

Direct slice Nb R&D for SRF cavities at KEK

Takeshi DOHMAE 2023/Nov./20 The 11th IHEP-KEK SCRF Collaboration Meeting

Current KEK activities on direct slice Nb

KEK is now working on two main topics about direct slice niobium.

- 1. Investigation on large grain (LG) niobium
 - KEK had produced totally 14 cavities including 1-cell, 3-cell and 9-cell
 1.3 GHz cavity.
 - ✓ In current 3 years, we fabricated four 3-cell cavities and two 9-cell cavities with new LG materials from ULVAC.
 - ✓ One 9-cell cavity was jacketed and tested in horizontal cryostat.
- 2. Investigation on medium grain (MG) niobium
 - ✓ KEK had newly started investigation on MG niobium.
 - ✓ Two 1-cell cavities were fabricated and tested.
 - ✓ Mechanical testing on MG is on going.
 - ✓ Fabrication of 9-cell cavity is on going.

Nb production

		Grain size	Formability	Mechanical properties	Cost
F	G	Small (< 0.1mm)/uniform	Good	Uniform	-
Ν	/IG	Medium (< 5mm)/almost uniform	Good	Almost uniform	Lower
L	G	Large (1cm \sim 15cm)/not uniform	Bad/Large distortion	Non uniform	Lowest

Study on LG

Lists of cavities

Cavity	RRR	Supplier	Shape	cell	Та
R1	496	TD	Tesla-Like	1	Lo-Ta
R5	107	СВММ	Tesla-Like	1	Hi-Ta
R11	270	CBMM	Tesla	1	Hi-Ta
R10/R10b	270	CBMM	Tesla-Like	3	Hi-Ta(1191)
R10 (VT2)	270	СВММ	Tesla-Like	3	Hi-Ta(1191)
R16/R16b	497	Silmet→ULVAC	Tesla	3	Lo-Ta(20)
R17/R17b	408	CBMM→ULVAC	Tesla	3	Hi-Ta
KEK-2	496	TD	Tesla-Like	9	Lo-Ta
KEK-4/5	270	CBMM	Tesla	9	Hi-Ta
KEK-7	408	CBMM→ULVAC	Tesla	9	Hi-Ta

☆LG with low Ta is more expensive since removing Ta from Nb needs special chemical procedure. High Ta LG is more cost effective.

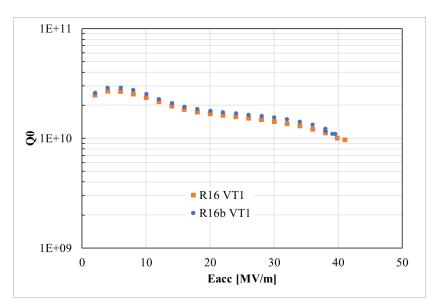
Lists of cavities

	Cavity	RRR	Supplier	Shape	cell	Та
	R1	496	TD	Tesla-Like	1	Lo-Ta
	R5	107	CBMM	Tesla-Like	1	Hi-Ta
	R11	270	CBMM	Tesla	1	Hi-Ta
	R10/R10b	270	CBMM	Tesla-Like	3	Hi-Ta(1191)
New	R10 (VT2)	270	СВММ	Tesla-Like	3	Hi-Ta(1191)
	R16/R16b	497	Silmet→ULVAC	Tesla	3	Lo-Ta(20)
	R17/R17b	408	CBMM→ULVAC	Tesla	3	Hi-Ta
	KEK-2	496	TD	Tesla-Like	9	Lo-Ta
	KEK-4/5	270	СВММ	Tesla	9	Hi-Ta
New	KEK-7	408	CBMM→ULVAC	Tesla	9	Hi-Ta

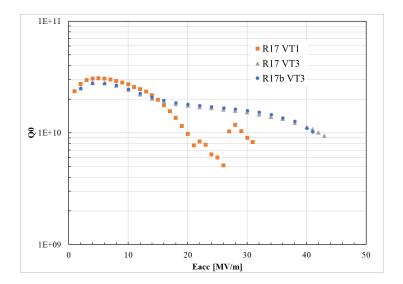
☆LG with low Ta is more expensive since removing Ta from Nb needs special chemical procedure. High Ta LG is more cost effective.

Investigation strategy 2

New challenge by ULVAC. They melted only one time and got high RRR.

