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Deep learning for Al

Face Identification Segmentation what&where NLP, NLG, Large Language Models

Chinese Poetry Generation with Planning based Neural Network

Zhe Wang', Wei He!, Hua Wu!, Haiyang Wu?, Wei Li!, Haifeng Wang!, Enhong Chen'
University of Science and Technology of China, Hefei, China
Baidu Inc., Beijing, China
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By a Lake at Autumn Sunset By a Lake at Autumn Sunset
— A TR R LA |
A cold autumn rain wetted my clothes last night, The wind blows reeds with osmanthus flying, |
LT el At & & ki . |
And I sit alone by the window and enjoy the sunset. | And the bamboos under clouds are so green as if to flow down. |
RS T S i b 0 A7 4 |
‘With mountain scenery mirrored on the rippling lake, The misty rain ripples the smooth surface of lake, |
Wl Hk 4w 7 R CRME KA. |
A silence prevails over all except the hovering birds, And I feel blue at sunset . |
Table 6: A pair of poems selected from the blind test. The left one is a machine-generated poem, and

the right one is written by Shaoti Ge, a poet lived in the Song Dynasty.
arXiv: 1610.09889v1

Machine Speech Natural Language Understanding,
Since Dec. 29, 2016, Master starts to beat Translation recognition Processing and Generation

top Go players secretly online. In one
week, Master defeated all the top Go

il 0550 1 plavers foum Ghtis-kdmea andl Fapa: Chat GPT, Clauder3, Kimi, 1 K¥2X...

60 wins, zero loss

AlphaGo@Twitter: “Now, The common technique behind these

I am the master”

Al applications: deep Learning!




DL: Neural Network with multi hidden layers

b 5,0 Fig from CS231N, Stanford
Forward pass i fla0) ?

input layer

hidden layer 1 hidden layer 2

Linear operation Non-linear activation function h; = o(z;)
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scaling, rotating, boosting, : / /
changing dimensions



How does the network learn

I " Neural network y: Network prediction
RHE 25 D> =flx8) | > y: True label

ﬂ

Loss(cost) function

1
L=—E @i — y)?
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1. The network parameters are initialized
with random numbers and the network

make random guess
2. Compute the loss function L which is a
functional of the network

ﬂ

3. Use auto-diff to compute the negative

gradients of network parameters Gradient decent
4. Use SGD-like algorithms to update [ - _Ea_L
network parameters 060




What has been learned by the deep neural
network (Global interpretation)

Olah, et al., "Feature Visualization", Distill, 2017.

)
Patterns (layer mixedda) Parts (layers mixeddb & mixeddc) Objects (layers mixeddd & mixedde)

deep layers

shallow layers



What has been learned by the deep neural
network (local interpretation)

» Ablation studies: LIME or Prediction Difference
Analysis. M. Tulio Ribeiro, et. al. “Why should |
trust you?”

» Class activation map: map the deep layers to
the input image, look for the most important
region for decision making. BoLei Zhou, et. al.
“Learning Deep Features for discriminative
localization”

» Layer-wise relevance propagation: set the
relavance of the output layer to 1, propagate the
relevance to the input data, to look for the most
important region for decision making.




Machine Learning in Nuclear Physics

NUCLEAR THEORY
¢ Correlations and predlctions
e Estimations and causations

ARTIFICIAL INTELLIGENCE W= &g
MACHINE LEARNING 1 NUCLEAR DATA

i : I © . » Databases DISCOVERY
B K~ ° PataMining

e \Visualization
Experimental Design

APPLICATIONS

NUCLEAR EXPERIMENT
e Methods
e Tools

ACCELERATOR SCIENCE
AND OPERATIONS

Machine Learning in Nuclear Physics, RMP 2022



Reviews

Colloquium: Machine learning in nuclear physics High energy nuclear physics meets

