for Rare Isotope Beams Michigan State University

Exploring nuclear physics across energy scales 2024 CCAST Institute of Theoretical Physics, Beijing

April 15 - 27, 2024




n-Skin & EOS





Tensions

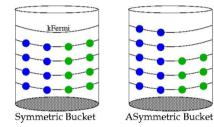
### **Expanding Chart of Nuclides**



FRIB

Accelerator tech progress pushes chart boundaries out...

 $\label{eq:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:theorem:th$ 


n-Skin & EOS

Tensions

### Protons & Neutrons

#### $N \approx Z$ favored when strong interactions dominate

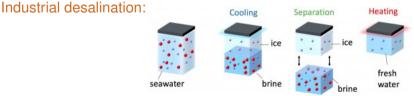
Pauli principle + interactions more attractive for np pairs than pp or nn (also Pauli, but at quark level)

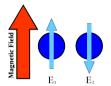


Mass formula:

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{\text{mic}}$$
symmetry energy term  $a_a(A)$ ?

Relative spatial distribution of the species?





## **Relative Distribution of Species?**

Statistical considerations: entropy vs energy

Example:  $H_2O + NaCl$ 

Above freezing & below saturation, salinity (relative *NaCl* concentration) uniform, entropy & energy go along but, when water freezes, *NaCl* gets expelled from ice, as energy wins









# Charge Symmetry & Charge Invariance

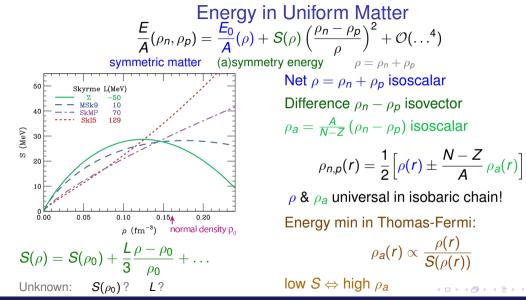
Charge symmetry: invariance of nuclear interactions under  $n \leftrightarrow p$  interchange

An isoscalar quantity *F* does not change under  $n \leftrightarrow p$  interchange. E.g. nuclear energy. Expansion in asymmetry  $\eta = (N - Z)/A$ , for smooth *F*, yields even terms only:

$$F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$$

An isovector quantity *G* changes sign. Example:  $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ . Expansion with odd terms only:

$$G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$$


Note:  $G/\eta = G_1 + G_3 \eta^2 + ...$ 

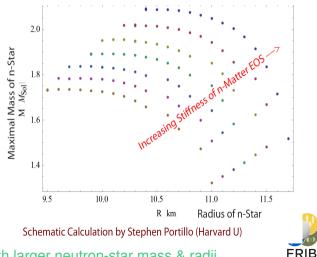
In nuclear practice, analyticity requires shell-effect averaging!

Charge invariance: invariance of nuclear interactions under rotations in n-p space.

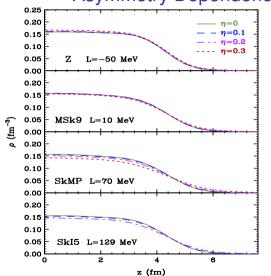


(a)




# Symmetry-Energy Stiffness: *M* & *R* of *n*-Star

$$egin{split} rac{E}{A} &= rac{E_0}{A}(
ho) + S(
ho) \left(rac{
ho_n - 
ho_p}{
ho}
ight)^2 \ S &\simeq a_a^V + rac{L}{3}rac{
ho - 
ho_0}{
ho_0} \end{split}$$


In neutron matter:  $\rho_p \approx 0 \& \rho_n \approx \rho.$ Then,  $\frac{E}{4}(\rho) \approx \frac{E_0}{4}(\rho) + S(\rho)$ 

Pressure:

$$P = \rho^2 \frac{\mathrm{d}}{\mathrm{d}\rho} \frac{E}{A} \simeq \rho^2 \frac{\mathrm{d}S}{\mathrm{d}\rho} \simeq \frac{L}{3\rho_0} \rho^2$$