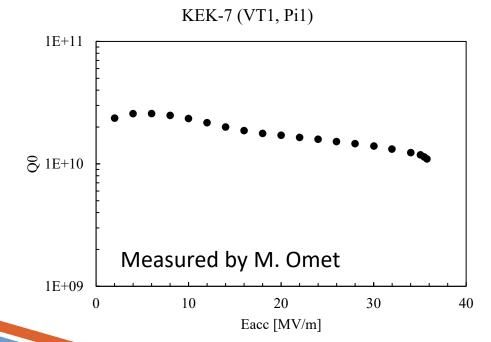

Aiming cost reduction 2 (reduce melting)

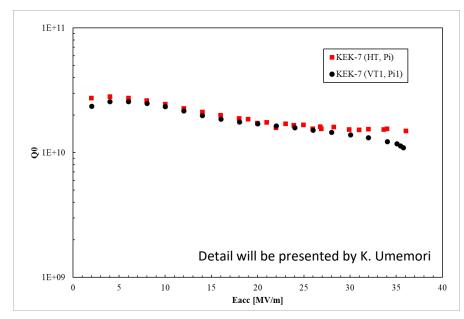
LG from ULVAC. Only 1 melting


Silmet→ULVAC; high-RRR, low-Ta RRR:498

CBMM→ULVAC; high-RRR, high-Ta RRR: 408

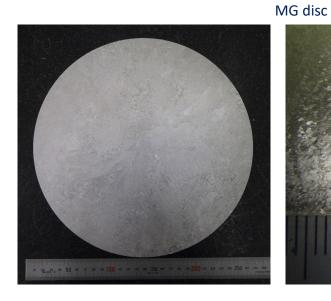
Measured by Araki-san


Aiming cost reduction3


CBMM→ULVAC; high-RRR, high-Ta RRR: 408

KEK-7 was successfully jacketed

Study on MG


Medium grain (MG niobium)

MG production

- Forge Nb ingot to "billet" 1.
- Slice billet into discs 2.

Grain size: few μ m – 5mm

Mechanical Properties [1]

		MG	LG	FG
Room temperature	Tensile strength (σ) [MPa]	123 (5)	84 (3.2)	157
	0.2% proof strength [MPa]	39 (2)	65	44
	Elongation [%]	25 (3)	75	37
LHe temperature	Tensile strength (σ) [MPa]	651 (60)	611 (132.4)	832
	0.2% proof strength [MPa]	283 (34)	-	516
	Elongation [%]	7.5 (1)	6	7

MG w annealing (800Cx3h)

[1]A. Kumar, et al., "Development of the Directly-Sliced Niobium Material for High Performance SRF Cavity", SRF2023

- Uniformity of mechanical property from MG is much better than that of LG. ٠
- \rightarrow Large advantage on high pressure gas regulation
- Two single cell cavities were fabricated using these MG discs.

Manufacture of cavity

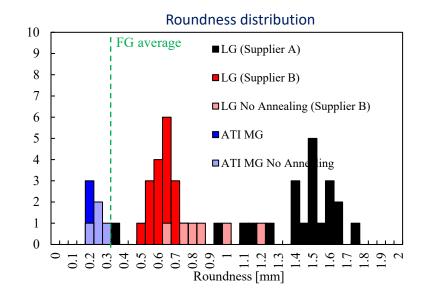
Formability

Cracked at iris after forming half-cell. Similar crack happen with LG discs. This issue was solved optimizing diameter of hole made on disc before forming.

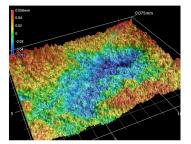
Shape accuracy

Difference between design shape and real shape is less than 0.5mm. Roundness at equator is similar to that of FG.