Amber Boehnlein, Markus Diefenthaler, Nobuo Sato, Malachi Schram, Veronigue Ziegler, Cristiano Fansg . .
Morten Hjorth-Jensen, Tanja Horn, Michelle P. Kuchera, Dean Lee, Witold Mazarewicz, Peter Ostroumoy| MaChlne Leal‘nlng
Orginos, Alan Poon, Xin-Nian Wang, Alexander Scheinker, Michael 5. Smith. and Long-Gang Pang
Rev. Mod. Phys. 94, 0310032 — Published 8 September 2022 Wan-Bing He (Fudan U., Shanghai and Fudan U.), Yu-Gang Ma (Fudan U., Shanghai and Fudan U.), Long-Gang
Pang, Huichao Song (CCNU, Wuhan, Inst. Part. Phys. and Hua-Zhong Normal U., LQLP and Peking U.), Kai

Zhou (Frankfurt U., FIAS) (Mar 12, 2023)

: = . e-Print: 2303.06752 [hep-phl
Article Referances No Citing Articles Export Citation

pdf . .
HEPML-LivingReview

> ARSTRACT _ A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy physics. The
Advances in maching {ea!njﬁg methods pl’ﬂ'l.."ide tools that have broad app“@a L‘_Hil-t}r in scientific research. goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these approaches to

a . . . . 5 ) . experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to incorporate the latest
ThESE tEChmq ues are bE‘-"”Q E'F'F'“Ed across the d1"."EFSI‘t}" of nuclear I'-"‘h‘j"SECS research tﬂp"ﬂS. |93dln£| o developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of topics to be as useful as

advances that will facilitate scientific discoveries and societal applications. This Colloguium provides a AR S G S
snapshot of nuclear physics research, which has been transformed by machine learning techniques. e

The purpose of this note is to collect references for modern machine learning as applied to particle physics. A minimal number of
categories is chosen in order to be as useful as possible. Note that papers may be referenced in more than one category. The fact that a

paper is listed in this document does not endorse or validate its content - that is for the community (and for peer-review) to decide.

Exp I 0 ri n g QC D m atte r i n extre m e co n d iti o n S Wit h M a c h i n e Furthermore, the classification here is a best attempt and may have flaws - please let us know if (a) we have missed a paper you think

should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or if the journal information is now
available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next paper.

-
Lea rn I n g If you find this review helpful, please consider citing it using \cite{hepmllivingreview} in HEPML.bib.
® Reviews

o Modern reviews

Kai Zhou (Frankfurt U., FIAS), Lingxiao Wang (Frankfurt U., FIAS), Long-Gang Pang (CCNU, Wuhan,
Inst. Part. Phys.), Shuzhe Shi (Stony Brook U.)
Mar 27, 2023

Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning [DOI]

Deep Learning and its Application to LHC Physics [DOI]

Machine Learning in High Energy Physics Community White Paper [DOI]

Machine learning at the energy and intensity frontiers of particle physics

Machine learning and the physical sciences [DOI]

Machine and Deep Learning Applications in Particle Physics [DOI]

1 46 pages Modern Machine Learning and Particle Physics
Machine Learning in the Search for New Fundamental Physics

e= P rl it 23 03 1 5 1 3 6 [he p— p h] Artificial Intelligence and Machine Learning in Nuclear Physics o




ML nuclear physics across energy scales

Degrees of Freedom Energy (MeV)

LQCD@ 0.0 @ cale > Deep generative models (such as normalizing flow and the
%) 9]
< @ 1 ° ° °
S auaks, ghons separation diffusion model) have been used to sample Field
cI‘éconstituent .
% quarks k0 Configureations in Lattice QCD
) < 770
O p meson mass
constituent quarks ° . ° °
2 ’ > Deep learning is widely used to solve inverse problems of
Q
Q@Q L HIC to study the EoS of hot QCD matter, the phase
D INItIO" s s = transition, the transport coefficients etal/s, ...
=

-6 3 .
E] . B > Deep neural network is used to represent the many-bod
g Cl p pRptk 8

energy in lea
kS ) wave function of nucleus, to solve variational problems in
7] protons, neut m ?
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2 ab initio calculations
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e > Deep learning is used to solve inverse problems of HIC to

nucleonic densities .
collective andeurens study the nuclear structure, for instance, the nuclear
model 0.043 ) )
odgls | foational deformation, neutron skin, alpha cluster and short range

correlation

collective coordinates

> ...



