Physics opportunities with SMOG2 A bridge between particle, nuclear and astroparticle physics

Giacomo Graziani (INFN Firenze) on behalf of the LHCb Collaboration

Exploring nuclear physics across energy scales 2024 Apr 26, 2024

The LHCb experiment

LHCb is the experiment devoted to heavy flavours at the LHC.

Some unique features are also attractive for heavy ion physics:

- forward acceptance, complementary to other experiments at LHC
- excellent detector performance, notably for heavy flavours
- possibility to run in fixed-target mode

The LHCb experiment

- Sensitivity to small x (down to ~ 10⁻⁵)
 ⇒ gluon saturation
- and to anti-shadowing region
- Nicely complementing other LHC experiments (rapidity dependence can disentangle nuclear effects)

Key feature: the VErtex LOcator

Optimized for forward particles and best proper time resolution of weak decays
Sensors just 7 mm away from the LHC beams, mounted on two retractable halves

JINSI 9 (2014) P09007

G. Graziani slide 4

Key feature: detector performance

Extreme vertexing performance and excellent PID: ideal for heavy flavour states, disentangling charm and beauty components

- No rate limitations from trigger and DAQ for heavy ion runs:
- Iarge samples of MB events
- \checkmark heavy flavour triggers with low $p_{\rm T}$ thresholds (~ 1 GeV)
- ▲ tracking saturates for most central PbPb collisions
 - ➡ LHCb more suited for small collision systems (pA collisions) crucial environment to understand cold nuclear matter effects and collectivity in small systems

Example: Bottomonia in pPb@8 TeV JHEP 11 (2018) 194 Backward Forward

G. Graziani slide 7

Example: UPC in PbPb @ 5 TeV

- sensitive to gluon distribution at x down to 10⁻⁵, saturation region
- coherent and incoherent J/ψ photoproduction can be distinguished from $p_{\rm T}$ shape

Key feature: the SMOG system

The System for Measuring Overlap with Gas (SMOG) allows to inject small amount of noble gas in the LHC beam pipe. **Turns LHCb into a fixed-target experiment!** Possible targets in Run 2: He, Ne, Ar (more in the future...) Typical pressure ~ 2×10^{-7} mbar \Rightarrow luminosity up to 10^{30} cm⁻²s⁻¹

Collisions at √s_{NN} = √2E_{beam}M_p 41-110 GeV for E_{beam} = 0.9 - 6.5 TeV
relative unexplored energy scale between SPS and LHC experiments
at √s_{NN} = 110 GeV, c.m. rapidity is -2.8 < y* < 0.2 backward detector with access to large x value in target nucleon, for different nuclear targets
study nPDF in antishadowing/EMC region, possible intrinsic heavy quark content in nucleons

Fixed Target Samples (Run 2) and Acceptance

G. Graziani slide 10

Fixed-target Luminosity PRL 121 (2018), 222001

 SMOG gas pressure not precisely known.
 Absolute cross sections normalized to p e⁻ elastic scattering

- Background measured from data, using events with single positive track
- Systematic uncertainty of 6%, due to low electron reconstruction efficiency (~ 16%)

Charm production in fixed-target collisions

System	$\sqrt{s_{NN}}$	Measurement	Publication
p→ He	86.6 GeV	• J/ ψ and D^0 total and differential cross sections in y^* and p_T	PRL 122 (2019) 132002
p→ Ne	68.5 GeV	 J/ψ and ψ(2S) cross sections and production ratio D⁰ cross section and asymmetry 	EPJC 83 (2023) 625 EPJC 83 (2023) 541
p→ Ar	110.4 GeV	• J/ ψ and D^0 differential distributions in y^* and p_T	PRL 122 (2019) 132002
Pb Ne	68.5 GeV fir :	• J/ ψ and D^0 cross section ratio st fixed-target AB measurem	EPJC 83 (2023) 658 ent at the LHC!

D^0 production

- Image most backward production sensitive to x up to ~ 0.4
- production better described by models including 1% of intrinsic charm ("Vogt "%" and "MS"), though no clear conclusion
- $(D^0-\overline{D}^0)/(D^0+\overline{D}^0)$ production asymmetry up to -15% observed in backward bin, likely hadronization with high-x valence quark (beam drag effect). Not reproduced in PYTHIA 8.