Surface roughness


Surface of half cell is rough after forming. Ra 2.5-5.7µm, Rz 11-28µm

Successfully formed iris after improving the fabrication process

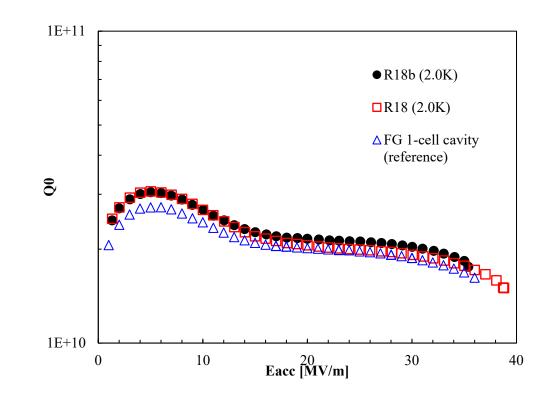


Inner surface around equator

3D data of surface

Performance of MG cavities

Fabricated cavities

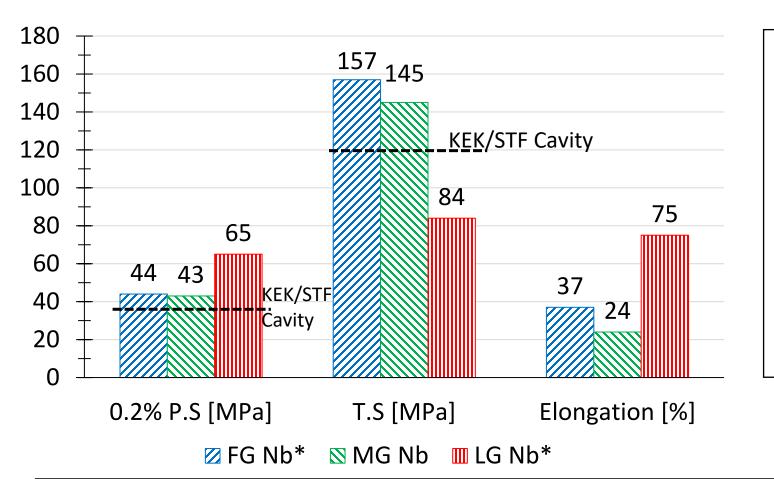

Equator of R18 was mechanically polished before welding.

	Ra [µm]	Rz [µm]		
Disc	0.7	-		
Formed	2.6 ~ 5.7	11~28		
Polished	2.6 ~ 3.7	2.6 ~ 11		
EP (100µm)	1.1 ~ 1.5 3.4 ~ 6.			
Surface roughness				

Surface treatment menu

- 1. Initial electropolishing of 100 μ m
- 2. Annealing at 800 $^{\circ}$ C \times 3 hours in a vacuum furnace
- 3. Second electropolishing of 20 μm
- 4. High pressure rinsing with ultra-pure water
- 5. Baking at 120 $^{\circ}$ C \times 48 hours

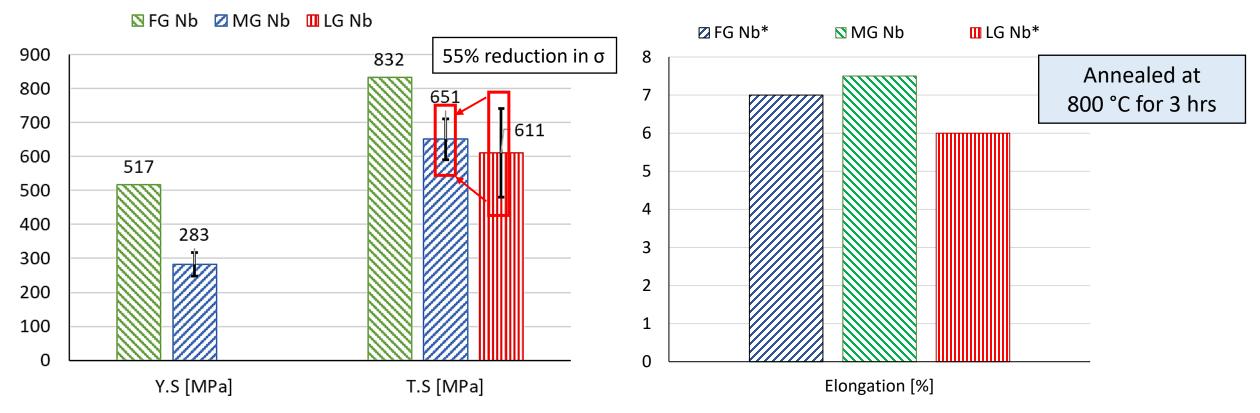

Mechanical testing of MG is now on going.



Mechanical properties

Room Temperature Property Comparison

- MG Nb closer to FG Nb than LG Nb at room temperature.
- Elongation is lower than FG Nb but fine for HPGS
- High elongation necessary for press forming of half cells.


Mechanical strength of MG-Nb achieved the criteria of **HPGS** regulation for KEK/STF-Cavity

MG Nb data: A. Kumar et al. (July 2021), SRF2021 MOPCAV004

* FG Nb and LG Nb data is for middle RRR annealed material (M. Yamanaka et al., SRF'21 WEPFDV005).

Low Temperature Property Comparison

- Tensile Strength of MG-Nb at LHe-T is better than LG-Nb, with lower standard deviation.
- No issues with HPGS w.r.t mechanical strength in LHe (800 °C for 3 hrs).