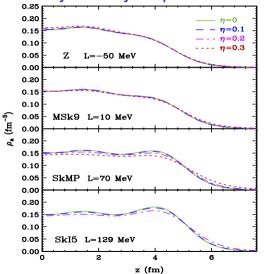


Stiffer symmetry energy correlates with larger neutron-star mass & radii



Neutron Skin

Half- $\infty$  matter results for different Skyrme interactions and asymmetries


 $\eta = \frac{N-Z}{A}$ 



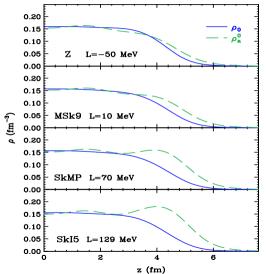
A D A A B A A B A A B



#### Asymmetry Dependence of **Isovector Density**



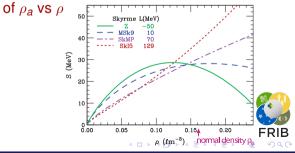
$$\rho_a = \frac{2a_a^V}{\mu_a} \left(\rho_n - \rho_p\right)$$


 $\begin{array}{l} \mbox{Half-}\infty\mbox{ matter results for} \\ \mbox{different Skyrme interactions} \\ \mbox{and asymmetries} \end{array}$ 

#### PD&Lee NP818(09)36



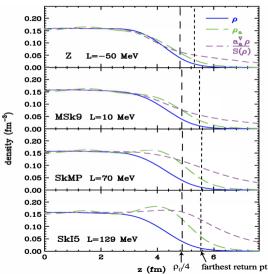
4 E.






Results f/different Skyrme ints in half- $\infty$  matter

Isoscalar ( $\rho = \rho_n + \rho_p$ ; blue) & isovector ( $\rho_n - \rho_p$ ; green) densities displaced relative to each other

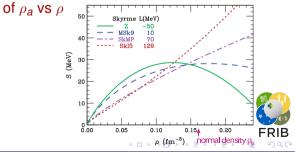

As  $S(\rho)$  changes, so does displacement

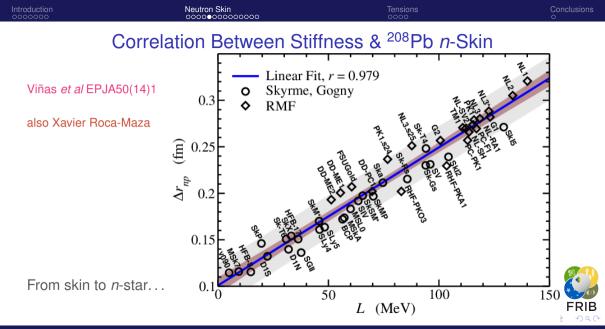


Danielewicz

n-Skin & EOS

## Sensitivity to $S(\rho)$





Neutron Skin

Results f/different Skyrme ints in half- $\infty$  matter

Isoscalar ( $\rho = \rho_n + \rho_p$ ; blue) & isovector ( $\rho_n - \rho_p$ ; green) densities displaced relative to each other

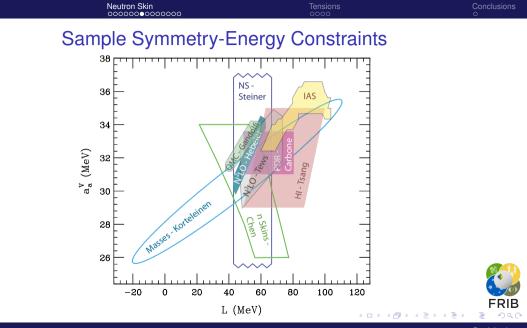
As  $S(\rho)$  changes, so does displacement

