

Short-Range Correlations & Nuclear Medium Effects

Zhihong Ye (叶志鸿)

Department of Physics, Tsinghua University

Exploring nuclear physics across energy scales

Peking University, 04/23/2024

Nuclear Structure Across Energy Scales

Nucleus

How quarks and gluons participate in this process?

Are free protons & nuctrons same as ones into nuclei?

Spoil-alert: NO!

Nucleons in Nuclei

Strong Force vs Nuclear Force

Nuclear force is a "weak" strong force, but too complicated for QCD in description of Nuclei

□ Suprisedly, shell-models work very well

- ✓ Sum of nucleon-nucleon(NN) Interactions → mean field
- ✓ Modern NN potentials, e.g. AV18

 $V = \sum_{i} \bar{V}(i) + \sum_{i < j} V^{(2)}(i, j) + \sum_{i < j < k} V^{(3)}(i, j, k) + \dots$

- NN terms fitted from data
- Too hard for NNN and beyond
- Short range part (non-nucleonic)?

TABLE I. Argonne V18 spin-isospin operators in coordinate space.

Term	Spin-isospin operator in r space
$\overline{O_1}$	I
O_2	$(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_3	$(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2),$
O_4	$(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_5	$S_{12} = 3(\boldsymbol{\sigma}_1 \cdot \hat{\mathbf{r}})(\boldsymbol{\sigma}_2 \cdot \hat{\mathbf{r}}) - \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}$
O_6	$S_{12}(\boldsymbol{ au}_1\cdot\boldsymbol{ au}_2),$
<i>O</i> ₇	$(\mathbf{L} \cdot \mathbf{S})$
O_8	$(\mathbf{L} \cdot \mathbf{S})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_9	$(\mathbf{L} \cdot \mathbf{L})$
O_{10}	$(\mathbf{L} \cdot \mathbf{L})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_{11}	$(\mathbf{L} \cdot \mathbf{L})(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)$
O_{12}	$(\mathbf{L} \cdot \mathbf{L})(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
<i>O</i> ₁₃	$(\mathbf{L} \cdot \mathbf{S})^2$
O_{14}	$(\mathbf{L} \cdot \mathbf{S})^2 (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
O_{15}	$T_{12} = (3\tau_{1z}\tau_{2z} - \boldsymbol{\tau}\cdot\boldsymbol{\tau})$
O_{16}	$(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)T_{12}$
<i>O</i> ₁₇	$S_{12}T_{12}$
O_{18}	$(au_{1z}+ au_{2z})$

Nucleons in Nuclei

Short Range Correlations (SRC)

- □ 2 or more nucleons highly overlapped \rightarrow high-density but <u>cold</u>!
- SRC nucleons carry high relative momenta (A-independent)
- Experimental signals:
 - \checkmark Look for back-to-back nucleons after breaking up SRC

Nucleons in Nuclei

Studying SRC is important

□ Short-Range forces are the extreme cases of NN & NNN forces

□ SRC could be important in forming neutron-rich nuclei

□ SRC in the mass matrix for neutrino-less double beta decay?

Wang, Zhao, Meng, arXiv: 2304.12009, Song, Yao, Ring, Meng, Phys. Rev. C 95, 024305

Measuring SRC

> Nucleus-scattering with high momenta

Quasi-Elastic Scattering (QES): Knock out a nucleon but not breaking it

Beam Particle:

- o Electron
 - Pro: Precise, low background
 - Con: small cross-section (EM)
- Proton:
 - Pro: large cross-section (Strong)
 - Con: Less precise, high background

"Target":

- Fixed (Gas, Liquid, Solid) Ο
 - Pro: Luminosity=Density, most of stable nuclei (atoms) available
 - Con: Knocked-out nucleon, residuals hard to escape
- Ion Beam: 0
 - Pro: detector final state particles w/ high momenta
 - Con: Luminosity=current, limited ion beams

Inclusive Measurement:

- Only detect scattered electrons, A(e,e')
- Measuring response of internal structure to the momentum-transfer
- Less (not zero) Final State Interaction (FSI)

(Semi-) Exclusive Measurement :

- Also detect knocked-out high-momentum nucleon,
- Can detect paired nucleon in opposite direction
- Strong FSI (experimental & theory corrections) 0
- A-2 system in ground state Ο

Measuring SRC

Exclusive SRC Results

Exclusively count np-/pp-/nn-SRC pairs \rightarrow np make up 90% of SRC pairs

"Minority" move faster

Similar np-dominances in most of heavy nuclei \rightarrow universality?