The PbNe sample

- 214 hours of recorded data with Ne injected during the LHCb 2018 PbPb run. Luminosity $O(0.1 \text{ nb}^{-1})$, $\sqrt{s_{\text{NN}}}$ (PbNe) = 69 GeV
- ~30M collisions recorded in 40 cm of gas in the VELO region
- fit to Glauber model of total energy in e.m. CAL (on MB triggered events) to get centrality, N_{coll}
- ~ 550 J/ ψ and 5700 D^0 candidates after background subtraction

J/ψ suppression in PbNe collisions

- PbNe collisions at $\sqrt{s_{NN}} = 68.5$ GeV probe same energy density scale where NA50 observed anomalous *J*/ ψ suppression in PbPb
- cold nuclear matter effects can be constrained by same measurement in pNe collisions at the same energy

NA50, EPJC 39 (2005) 335

- expected multiplicity of cc pairs ~ 1
 ➡ no recombination effects
- $J/\psi/D^0$ ratio measured as a function of Ncoll using a Glauber model. Data compatible with $\sigma(J/\psi)/\sigma(D^0) \propto N_{\rm coll}^{(\alpha'-1)}$

with $\alpha' = 0.76 \pm 0.05$, in agreement with previous pA results plb410 (1997) 337

→ no hint for QGP-like anomalous J/ψ suppression

Exploring nuclear physics across energy scales 2024

G. Graziani slide 15

SMOG for astroparticle physics

- pHe in SMOG reproduces collisions of cosmic rays on InterStellar medium
- provides key inputs to understanding antimatter production in the cosmos (powerful probe for dark matter)
- other unique measurements of interest to cosmic-ray physics (modeling of atmospheric showers, charm PDF for atmospheric UHE neutrinos)

Prompt antiproton production in *p***He**

PRL 121 (2018), 222001

Result for prompt production (excluding weak decays of hyperons), compared to EPOS LHC PRC92 (2015) 034906 EPOS 1.99 Nucl.Phys.Proc.Suppl. 196 (2009) 102 QGSJETII-04 PRD83 (2011) 014018 QGSJETII-04m Astr. J. 803 (2015) 54 HIJING 1.38 Comp. Phys. Comm. 83 307 PYTHIA 6.4 (2pp + 2pn) JHEP 05 (2005) 026

The "visible" inelastic cross section (yield of events reconstructible in LHCb) is compatible with simulation based on EPOS LHC:

 $\sigma_{vis}^{\rm LHCb}/\sigma_{vis}^{\rm EPOS-LHC} = 1.08 \pm 0.07 \pm 0.03$

→ excess of \overline{p} yield over EPOS LHC (by factor ~ 1.5) mostly from \overline{p} multiplicity

Impact on secondary cosmic \overline{p} model

2015 Giesen et al., JCAP 1509, 023

- Significant shrinking of uncertainty for the predicted secondary antiproton flux from the use of LHCb and NA61 (pp) new data (plus other improvements)
- LHCb results allowed to constrain scaling violation when extrapolating x-section toward high energy
- Models now in better agreement with AMS data, notably at high energy
- Cross-section uncertainty is still limiting model accuracy G. Graziani slide 18

\overline{p} from antihyperons in pHe @110 GeV

- EPJC 83, 543 (2023)
- Analysis recently extended to detached \overline{p} from anti-hyperon decays (~ 40% of \overline{p} production)
- Two complementary approaches followed

Exclusive approach

Inclusive approach

$$R_{\overline{H}} \equiv \frac{\sigma(p \operatorname{He} \to \overline{H}X \to \overline{p}X)}{\sigma(p \operatorname{He} \to \overline{p}_{\operatorname{prompt}}X)} \quad \overline{H} = \overline{\Lambda}, \overline{\Sigma}, \overline{\Xi}, \overline{\Omega}$$

Detached Antiprotons in pHe: results

EPJC 83, 543 (2023)

Both approaches indicate larger antihyperon production than predicted by most commonly used hadronic models

- Precise results at 100 GeV scale, at the onset of strangeness enhancement (observed at colliders)
- Significant dependence on kinematics observed (usually neglected in cosmic secondary p
 calculations)

Antinuclei in fixed target @ LHCb?

- LHCb was not designed for light nuclei identification
- However, recently the capability to isolate He/He candidates through dE/dx in the tracking system was demonstrated

Isolated $\overline{\text{He}}$ sample (region A) in LHCb pp data

(anti)hypertriton decays

 $^{3}_{\Lambda} H \rightarrow ~^{3} He \pi^{-}$

were seen in *pp* collisions at LHCb!