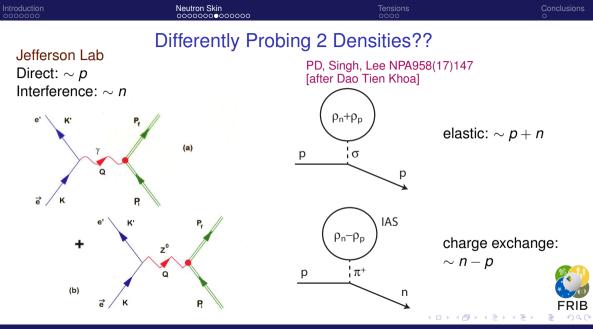




# **Experimental Efforts & Observations**

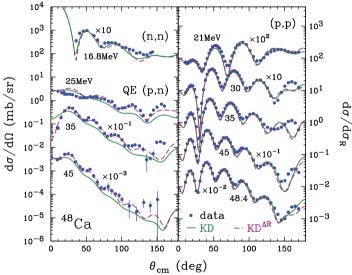
Experiments directly probing ground-state geometry:


- Elastic scattering
- Parity-violation in electron scattering
- Quasielastic charge exchange reactions
- Charge radii of mirror nuclei
- Charge-changing reactions


Other data testing symmetry energy:

- Dipole polarizability
- Masses
- Heavy ions: diffusion,  $\pi^-/\pi^+$  ratio, . . .
- Neutron star: maximal M, M-R relation, deformability




**O** . . .

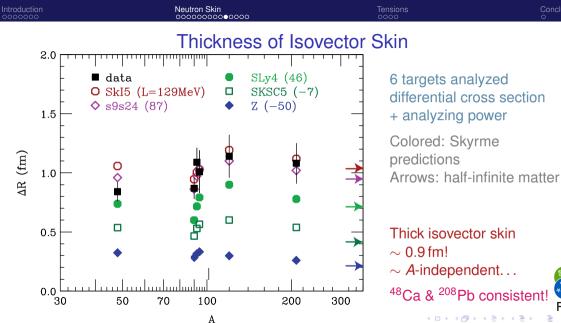




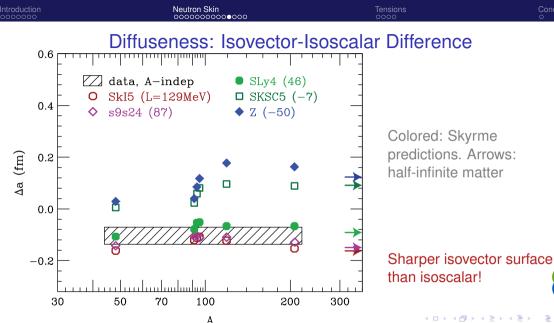
### Simultaneous Fits to Elastic & Charge-Exchange: <sup>48</sup>Ca

dσ




Koning-Delaroche (KD) optical potential w/isoscalar & isovector terms & no skin NPA713(03)231 applied simultaneously to elastic scattering & guasielastic charge exchange

Different radii for isovector & isoscalar densities/potentials:  $R_{a} = R + \Delta R$ 


 $\Lambda B^{\cdot}$  isovector skin

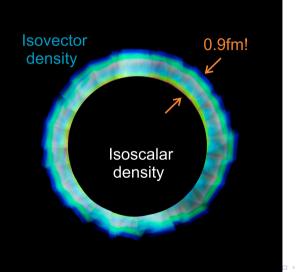
PD/Singh/Lee NPA958(17)147





FRIB




n-Skin & EOS

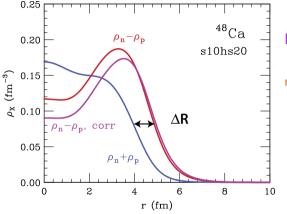
Danielewicz

FRIB

Tensions

#### **Isovector Skin**






Danielewicz

n-Skin & EOS

### Isovector vs Neutron Skin?

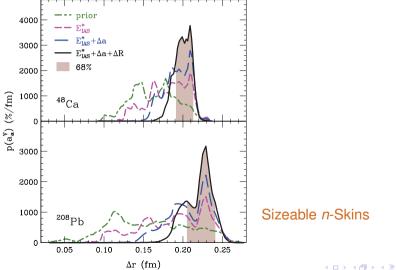
< **r** 



Much Larger Than Neutron! Surface radius  $R \simeq \sqrt{\frac{5}{3}} \langle r^2 \rangle^{1/2}$ rms neutron skin

