

Status of HEPS RF System

Pei Zhang

말 있는 것은 것은 것은 것은 것을 것을 했다.

11th IHEP-KEK SCRF Collaboration Meeting, Nov 20-21, 2023, Beijing, China

- Introduction to HEPS
- HEPS RF System
- Booster RF
- Storage-ring RF

High Energy Photon Source

High Energy Photon Source (HEPS)

A diffraction-limited SR light source (4th-gen)
 The 1st high-energy SR light source in China

Main facts

- Circumference: 1360.4 m
- Beam energy: 6 GeV
- Location: Huairou Science City, Beijing
- Construction time: 06.2019 12.2025
- Budget: 4.76B CNY (~\$652M)(including materials, civil construction & commissioning, excluding labor costs)
- Support: Central government + Local government + Chinese Academy of Sciences

SR: Synchrotron Radiation

Landscape of the 4th-gen SR facilities

Pei Zhang

Light sources in mainland China

•

•

中国地图

Shanghai Synchrotron Radiation Facility (3rd-gen)

- In operation: 5 light sources (3 SRs + 2 Linacs)
- Under constr.: 3 light sources (2 SRs + 1 Linacs)
- Planning, R&D: 4 light sources (3 SRs + 1 Linacs)

Under construction In operation Planning, R&D **HEPS** BSRF DCLS HALF SSRF WHPS SXFEL SAPS

High Energy Photon Source

Hefei Adv. Light Facility

Southern Adv. Photon Source

Pei Zhang

HEPS in Huairou Science City (Beijing)

[1] Y. Jiao *et al.*, *J. Synchrotron Rad.* 25, 1611–1618 (2018).
[2] H. Xu *et al.*, *RDTM* 7, 279–287 (2023).
[3] C. Meng *et al.*, *RDTM* 4, 497–506 (2020).

Value	Unit	
6	GeV	
1360.4	m	
7-bend achromat		
<60	pm·rad	
>1×10 ²²	*	
200	mA	
Top-up	-	
	Value 6 1360.4 7-bend ac <60 >1×10 ²² 200 Top-up	

*: phs/s/mm²/mrad²/0.1%BW

Detailed parameters refer to: Design Report of the HEPS RF System, IHEP-HEPS-AC-RF-TR-2023-001.

Pei Zhang

- One of the brightest 4th-gen SR facilities in the world
- Brightness of 5×10²² phs/s/mm²/mrad²/0.1%BW at the photon energy of 21 keV, can provide X-ray with energy up to 300 keV
- 14 public beamlines in Phase I, HEPS can accommodate up to 90 beamlines

• HEPS - Test Facility (HEPS-TF) project

- R&D phase for HEPS, Apr. 2016 Oct. 2018
- Funding: 321M CNY (25M CNY for RF)

- Groundbreaking in Jun. 2019
- Civil construction completed in Nov. 2021
- PAPS completed in May 2021, currently in operation
- First accelerator component installation in Jul. 2021
- Booster installation completed in Jan. 2023
- Storage-ring installation started in Feb. 2023
- Linac commissioning completed in Mar. 2023
- Booster commissioning completed in Nov. 2023

Platform of Advanced Photon Source Technology R&D

RF system

Cavities

- 5 sets of 166.6 MHz SRF cavity modules
- 2 sets of 499.8 MHz SRF cavity modules
- 6 sets of 499.8 MHz NCRF cavities

• High-power RF

- 5 sets of 166.6 MHz 260 kW solid-state power amplifiers
- 2 sets of 499.8 MHz 260 kW solid-state power amplifiers
- 6 sets of 499.8 MHz 100 kW solid-state power amplifiers

RF controls

- 5 sets of 166.6 MHz RF control systems
- 8 sets of 499.8 MHz RF control systems

Main parameters of the booster

Parameter	Injection	Extraction	Unit
Circumference	454.060	m	
RF frequency	499.8		MHz
Harmonic number	757		-
Electron beam energy	0.5	6	GeV
Electron beam current	11	13	mA
Total SR loss	1.94e-4	4.02	MeV/turn
Total power loss to SR	2.134e-3	52.26	kW
Radiation damping time (x, y, z)	7.8e3, 7.8e3, 3.9e3	4.5, 4.5, 2.3	ms
Total RF voltage	2	8	MV
RF bucket height	3.02	1.02	%
Bunch length	1.5	11.0	mm
Repetition rate	1	Hz	
Max. straight section length	8.8	m	

[1] HEPS Interface Control Document, HEPS-PM-CD-2018-003-V0 (in Chinese).

