AMPT simulation with clustering & nuclear structure effects

Guo-Liang Ma (Fudan University)

[1]Xin-Li Zhao and GLM, Phys.Rev.C 106 (2022), 034909, arXiv: 2203.15214
[2] Xin-Li Zhao, GLM, You Zhou, Zi-Wei Lin, Chao Zhang, arXiv:2404.09780
[3] Pei Li, Xin-Li Zhao, GLM, et al., in progress

Outline

- Introduction
- AMPT simulation on isobar collisions at 200 GeV
- AMPT simulation on O+O collisions at 200 GeV
- Summary and outlook

Nuclear structure vs porcelain design

The International Workshop on "Exploring Nuclear Physics across Energy Scales", 2024.4.20-24, Beijing

З

Study nuclear structure using heavy-ion experimental observables

Different CME backgrounds between isobar collisions

• Differences in multiplicity distribution, <Nch> and v2 between two isobar systems.

		Case-1 [83]			Case-2 [83]	Case-3 [113]			
Nucleus	<i>R</i> (fm)	<i>a</i> (fm)	β_2	<i>R</i> (fm)	<i>a</i> (fm)	β_2	\overline{R} (fm)	<i>a</i> (fm)	β_2
⁹⁶ Ru ⁹⁶ Zr	5.085 5.02	0.46 0.46	0.158 0.08	5.085 5.02	0.46 0.46	0.053 0.217	5.067 4.965	0.500 0.556	0 0

• Related to nuclear deformation/structure.

Haojie Xu et al. PRL 121 (2018) 022301 Hanlin Li et al. PRC 98 (2018) 054907

44Ru

The International Workshop on "Exploring Nuclear Physics across Energy Scales", 2024.4.20-24, Beijing

Nuclear structure in relativistic heavy-ion collisions

C. Zhang and J. Jia, Phys.Rev.Lett. 128 (2022), 022301

- G. Giacalone et al., Phys.Rev.Lett. 127 (2021), 242301 J. Jia and C. Zhang, Phys.Rev.C 107 (2023) 2, L021901
- The International Workshop on "Exploring Nuclear Physics across Energy Scales", 2024.4.20-24, Beijing

structure

Simulating isobar collisions using AMPT

Initialization of isobar nuclei with geometry

Woods-Saxon form of spatial distribution of nucleons:

 $\rho(r,\theta,\phi) \propto \frac{1}{1 + e^{[r - R_0(1 + \beta_2 Y_2^0(\theta,\phi) + \beta_3 Y_3^0(\theta,\phi))]/a}}$

Contraction of the	_	Contraction of	_													
			as	se1	ole	d Cas	se2		Case1	L		Case2	2	C	Case3	
				β_2	R_0	a	β_2									
	$_{44}$ Ku	0.13	v.46	0.13	5.13	0.46	0.03	5.085	0.46	0.158	5.085	0.46	0.053	5.067	0.500	0
	$^{96}_{40}{ m Zr}$	5.06	0.46	0.06	5.06	0.46	0.18	5.02	0.46	0.080	5.02	0.46	0.217	4.965	0.556	0

	Case4					Ca	se5		Ca	se6			Case7	Case8				
	R_0	a	β_2	β_3	R_0	a	β_2	β_3	R_0	a	β_2	β_3	R_0	a	β_2	R_0	a	β_2
$^{96}_{44}\mathrm{Ru}$	5.09	0.46	0.162	0	5.09	0.46	0.162	0	5.09	0.52	0.154	0	5.065	0.485	0.16	5.085	0.523	0
$^{96}_{40}\mathrm{Zr}$	5.09	0.52	0.060	0.2	5.02	0.46	0.060	0.2	5.09	0.52	0.060	0.2	4.961	0.544	0.16	5.021	0.523	0

	Case9			Case10			(Case1	1	ski	n-type	;	halo-type		
	R_0	a	β_2	R_0	a	β_2	R_0	a	eta_2	R_0	a	β_2	R_0	a	β_2
⁹⁶ ₄₄ Ru n	5.075	0.505	0	5.073	0.490	0.16	5.085	0.46	0.158	5.085	0.523	0	5.085	0.523	0
⁹⁶ ₄₄ Ru p	5.060	0.493	0	5.053	0.480	0.16	5.085	0.46	0.158	5.085	0.523	0	5.085	0.523	0
$^{96}_{40}{ m Zr}$ n	5.015	0.574	0	5.007	0.564	0.16	5.080	0.46	0	5.194	0.523	0	5.021	0.592	0
$^{96}_{40}{ m Zr}$ p	4.915	0.521	0	4.912	0.508	0.16	5.080	0.34	0	5.021	0.523	0	5.021	0.523	0

* 1 M events for each case are used to test if it can pass the criterion test.