Generativive models: MC sampling

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Discriminator

D(x)

Encoder

Generator

G(z)

Decoder

Po(x|2)

Flow » Inverse
X > > > _ -
f(x) f(2)
Xo— X1 — X2 ——— T I

Similar to Box Muller algorithm

O-@ O @
A A M

zy~po(2o) z;~p;(z;) x~q(x)

Samples Flow
Dr?\l"i’gi‘::’m : model or
Distribution models

Flow-based generative models for Markov chain Monte
Carlo in lattice field theory
Albergo, Kanwar, Shanahan 1904.1207
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Stacked U-net for relativistic fluid generation

Ed(Initial) Ed(VISH2+1) Ed(sU-net) Vx(VISH2+1) Vx(sU-net) Vy(VISH2+1) Vy(sU-net)
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FIG. 1:  An illustration of the encode-decode network, stacked U-net, which consists of the input and out layers and four - = St
residual U-net blocks. The right figure shows the U-net structure, and the depth of the hidden layer is written on the top of m

B e T AMPT
The expansion of quark gluon plasma is learned in the image

y (fm)

ﬁ
) ﬂ5

translation task using stacked UNET. = T < r=6.0mic

E
10~20 minute
v T/“/ 0 VISH2+1 with one CPU
p— £
M T
—_— 1~2 second
] with T40 GPU

PRR3, 023256, H.Huang, B.Xiao, H.Xiong, Z.Liu, Z.Wu, Y. Mu and H.Song
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Represent the many-body wave function

Adams et al., 2021 — anvc
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Inverse problems in HIC

T

(1) Nuclear Structure (2) Initial Parton Distribution  (3) QGP properties and EoS
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Theoretical model: CLVisc

g TR = (  —

TW = {eg+ f)u“u"’ — Pghv + n?"’

Initial condition EoS Viscosity

CLVisc: A 3+1D viscous hydro parallized on GPU using OpenCL
Purpose: Describe the non-equilibrium space-time evolution of hot QCD matter

Feature: 100 times faster than using a single core CPU.

L.G. Pang, Q. Wang and X. N. Wang, PRC 86 (2012) 024911
L.G. Pang, B.W. Xiao, Y. Hatta, X.N.Wang, PRD 2015

L.G. Pang, H.Petersen, XN Wang, PRC97(2018)n0.6,064918
XY Wu, GY Qin, LG Pang, XN Wang,PRC 105 (2022) 3, 034909
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temperature 7

QCD phase diagram and nuclear EoS

=== first order phase transition

pressure

IS
&
£ first order
é? " phase transition

% critical

pOiIlt energy density

¥

hadronic matter \
color superconductor

quark gluon plaSI’Ila == crossover 5

baryon chemical potential B

e Lattice QCD predicts a smooth cross
over at 0 muB

e Taylor expansion of Lattice QCD gets
EoS at small muB

e Sign problem at large muB prevents
the first principle calculation

e It is conjuctured there is a 1st order
phase transition at large muB

e Different phase transition types
correspond to different EoS

15



CLVisc for different EoS

EOSL

EOSQ

EOSL

EOSQ

7=1.9 fm

7=3.7fm

etals =0
Lattice QCD EoS
(smooth cross over)

eta/ls=0
First order phase transition

eta/s = 0.08
Lattice QCD EoS

eta/s = 0.08

First order phase transition
eta/s: shear viscosity / entropy density

16



Powerful pattern recognition

" 5 Cat

crossover or

- 1st order transition

17
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DL with CNN for EoS classification