LHCb-CONF-2023-002

- Iow-momentum d/\overline{d} can also be identified through TOF in outer tracker (work ongoing)
- Fragments of SMOG target nuclei can in principle be identified

(down to $\eta^* = -3$)

▲ unfortunately, ion identification capability not expected in the current upgraded detector

G. Graziani slide 24

The gas target upgrade

- Major LHCb detector upgrade for the LHC Run 3, including upgraded VErtex LOcator (microstrip → pixel)
- The new VELO integrates a new fixed target device SMOG2, based on a storage cell:
 - increase effective luminosity with same gas flow
 - inject other gas species, as H, D, N, O, Kr, Xe
- precise control of the gas density (improved accuracy on luminosity determination)
- spatial separation between beam-gas and beam-beam collision regions

The SMOG2 gas target

• TDR approved by LHCC in 2019 CERN-LHCC-2019-0051

Installed in the LHCb cavern on august 2020

- 20-cm long storage cell, 5 mm radius around the beam, just upstream the LHCb VELO
- Made of two rectractable halves as the rest of VELO
- Up to x100 higher gas density with same gas flow of current SMOG
- Gas density measured with ~ 2% accuracy via Gas Feed System
- Fast switch between gas species

SMOG2 installation

Non-noble gas injection

- Injection of non-noble gas species can affect the beam elements, notably deteriorate the NEG coatings, increasing desorption and secondary electron emission, potentially harming the LHC beam operations.
- Hydrogen can also diffuse in the bulk and cause a peel-off of the coating (embrittlement)
- Detailed numerical simulations have been performed to estimate the time-dependent impact of the planned gas injection with H₂ and N₂, using a custom version of the Molflow+ molecular flow Monte Carlo simulator
- Simulation of 96 hours of H₂ gas flow and 10 hours of N₂ gas flow: the level of NEG saturation has been shown to be acceptable, limited in a region < 20 cm long</p>

Simulated pressure profile with real geometry CERN-THESIS-2023-338

First SMOG2 operations in 2022

2022 has been a commissioning year for the upgraded LHCb detector

- SMOG2 has been succesfully tested with 4 gas species (H, He, Ne, Ar)
- first reconstructed primary vertices of simultaneous beamgas and beam-beam collisions, obtained online through novel Real Time Reconstruction fully software trigger

Physics in SMOG2 commissioning data!

LHCb-FIGURE-2023-008

G. Graziani slide 31

Physics prospects with SMOG2

LHCB-PUB-2018-015

arXiv:1812.06772

Expect data samples of order 100 pb ⁻¹ in		SMOG largest sample p–Ne@68 GeV	SMOG2 example p–Ar@115 GeV
Run3/4	Integrated luminosity	$\sim 100 \text{ nb}^{-1}$	100 pb^{-1}
runo/-r	syst. error on J/ ψ x-sec.	6-7%	2-3 %
Precision charm	J/ ψ yield	15k	35M
	D^0 yield	100k	350M
production measure-	$\Lambda_{\rm c}$ yield	1k	3.5M
monte accore historia	$\psi(2S)$ yield	150	400k
mems, access 0 states,	Y(1S) yield	4	15k
Drell-Yan,	Low-mass (5 $< M_{\mu\mu} < 9$ GeV/ c^2) Drell-Yan yield	5	20k

H and D targets to provide reference and study 3D structure functions

The ultimate \overline{p} production cross-sections

energy evolution of cross-sections (scaling violations, strangeness enhancement)

Take **data at lower energy** (possibly also injection energy, this requires dedicated LHC optics). This also provides access to forward production in LHCb

isospin effects (difference between \overline{p} and \overline{n} production) $\Delta_{IS} = \frac{\sigma(pp \to \overline{n}) - \sigma(pp \to \overline{p})}{\sigma(pp \to \overline{p})}$

and nuclear effects in pHe vs pH (less important, note that He fraction in interstellar medium is not so precisely known)

Collide protons with **hydrogen, deuterium and helium** targets in the same experiment

M.W.Winkler, JCAP02 (2017) 048 Exploring nuclear physics across energy scales 2024

Expected inputs to UHE shower models

- Modeling of UHE atmospheric showers requires knowledge of production cross-sections over some 10 orders of magnitude
- measurements of identified secondary particle spectra are needed