The International Workshop on "Exploring Nuclear Physics across Energy Scales", 2024.4.20-24, Beijing

8

AMPT performance: Halo-type vs deformation

Significance of α -clustering structure

- α -clustering structure inside some nuclei
- The spatial distribution of α -clustering nuclei is diffuse because condensed α -particles are weakly bound
- Heavy-ion collisions are helpful to detect α -clustering structures?

α -cluster effect in C+Au collisions

•e3/e2 & v3/v2 is sensitive to α -cluster structure in C+Au collisions at 200GeV

STAR results for O+O collisions

• $v2{4}/v2{2}$ serves as a powerful tool for studying nucleon-nucleon correlations in O+O collisions at 200 GeV.

• A hint on possible α -cluster structure of oxygen nuclei?

Improved Version of String-Melting AMPT model

Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, PRC 72, 064901 (2005)

 $\mathbf{A} + \mathbf{B}$

➤ Improved AMPT model correctly describes the centrality dependences of <Nch> and $\langle p_T \rangle$ rather well.

Chao Zhang, Liang Zheng, Shusu Shi, Zi-Wei Lin, PRC 104, 014908 (2021)

- 1. New quark coalescence model.
- 2. Improved heavy quark productions.
- 3. Modern set of parton distribution functions in proton and impact parameter-dependent nuclear shadowing.

Introducing nuclear structures of ¹⁶O to improved AMPT

>The centrality dependence of $\langle p_T \rangle$ is reasonable in improved AMPT version. >Improved AMPT failed to reproduce data even when tuning off parton cascade >Why the v2 problem? How to solve it?

Parton formation time dependence of $\varepsilon_2 \& v_2$

ε₂ & v₂ decrease with increasing parton formation time, v₂ at τ'₀ = 6τ₀ is close to data. Why?
Is spatial distribution diffuse and gaseous because condensed α-particles are weakly bound?
A similar concept/analog as the compactness from Huichao and Haojie et al.'s work (arXiv: 2401.15723).

Nuclear structure effect on centrality dependence of $\boldsymbol{\varepsilon}^2$ and $\boldsymbol{\varepsilon}^3$

Consistence between vn and ϵ n in O+O collisions at 200 GeV

The International Workshop on "Exploring Nuclear Physics across Energy Scales", 2024.4.20-24, Beijing

v3/v2 ratio in O+O collisions at 200 GeV

> $\varepsilon 3/\varepsilon 2$ are more sensitive to nuclear structure for more central collisions > $\varepsilon 3/\varepsilon 2$ for central collisions: Tetrahedron > W-S ≈ Ab initio > Square > v 3/v 2 for central collisions: Tetrahedron ≈ W-S ≈ A b initio > Square. > Why is v 3/v 2 inconsistent with $\varepsilon 3/\varepsilon 2$?

Conversion efficiency $(v_n/\boldsymbol{\epsilon}_n)$ from $\boldsymbol{\epsilon}_n$ to v_n

>The ordering of $vn/\epsilon n$ in different configurations is consistent with the ordering of vn or ϵn in central collisions

pT dependences of v2 and v3

 $> v_2(p_T)$: The AMPT results are consistent with the data for low pT.

≻Ours are lower than the data for high pT. Is due to non-flow effect different from the data?

$\pmb{\varepsilon}2$ and v2 fluctuations

 $\succ \epsilon_2$ and v₂ fluctuations are consistent with each other.

Larger v₂ fluctuations are observed for Tetrahedron and Ab initio cases, which seems more consistent with the STAR data.

<pT> Ratio between with and without nuclear structure

Our <pT> ratio for Ab initio (NLEFT) is consistent with their NLEFT.
 Our <pT> ratio for Tetrahedron is consistent with their VMC.

v2 Ratio between with and without nuclear structure

Our v2 ratio for Ab initio (NLEFT) is consistent with their NLEFT.
 Our <pT> ratio for Tetrahedron is inconsistent with their VMC. Why?

Ratio of v2 and $\boldsymbol{\varepsilon}$ 2 between with and without nuclear structure

>Our v2 ratio is consistent with our ϵ^2 ratio. Other reason?

$^{20}Ne + ^{20}Ne at 7 TeV$

The International Workshop on "Exploring Nuclear Physics across Energy Scales", 2024.4.20-24, Beijing

Guo-Liang Ma (Fudan Univ.) 27

Summary && Outlook

deformationneutron skin/haloa-clusterImage: state of the state of the

•Different types of nuclear structures as the inputs of the AMPT model

•Isobar collisions at RHIC: Halo-type neutron skin or deformation?

•O+O collisions at RHIC: an extended effective parton formation time indicating a possible α -clustering structure inside oxygen nuclei?

- More studies are in progress for Ne+Ne and O+O collisions at LHC
- Enjoy the beauty of nuclear porcelain!

Thank you!