Cautions:

1.6

- Exclusive results are statistics limited
- Mixed with mean-field and long-range NN signals
- Complicated FSI corrections
- Limited stable nuclei

R. Subedi, et al, Science 320 1476 (2008)

O. Hen et al., Science (2014), M. Duer et. al., Nature (2018), B. Schmookler et. al. Nature (2019), A. Schmidt et. al Nature (2020) + many others

Nucleon momentum

> Inclusive SRC Measurements:

QES inclusive cross-sections:

□ Heavy to light nuclei have similar high-P tails

 \rightarrow look for a plateau

✓ 2N-SRC (1.3<_{Xbj}<2):
$$a_2(A, D) = \frac{2}{A} \frac{\sigma_A(x, Q^2)}{\sigma_D(x, Q^2)}$$
,

✓ 3N-SRC (2<_{Xbj}<3):
$$a_3(A, {}^{3}He) = \frac{3\sigma_A}{A\sigma_{{}^{3}He}}$$

□ Inclusive vs Exclusive:

- High precision, small FSI
- Not direct probing SRC internal info

►Inclusive SRC Results

Frankfurt, Strikman, Day, Sargsian, PRC48, 2451 (1993)

Compared with exclusive SRC

Korover and Denniston et al., CLAS, Submitted (2022)

□ Non-Universal in light nuclei?

S. Li, R. Cruz-Torres, N. Santiesteban, Z.Ye, et. al, Nature, 2022, 609: 41

≻A More Extreme Case

- □ Much higher relative momenta
- □ Much denser cluster (Neutron-Star, Nuclear Matter)
 - Bi-neutron-stars merger: neutron star > 2.4 solar mass
 Short-Range 3-body force?

☐ Inclusive Measurement: XS links to the 3N-SRC tails 3N-SRC (2<x<3) $a_3(A, {}^{3}He) = K \cdot \frac{3\sigma_A}{A\sigma_{_{3}He}}$

• CLAS result has big background

Higinbotham & Hen, PRL 114,169201 2015)

- \circ Q² too low to see 3N-SRC?
- Much bigger FSI?

"Muti-messenger" era

Upcoming Jlab RC Experiments:

- ✓ ALERT- SRC: measure C.M motion of pairs (Mean-Field vs SRC)
- Real photon scattering (check universality)
- Future EIC with much higher energy: SRC in J/Psi, tagged DIS

Precision Frontier of SRC: pA reaction!

>Other ongoing/future Experiments

3rd Gen experiment in HyperNIS@Dubna: non-nucleonic d.o.f in Deutron (Tel Aviv, FIU, MIT, ODU, PSU, BNU, Tsinghua)

$$A_{zz} = \frac{(\sigma_{-} + \sigma_{+} - 2\sigma_{0})}{\sigma_{unpol}}$$

□ SRC w/ rare radioactive isotope at R³B@GSI

- ¹⁶C(p,2pN)A-2* in 2022.
- Future: 110,120,132 Sn (N/Z = 1.20, 1.40, 1.64)

- 4.5GeV p on fixed nuclear targets
- Search for 3N-SRC signals in A(p,2pNN)
- Tensor-Force Projects (RIKEN, CSR@IMP, GSI ...)

≻ CEE@HIRFL-CSR

Using current CEE design for measuring protons

 \Box A-2 fragments are measured by a new magnet + ZDC

- P: 2.8 GeV
- ${}^{12}C^+$: 1 GeV/u
- $^{238}U^+$: 0.5 GeV/u

>HIAF-High-Energy Station

- □ HIAF construction to be completed in 2025:
 - C12, E=51 GeV/c (4.25GeV/c/u) \rightarrow similar to NICA
 - 1.8x10¹²pps (fast extr.), 4.5x10¹¹pps (slow extr.) vs. 3.5x10⁴ pps at JINR
 - Liquid hydrogen target (under development by Hongna Liu from BNU (0.073g/cm3 x 15cm)
 - Total Luminosity = 3×10^{35} cm⁻² s⁻¹ (slow ext)

- Most idea place for searching
 - **3N-SRC** signals
- Precision frontier for SRC for

the first time

• Key challenges: Target + DAQ

≻ HIAF-HFRS:

□ Study 2N-SRC w/ radioactive isotopes from HFRS

□ NSFC-ISF Joint Fund approved (2024~2026)

- Tel Aviv, MIT, BNU, Tsinghua
- Analyze NICA & GSI data
- Simulation of SRC study at CEE@HIRFL and HIAF

GAGG for y &proton

First SRC Workshop in China

- Link: <u>https://indico.impcas.ac.cn/e/src</u>
- Recording: https://cloud.tsinghua.edu.cn/d/0cdcfe10e90046d49f4b/

> Quarks in bound protons are modified!