[2] P. Zhang et al., "Radio-frequency system of HEPS", Radiation Detection Technology and Methods 7, 159-170 (2023).

Pei Zhang

Main parameters of the storage ring

Parameter	Value	Unit	Parameter	Value	Unit
Circumference	1360.4	m	β function at high- $β$ straight (x/y)	8.18/5.0	m
Beam energy	6	GeV	β function at low- $β$ straight (x/y)	2.56/2.31	m
Beam current	200	mA	No./Length of straights	24/6.086	m
Energy loss per turn (bare)	2.64	MeV	Total CBI threshold (x)	3.4E+6	Ω/m
Energy loss per turn to IDs	1.5	MeV	Total CBI threshold (y)	1.87E+6	Ω/m
Total energy loss per turn	4.14	MeV	Total LCBI threshold @1 GHz		
Total power loss to radiation	828	kW	(w/o HC, 200 mA)	1.27E+5	Ω
Momentum compaction	1.88×10 ⁻⁵	-	(w/ HC, 200 mA)	3.63E+4	Ω
Synchrotron frequency (w/o HC)	181	Hz	RF frequency (fund. rf)	166.6	MHz
Energy acceptance (ΔE/E)	4	%	Harmonic number	756	-
Natural bunch length	5.06	mm	RF frequency (HC)	499.8	MHz
Bunch length with HC	29.8	mm	Touschek lifetime (680 bunches)	3.8	hour
Radiation damping time (x/y)	10.85/20.62	ms	Total RF voltage (fund. rf)(w/ HC)	5.16	MV
Radiation damping time (z)	18.76	ms	Total RF voltage (HC)	0.91	MV

[1] HEPS Interface Control Document, HEPS-AC-CD-2019-007-V0 (in Chinese).

[2] P. Zhang et al., "Radio-frequency system of HEPS", Radiation Detection Technology and Methods 7, 159-170 (2023).

HC: Harmonic Cavities

Pei Zhang

Main features of the RF system

- Double-frequency RF system: 166.6 MHz + 499.8 MHz
- Active harmonic RF compatible for on-axis swap-out & on-axis accumulation injections
- SRF for the storage ring, normal-conducting RF for the booster
- Heavy damping of higher order modes for storage-ring SRF cavities
- Solid-state power amplifiers for all RF transmitters, digital low-level RF controllers

15

	BST	SR (main)	SR (HC)	Unit	
RF frequency	499.8	166.6	499.8	MHz	
Total RF voltage	2 – 8	5.4	0.91	MV	
Cavity technology	Normal-conducting	Superconducting	Superconducting	-	
Cavity type	5-cell	β=1 quarter-wave	1-cell elliptical	-	
Technology readiness	Mature product	In-house new dev.	In-house exp.	-	
No. of cavities	6	5	2	-	
RF voltage per cavity	1.35 (op.) 1.9 (design)	1.2 (op.) 1.5 (design)	0.91 (op.) 1.75 (design)	MV	
RF power per cavity (max)	70 (61 cav + 9 beam)	170	105	kW	
No. of transmitters	6	5	2	-	
RF power per transmitter	100 (cw)	260 (cw)	260 (cw)	kW	
Transmitter technology	SSA	SSA	SSA	-	
LLRF control stability (p-p)	±1%, ±1°	±0.1%, ±0.1°	±0.1%, ±0.1°	-	
LLRF technology	Digital LLRF (in-house development)				

Pei Zhang

RF cavities for HEPS

500MHz PETRA-type 5-cell copper cavity (Booster)

Procured from RI (Minor modifications)

166MHz Quarter-wave β=1 SRF cavity (Storage ring)

In-house development (New)

500MHz KEKB-type 1-cell elliptical SRF cavity (Storage ring)

In-house development (BEPCII experience)

[1] T. Huang *et al.*, "Normal-conducting 5-cell cavities for HEPS booster RF system", *IPAC2023*, MOPA184.