1.1
particle 16 32 flattened fc output EOS
spectra features features 128 layer _
15x48 15x48 8x24 1.0 CLVisc + AMPT
No<7/ !
A ——
— Wav 7 0.9 B
~ \:\?',4,1,:{“ . IEBE-VISHNU
__ Ny Dasyae 3
3 0.8
Q
1st order ©
&
m | 3 0.7 CLVisc + IPGlasma
L o
8x8 conv, 16 7x7x16 conv, 32 6’5)_
dropout(0.2) dropout(0.2) dropout(0.5) 0.6
bn, PRelu bn, avgpool, PRelLu bn,sigmoid '
1 . . 2 0.5
[(6) = =7 2 lwilog g + (1 — ) log(1 — )]+ A[O]]z
i=1 ; :
OpPY 10SS L2 regularlzatlon 0.0 0.2 0.4 0.6 0.8 1.0

fraction of training data

Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang.
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Determining nuclear deformation
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L.-G. Pang, K. Zhou and X.-N. Wang, arXiv:1906.06429
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Ildentifying the

'2C, Triangle

-10 =5

0
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80, Tetrahedron

-clustering structure

—

pT(GeV/c)

—

pT(GeV/c)

Fail in EbE
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Succeed with 4000-events average

—

'2C, Woods-Saxon

JJ He, WB He, YG Ma, S Zhang, PRC 104, 044902 (2021)

pion
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Alpha clusters in O+0 collisions using CLVisc

ylfm]

O+0 at v'sunv =7 TeV, charged hadrons
WS, Deformed WS 4- tetrahadron — Mo O e i RO
- : : : - "‘-% |~ —— 4-alpha tetrahedral 1
- | — def d W-S N
I Dl N
5 . = |
R i ]
. 7,(0)=0.021 Y - \ ]
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1% 5 0 5 10 O+0 at /syy =7 TeV
x[fm] —T " N R B A A T
= —+— 4-alpha tetrahedral
100_ —— deformed W-S ]
- WS
Table I. The ratio of charged multiplicity at middle pseudo-rapidity between different centralities.
Cent1/Cent2 WS Deformed WS Four-a 102} —
60% 40% 30% 20%
0-5%/20-30% 2.44 2.44 2.29 : : : : : \
| 1 I I 1
0-5%/40-60% 5.99 5.91 5.38 1041 i) |
RLE :
. . . . 60% 40% 30% 20% 5%
» In CLVisc simulations of 7 TeV O+0 collisions, the e D
i inlici i 0 1000 2000 3000
centrality denpendence of charged multiplicity is totdl sriropyGEVE

quantitatively different for 4- structure.
C.Ding, LG. Pang, S. Zhang and YG Ma, CPC 47 024105 .



The flow differences with alpha cluster in O16

0.2

0.0
0.10

< 0.05

D.GB

O+0 aty/syy = 7 TeV , charged hadrons

- v»{2} of Pb+Pb T 1 i
. at /syy =5.02 TeV i i
" e '-T‘A"'-*-‘—*-*'-'A'_'-“"__.(E‘l) i e —— — (t?) i ¥ - e R ((’::) i
i | = 4-alpha tetrahedral ]
_ 0-5% = 40-60% =
E : ____,!....-,-—"""__ f} =
- T 1T = deformed W-S
-—= W-S
0 05 10 15 2000 05 1.0 15 2000 05 1.0 15 20
pr[GeV/c]

22



N

C(Ar)

ucleon-Nuclon correlations

1-0~ ''''''''' —-— step correlation —
E X —— NN correlation ) T‘) L Po
el & ¢ e realistic ] o =1 :
' ] exp(T=2) +1
0.6| N
0.4 - C(Ar) =1 — p(Ar)/pu(Ar).
0.2~ -
0.0k - Sample nucleons:
- ] not only the single nucleon distribution,
0.2~ B but also the two-nucleon relative-
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 distance distribution

With Yuding Huang and Xin-Nian Wang, in preparation
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The sampled results

The single nucleon

distributions keep
the same.