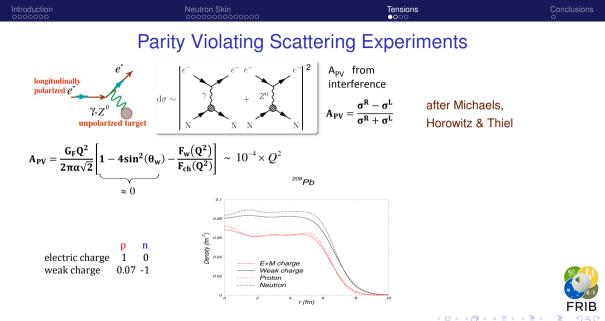
$$\simeq 2 \frac{N-Z}{A} \left[ \langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2} \right]$$

rms isovector skin


Estimated  $\Delta R \sim 3\left(\langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2}\right)$  for <sup>48</sup>Ca/<sup>208</sup>Pb! Even before consideration of Coulomb effects that further enhances difference!

Neutron Skin



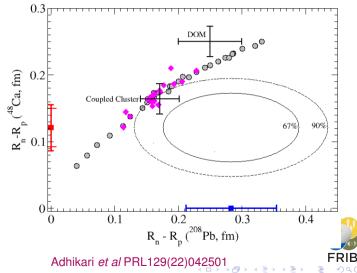

#### Likelihood f/Neutron-Skin Values

Neutron Skin





→ < ∃ →</p>




Danielewicz

| Introduction                                                                                                                         | Neutron Skin | Tensions<br>○●○○ | Conclusions<br>o |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------------------|
| PREX-2 vs CREX                                                                                                                       |              |                  |                  |
| Months of running at Jeff<br>Lab, just for single mom<br>transfer per target, PREX<br><sup>208</sup> Pb & CREX for <sup>48</sup> Ca! | X-2 for      |                  | /<br>            |

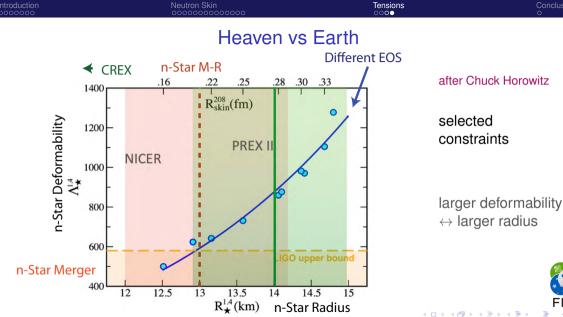
<sup>208</sup>Pb has higher n-p asymmetry than <sup>48</sup>Ca, but stronger Coulomb, so n-skins expected similar

The experiments yield results at tension with each other



# Tension on Earth & vs Heaven

#### CREX vs PREX: 2 Camps


- Bayesian combination of two, e.g., Zhang&Chen PRC108(23)024317, L ~ 15 MeV?!
- The expts cannot be simultaneously right, e.g. Yuksel&Paar PLB836(23)137622

Follow-up MREX for <sup>208</sup>Pb at Mainz

Observations of heavenly objects

- Maximal n-star masses
- $\bullet~$  LIGO: gravitational waves  $\rightarrow$  n-star deformability
- NICER: X-rays from n-stars  $\rightarrow M/R$  for n-stars





## Conclusions

- In nuclear surface, isovector density leaks out of isoscalar density.
   In effect of isovector skin, rms radius for majority nucleons is greater than for minority, or majority-nucleon skin appears
- Size of isovector or majority skin is a direct consequence of dependence of symmetry energy on  $\rho$ , at  $\rho \lesssim \rho_0$ , and diffuseness for isoscalar density
- Constraints on skins can emerge from data that directly reflect nuclear geometry and from data that in other ways probe ρ-dependence of symmetry energy
- As uncertainties in skin constraints or in *ρ*-dependence of symmetry energy become more seriously determined, lack of consensus emerges

DOE DE-SC0019209