- Data from LHCb with O₂ and N₂ targets can provide useful inputs
- Additionally, during the oxygen beam run (scheduled in 2025) collisions of O beam on H target can be studied, providing a large phase space coverage for pO collisions at $\sqrt{s_{_{\rm NN}}} \sim 100$ GeV

More possibilities

■ UPC physics : interesting cross-section for photoproduced J/ψ and η_c (sensitive to odderon) in LHCb-FT, can complement studies made/ongoing by LHCb in collisions (pp, pPb, PbPb)

Lansberg et al., JHEP 1509 (2015) 087, Goncalves and Sauter PRD91 (2015) 870, Massacrier et al, arXiv:1709.09044, Goncalves and Jaime, arXiv:1802.04713

Also interesting for nuclear structure?

G. Graziani

slide 35

- A polarization induced by vorticity in HI collisions (see Becattini et al., PRC 88, 034905 (2013), STAR results on Nature 548, 62-65) Fixed target collisions have the correct energy scale (effect too small at TeV scale)
- Polarization measurements for Λ_c^+ and other heavy hadrons in pA are also a needed ingredient for the MDM/EDM proposed experiment
- Drell-Yan and heavy flavour channels with H₂ and D₂ targets will also give access to spin-independent nucleon TMDs as the Boer-Mulders functions in a novel kinematic range

- Hadronic flow can be studied over 3 units of pseudorapidity with full instrumentation at unique energy scale;
 - dihadron correlation studies already demonstrated by LHCb in pPb and PbPb
 - yields with SMOG2 could allow flow studies with charmed particles

hadronic flow measured at forward rapidity $(2.0 < \eta < 4.9)$ in PbPb collisions at 5 TeV, v_2 and v_3 obtained from 2-particle correlation analysis,

results compared to experiments at mid-rapidity and AMPT predictions

https://arxiv.org/abs/2311.09985

and of course, nuclear imaging

For deformed nuclei, flat eccentricity up to ~20% centrality

from Giuliano's talk

G. Graziani slide 37

Available SMOG2 targets

Summary of possible gas targets

Å	Η	validated for O(100) h/year
~ 8	D	as above (not tested yet)
Š	He	
~ &	Ν	not tested yet, but ok from simulations
R B	0	to be validated, should be possible at least for short runs
Å	Ne	
Š	Ar	
R B	Kr	to be validated, should be possible for short runs at end of data-taking
R ³	Xe	to be validated, should be possible for short runs at end of data-taking

any isotope for approved gas should be ok

The future: Polarized Fixed target?

- The LHCSpin collaboration is proposing an upgrade to a polarised gas target
- Studies ongoing within the Physics Beyond Colliders forum at CERN
- Inprecedented potential for parton TMDS with transversely polarised Drell-Yan and other channels, complementary to EIC
- Unique opportunity for spin physics in heavy ion collisions!

- Currently planning an R&D phase at LHC IR4
- Then, proposed installation at LHCb

Conclusions

LHCb successfully pioneered fixed-target physics at the LHC

with the upgrade to the SMOG2 target LHCb becomes

the fixed-target experiment at the highest energy and the highest production rate ever

A novel QCD laboratory, extending the reach of the LHC complex, with strong connections with heavy-ion HE physics nuclear physics astroparticle physics

from ESPP Update 2020

Physics Briefing Book

CERN-ESU-004 30 September 2019

Input for the European Strategy for Particle Physics Update 2020

The multi-TeV LHC proton- and ion-beams allow for the most energetic fixed-target (LHC-FT) experiments ever performed opening the way for unique studies of the nucleon and nuclear structure at high x, of the spin content of the nucleon and of the nuclear-matter phases from a new rapidity viewpoint at seldom explored energies [117, 118].

On the high-*x* frontier, the high-*x* gluon, antiquark and heavy-quark content (e.g. charm) of the nucleon and nucleus is poorly known (especially the gluon PDF for $x \ge 0.5$). In the case of nuclei, the gluon EMC effect should be measured to understand that of the quarks. Such LHC-FT studies have strong connections to high-energy neutrino and cosmic-ray physics.

The physics reach of the LHC complex can greatly be extended at a very limited cost with the addition of an ambitious and long term LHC-FT research program. The efforts of the existing LHC experiments to implement such a programme, including specific R&D actions on the collider, deserve support.