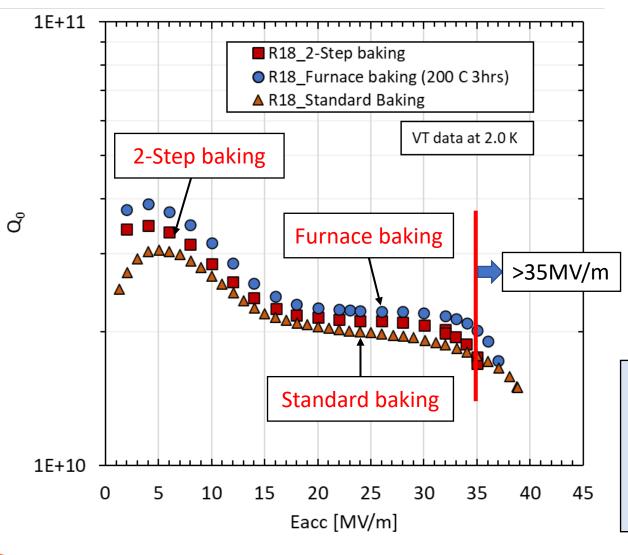
* FG Nb and LG Nb data is for middle RRR annealed material (M. Yamanaka et al., SRF'21 WEPFDV005.

MG Nb data: A. Kumar et al., SRF2021 MOPCAV004

Investigations on direct slice material are on going.

1. Investigation on large grain (LG) niobium

- ✓ In current 3 years, we fabricated four 3-cell cavities and two 9-cell cavities with new 1 time melted LG materials from ULVAC.
 →All cavities achieved more than 35MV/m
- 2. Investigation on medium grain (MG) niobium
 - ✓ KEK had newly started investigation on MG niobium.
 - $\checkmark~$ Two 1-cell cavities were fabricated and tested.
 - \rightarrow Two of them achieved more than 35MV/m.
 - \checkmark Mechanical testing on MG is on going.
 - \rightarrow Variation of mechanical strength is smaller than LG.
 - ✓ Fabrication of 9-cell cavity is on going.

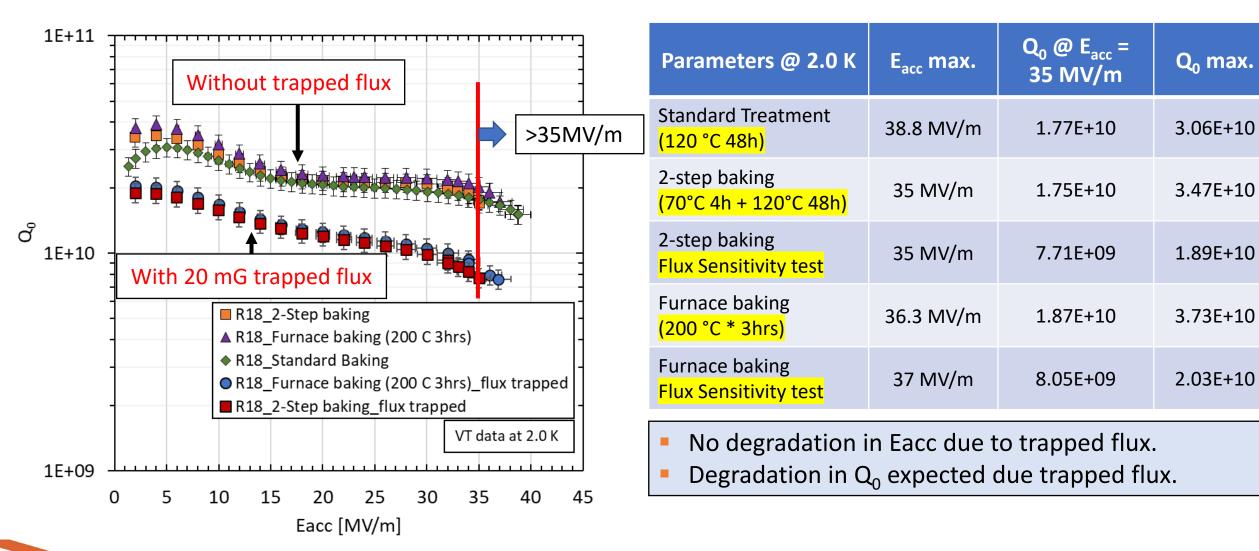


Thank you

18

MG Nb 1-Cell Cavity High Q-High G Study

Slide by A. Kumar (SRF2023)



Parameters @ 2.0 K (R18 cavity)	E _{acc} max.	Q ₀ @ E _{acc} = 35 MV/m	Q₀ max.
Standard Treatment <mark>(120 °C 48h)</mark>	38.8 MV/m	1.77E+10	3.06E+10
2-step baking <mark>(70°C 4h + 120°C 48h)</mark>	35 MV/m	1.75E+10	3.47E+10
Furnace baking <mark>(200 °C * 3hrs)</mark>	36.3 MV/m	1.87E+10	3.73E+10

- Clears ILC Specification.
- Highest Eacc for Standard surface treatment.
- Q₀ within error range
- No degradation in Eacc after quenching unlike LG Nb cavities.

MG Nb 1-Cell Cavity High Q-High G with Flux Sensitivity Studies

2022/2/16