The two nucleon
distributions have
small difference
at short A

= 0.30 ]

E i i uncorrelation i
.71 step correlation

0.25— 1 NN correlation ]
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0.14— -==step correlation —]
—— NN correlation

x10-2
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________

Visually no difference for initial
energy density distribution

un-corr nn-corr

un-corr(multiple events) nn-corr(multiple events)




The effect on flow fluctuations (ini state)

Small but visible difference in the The v3 to v2 ratio puzzle for ultra
geometric eccentricity fluctuations at central collisions is solved partially
initial state. by two nucleon distribution.
L 0550 [ (b) T 056
3)/: 050§ _§0'54 g .-'N\—. 0.16 L L L L
) 045; Eo'sz ’ :’E 0.15 f— A :tnec; f;rfr'f;}Zﬂon _E
0.40 a = =t — B NN correlation —[—F ol
- —{o48 0.14 — —
0.35 —— siep eorr Hoss - { B
= — nn-corr : E 0.13 :— _[_ _:
0'300 5IO 1 (I)O 1 FI)O 260 2500 SIO 1 (I)O 1 EI>0 2(I)O 258'44 — { + 1
mult mult 0.12 :_ _:
A 0.600 —0.56 I ] .
5; 0575 Hossa g 0.11 | + ;* =
F 0550 = :T,n - }* 7
© oses E 0.10 [— —
o.soog —Jo.50 - ]
n: B I
0:4252— i“ﬁ n
0400 52044 )
i See also G. S. Denicol, C. Gale, S. Jeon, J. F.

Paquet and B. Schenke, arXiv:1406.7792.
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Effect of 2-nucleon dist. on final state obs.
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2 No visible difference is observed
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Using a deep neural network

. _
e

—e/
Point Cloud

-pnEmEAE- -

1T 1] ——
T T ] ] I
~EEEEne--

One Event

———oHEEEE- ————-

————HHEER-
————~-HEENE-

Repeat

eat

=N
@
o

1D Convolution

~oHENN

— — — — i

— — — — —

Global Average
Pooling

]
Self-attention ° . .....

Au+Au /syn = 3 GeV, 0.5 Million events

TABLE III. Two-by-two classification accuracy for 50 com-
bined events at different centralities in SMASH.

0% - 20%(20% - 40% [40% - 95%
un-corr & step corr| 85% 83% 69%
un-corr & nn-corr 70% 67% 56%
step corr & nn-corr| 69% 68% 62%

i Global Average
- Pooling

Subtract mean feature

Event By Event

1D Convolution

l |

1 ]

: Global Average
| Pooling

1

1

Event 1 ‘

Event 2

Event n

» PointCloud for event-by-event
classification and traditional multi-
event mixing method fail!

» PointCloud Network + Self-
attention + Statistical information of
latent features in high dimensional
space succeed.

» The classification accuracy is
highest for central collisions using
deep neural network! 27



Features learned by the network

e i Original Data "y

SEESE = SRt > Interpretable ML can provide some inspiration
what has been learned by the deep neural
{ort-. network

oo EI T 1 A1 3'_0-0-15 e bt ;h_ o . )

Feature 7 w CEEEEEETTE > By prediction difference analysis (through
v T feature masking), we select most important
i features and visualize events and particles that
. maximizes these features.

Dzoj 52 o 0 1 2 Es D'ﬁ%} 05  1d 15 20 25 ;6’-‘05‘5 N -

ey Feature 16 oy e R _

: » What deep learning tells us:

Jodb T B ® Low pt particles are important

fo SO~ ES—G: ) S ® Particles at large rapidity are important

e Feature 73 e R AR R

- ® Particle ratios are important

ik ER: JEET wRd e 28
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Summary

» DL is good at solving inverse problems in HIC to extract the nuclear structure

» Using the (v2, multiplicity) plot, deep learning can predict the absolute values of
nuclear deformation factors

» Using multi-event mixing, the network can identify the alpha cluster in O using AMPT
simulations of O+0O collisions

» CLVisc simulations show that 4-alpha in O leads to different centrality dependencies
of charged multiplicity and anisotropic flows

» Two nucleon distribution is hard to identify using HIC.

> The DL method tells:

1. Statistical information of high dimensional latent features are important for classification
2. NN correlation signals are stronger in central collisions

3. Look for particles(or their ratio) at small pt and large rapidity
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