* <u>Fermi Motion:</u>

- ✓ Bound nucleons are moving
- ✓ Hard to calculate, even in A=2,3

Alekhin, Kulagin, Petti, PRD 96, 054005 (2017) C. Cocuzza, et. al., PRL 127, 242001 Segarra et. al. PRL 124, 092002 (2020)

* <u>Shadowing:</u>

- ✓ Final state particles after DIS rescattered with residuals (diffractive)
- Many models works

- Anti-Shadowing?
- **EMC**? ?

Geesaman, Saito, Thomas, Ann. Rev. Nucl. Part. Sci.45, 337 (1995) Norton, Rept.Prog.Phys. 66 (2003) 1253-1297

≻ EMC Effect:

□ EMC: Inclusive DIS cross-section ratio of A to D drops linearly in 0.3<x<0.7

Phys.Lett.B 123 (1983) 275-278

□ Even modified in A=3 (likely D2 as well)

□ 40 years after discovery, still unknown!

Every Model is Cool!

- ✓ Rescaling of quark & gluon sizes
- ✓ Mean-Field (MIT bag, NJL ...)
- ✓ Multi-quark clusters (6-quark bag)

- □ Connection with SRC?
 - Modification in all nucleons or partially?

≻ EMC Effect:

- □ Several models predict flavor-dependence
 - ✓ If N>Z, u-quark is more "bound"
 - ✓ If N<Z, d-quark is more "bound"

I. Cloet, et al, PRL 109, 182301 (2012) PRL 102, 252301 (2009)

□ Jlab JAM model predicts u & d-quarks in H3 & He3 are modified very differently

> Anti-Shadowing

- □ Origin still unknown
 - EMC + shadowing doesn't make up by anti-shadowing
- □ Many models but can't explain both shadowing & anti-shadowing
 - Deffractive process (multiple-scattering)?
 - Rescaling (enlarged confiment sizes)?
 - 6-quark bag?
 - ..

□ Contamin more interesting phyiscs?

• Link to how strong-force leaks into nuclear force?

□ No anti-shadowing seen in sea quark?

Drell-Yan, E772, PRL. 64 (1990) 2479-2482

□ Maybe only gluons carry anti-shadowing?

Frankfurt, Guzey, Strikeman PRC 95 055208 (2017), Guzey, et.al, PRC86,045201 (2012)

х

- Parton-Distribution Functions in Nuclei (nPDF)
 - $\hfill\square$ Limited eA or pA data; limited measured nuclei (Z~N) unprecise;

□ nPDFs extractions rely on many assumptions, e.g. flavor-independence, isospin-symmetry

EPPS16 Nuclear PDF

Eur. Phys. J. C (2017) 77:163

 (π^{+})

e'

u

 $\left(d \right)$

p

 (\mathbf{u})

Ν

Р

□ SIDIS: Detect both scattered electrons and hadrons

$$\frac{d\sigma^{h}}{dxdydz} = \frac{4\pi\alpha^{2}s}{Q^{4}}(1-y+\frac{y^{2}}{2})\sum_{q}e_{q}^{2}[f_{1}^{q}(x)]\left[D_{q}^{h}(z)\right]\right]\frac{\text{Nuclear Fragmentation}}{\text{Function (nFF)}}$$
Nuclear PDF (nPDF)

nFFs are also modified

➢ Hadronization

- □ Struct quark has to hadronized
- □ Nuclei as a QCD Lab:
 - with different sizes of nuclei, structs quark hadronized in medium or vacuum
- $\hfill\square$ Hadronization of a quark in space (vacuum & medium) and time

Color Confinement

CLASI2 SIDIS experiments w/ heavy nuclei recently completed

Flavor-Dependence EMC effects:

□ Models predict different quarks are modified differently

□ SIDIS super-ratio observables are sensitive to flavor-dependent

>SIDIS w/ Light Nuclei:Experiment

SIDIS Measurement of A=3 Nuclei with CLAS12 in Hall-B

Conditionally approved in PAC49

On behalf of the spokespeople: D. Dutta, D. Gaskell, O. Hen, D. Meekins, D. Nguyen, L. Weinstein*, J. R. West, Z. Ye, and the CLAS Collaboration

C12-21-004 Experiment : SIDIS w/10.6 GeV unpolarized beam

- ✓ New Tritium target system (same as 2nd Tritium-SRC)
- \checkmark Detecting pions and kaons to decouple u, d, s
- ✓ nFFs likely same in D2, He3 and Tritium

From Valance to Sea

□ Jlab seeks for energy upgarde from 11GeV to 22GeV

□ 2023 Long-Range Plan <u>https://indico.jlab.org/event/677/</u>

He3(e,e'\pi^+)X, E_e=22GeV, Count in 100days

He3(e,e'\pi^+)X, E_=22GeV, Count in 100days

≻eA SIDIS w/ mutiple Hadron-Production

General Focus on study anti-shadowing effect of sea quarks in heavy nuclei

□ Measurement of strange-quark's unseen EMC & Antishadowing

C. Gong, B.Q. Ma,

Electron-Ion Collider (EIC)

eRIHC@BNL

□ New facilities: US-EIC (eRIHC) & China-EIC (EicC)

□ SIDIS w/ π , *K*, *J*/ ψ ... to fully decouple all quark's flavors

ERL Circulator 10.4 MeV

Electron Injector 2.8 GeV ~ 5.0 GeV

□ Sea-quarks and gluons' anti-shadowing and shadowing effect

pRing 19.08 GeV (p)

> 48 MeV ~ 2 GeV (p) Polarized p, D, He-3 Depolarizd Heavy Ion

> > Polarized Ion Source

1341.58 m

Polarized p, D, He-3 Depolarized Heavy Ion

EicC@HIAF

eRing 2.8 GeV ~ 5.0 GeV 809.44 m Polarized Electron

30/32

From 1D to 3D

 \Box Polarized PDF (g₁) could be modified more significantly

I. Cloet, PRL 95, 052302, 2005); PLB 642, 210(2006)

Given First global analysis of nTMD

• See Hongxi Xing's talk on Tuesday afternoon

I. Cloet, PRL 95, 052302, 2005); PLB 642, 210(2006)

 $\Box \text{ EicC \& EIC: SIDIS w/}$ polarized light nuclei Unpolarized FF $\sigma_{SIDIS} = \sum_{q} e_q^2 [f_1^q(x, K_\perp) \otimes D_q^h(z, q_T)]$ Unpolarized TMD

Summary

- SRC allows fully studies of nuclear force, quark & gluon in nuclei, neutron stars, etc.
- > 2N-SRC well studied (np-dominate); 3N-SRC remains unseen
- > Inverse kinematic pA reaction \rightarrow Precisely study SRC
- ▶ Initial exploration with Dubna & GSI & CEE@HIRFL, future high-precision study with HIAF
- \succ EMC Effect: Modification of quark's distributions in nuclei \rightarrow No good explanation yet
- Strong connection between the SRC and EMC \rightarrow a way to solve 40-year-old puzzle?
- Jlab-12GeV & 22 GeV, US-EIC and EicC will systematically study EMC vs SRC, anti-shadowing, shadowing effects in valance & sea quarks & gluons.

Bridging the gap between nuclear-structure and nucleon-structure!

Backup Slides

Measuring SRC

- Two Types of Detector Systems
 - SRC has small reaction rates → Precision vs. Coverage

Hall-A HRS / Hall-C HMS

(High-Precision, Limited Acceptance);

Add third-arm to detector p/n

Hall-B CLAS6/CLAS12

(Low-Precision, Full Acceptation)

Isospin Dependence

□ Tensor Force is strongly abtractive

Tensor force favor neutron-proton pairs

Proton \rightarrow T= 1/2, Neutron \rightarrow T= -1/2

Isospin Singlet: T = 0, n-p pairs \checkmark Stable! due to Pauli Principle Isospin Triplet: T = 1, p-p ($T_z=1$), n-p ($T_z=0$), and n-n ($T_z=-1$)

Measuring SRC

SRC Event Selection

□ Conditions: Knock-out nucleons, initial and final nuclear systems both in ground state → QES tail on the low-E side

Quantities:

Momentum Fractions: $x = \frac{Q^2}{2m_p v}$ Four Momentum Transfer: $Q^2 = 4E_0 E' sin^2(\theta/2)$

□ Remove mean-field contribution \rightarrow k>k_{Fermi}

- Directly measure high-P knock-out nucleons \rightarrow strong FSI
- $1 < x < A \rightarrow$ "quark" takes addition momenta from nucleon-motion
- □ Control FSI in semi-(exclusive) measurements (very hard!):
 - High-Q² to minimum the time of escaping \rightarrow less re-scattering
 - Measure knocked out nucleons at special kinematics with min/max FSI
 - Combine with theories models for additional corrections

Isospin Dependence in Inclusive SRC

Use asymmetric isotopes: e.g. Ca48/Ca40

- 2N-SRC (n-p dominate): $R = \frac{\sigma_{Ca48}/48}{\sigma_{Ca40}/40} = \frac{(20 \times 28)/48}{(20 \times 20)/40} \longrightarrow 1.17$
- Mixed (80% Mean-Field + 20% SRC): R ≈ 1.0
 M. Vanhalst, et. al., PRC 84, 031302 (2011), PRC 86, 044619 (2012)

□ H3 & He3 Mirror Nuclei (E12-11-112)

$$\frac{\sigma_{\rm H3}}{\sigma_{\rm He3}} = \frac{2R_{pp/np} + 1 + \frac{\sigma_{ep}}{\sigma_{en}}}{(2R_{pp/np} + 1)\frac{\sigma_{ep}}{\sigma_{en}} + 1} \quad \Longrightarrow \quad R_{pp/np} = \frac{\left(1 + \frac{\sigma_{ep}}{\sigma_{en}}\right)\left(1 - \frac{\sigma_{\rm H3}}{\sigma_{\rm He3}}\right)}{2\left(\frac{\sigma_{\rm H3}}{\sigma_{\rm He3}} \cdot \frac{\sigma_{ep}}{\sigma_{en}} - 1\right)}$$

- 10 times precision vs Exclusive-SRC (E12-14-009)
- More precise than heavy-nuclei results
- A=3 reveal less np-Dominate!
- Different few-body forces in light nuclei vs heavy ones?

S. Li, R. Cruz-Torres, N. Santiesteban, Z. Ye, et. al, Nature, 2022, 609: 41

37/32

SRC@CEE

□ SRC@CEE Simulation Ongoing

≻ CEE@HIRFL-CSR

HIRFL-CSR beam

• ${}^{12}C^+$: 1 GeV/u

 $^{238}U^+$: 0.5 GeV/u

• *P*: 2.8 GeV

•

SRC@HIAF

High-Energy Station

 \Box Monte-Carlo Simulation (¹²C⁶⁺ at 51GeV/c)

□ Challenges:

- Detector efficiency at small angles
- Beam quality (energy, position, current ...)
- Target performance at high luminosity
- FEE, DAQ

≻Hadronization in Nuclei

- □ Start with light nuclei, e.g. D2, He3 and H3:
 - ✓ Calculable nuclear structure (mean-field)
 - \checkmark EMC Effect small but can be measured
 - \checkmark Small hadronization effect (mostly in vacuum)
 - \checkmark Modification of FFs are small and similar

Small (~ 5% at high-z) effects on He4's nFFs → Safe to ignore medium effect of nFF in A=2, 3

v(GeV/c)

(Pia Zurita, arXiv:2101.01088)

v(GeV/c)

Systematically study D2, He3 & H3 is the first step to bridge between free-nucleons and heavy nuclei!

v(GeV/c)

≻eA SIDIS w/ mutiple Hadron-Production

□ Use A=3 isotopes to fully decouple EMC & Antishadowing in u, d, and s

43/32

≻eA SIDIS w/ mutiple Hadron-Production

□ Use A=3 isotopes to fully decouple EMC & Antishadowing in u, d, and s

> From 1D to 3D

□ Strong EMC effect in the polarized PDF (helicity functions)?

Modification of quark-spin in nuclei?

I. Cloet, PRL 95, 052302, 2005); PLB 642, 210(2006)

□ Fully solve EMC puzzle → Study nuclei in 3D
 ✓ Measure SIDIS with pT distributions

$$F_{UU}(x, z, P_T) = \sum_{q} e_q^2 [f_1^q(x, K_\perp) \otimes D_q^h(z, q_T)]$$

Unpolarized TMD Unpolarized FF

47/32

48/32