[2] X. Zhang *et al.*, "Design of a HOM-Damped 166.6 MHz Compact Quarter-Wave β=1 SC Cavity for HEPS", *SRF2021*, MOPCAV010.

[3] H. Zheng et al., "Design optimization of a mechanically-improved 499.8 MHz single-cell SC cavity for HEPS", IEEE TAS 31, 3500109 (2021).

- Transmitter type: SSA
- Power transmission
- 9-3/16" coaxial rigid lines for 166MHz
- WR1800 rectangular waveguide for 500MHz
- High-power circulator for each RF station

RF hall surface area: 1600 m^2

RF hall surface area: 2400 m²

• In-house development

≇ Home	5		HEPS	Boost	er RF	System		2023/11/	11 16:24:1	5.069
LLRF		100 kW 100 kW	100 kW	100 kV	V 10	00 kW	100 kW	Beam (Current	0.8490 mA
SSA	Beam -				D · II		HIII	Total \	/oltage	6.1 MV
CAV	B	S1CAV1 BS2CAV1	BS2CAV	2 BS2CA	V3 BS	2CAV4 B	S2CAV5	Booster	Energy	5000 MeV
CIRC										RF_Vacuum
LOAD	BS1RF1	BS2RF1	BS2RF2		BS2RF3		BS2RF4		BS2RF5	
INTLK	INTL On/Off Ramp Local		INTL On/C	off Ramp Local	INTL On/C	Off Ramp Local	INTL On/O	Off Ramp Local	INTL On	Off Ramp Local
Archiver	• • • •		• •		• •	00	• •		2	
Trend	Vc 1.22 MV		Vc	1.23 MV	Vc	1.22 MV	Vc	1.22 MV	Vc	1.18 MV
BC1DC1	Phase 80.04 °		Phase	49.97 °	Phase	-86.02 °	Phase	-110.75 °	Phase	9.99 °
DSIRFI	P_fwd 54.77 kW		P_fwd	56.11 kW	P_fwd	48.41 kW	P_fwd	49.93 kW	P_fwd	44.40 kW
BS2RF1	P_reft 6.97 kW		P_refl	9.51 kW	P_refl	3.05 kW	P_refl	2.56 kW	P_refl	2.05 kW
BS2RF2	Vac_up 1.80E-6 Pa		Vac_up	4.80E-7 Pa	Vac_up	2.20E-7 Pa	Vac_up	1.80E-7 Pa	Vac_up	2.80E-7 Pa
BS2RF3	Vac_in 1.20E-6 Pa		Vac_in	3.30E-7 Pa	Vac_in	1.00E-9 Pa	Vac_in	2.20E-7 Pa	Vac_in	1.90E-7 Pa
BS2RF4	Vac_out 1.20E-6 Pa		Vac_out	2.70E-7 Pa	Vac_out	2.10E-7 Pa	Vac_out	2.20E-7 Pa	Vac_out	2.10E-7 Pa
BS2RF5	Vac_down 1.20E-6 Pa		Vac_down	2.20E-7 Pa	Vac_down	1.80E-7 Pa	Vac_down	2.80E-7 Pa	Vac_dow	2.00E-6 Pa

Commissioning in two stages (original plan)

Commissioning plan (original)

- Initial beam commissioning with normal-conducting cavities
- Beam commissioning with SRF cavities after ~100 A hour accumulated beam current

Purpose

- Vacuum cleaning of the SR: large outgassing by synchrotron light irradiation on vacuum chambers
- Lower the potential contamination of the SRF cavities
- Reserve longer development time for the new 166MHz SRF cavities

Initial commissioning with NC cavities

Parameter	Booster	Storage ring	Unit	Original plan
Beam energy	6	6	GeV	
Total energy loss (w/o IDs)	4.02	2.64	MeV/turn	
Cavity type	5-cell,	copper		
RF frequency	499	9.8	MHz	
Number of cavities	3	3	-	
Max. available power at cavity (incl. 10% transmission loss)	100	135	kW	
Max. allowable power of FPC	120	120	kW	Normalbaatar
Forward power per cavity	100	120	kW	operation: 70kW
Beam current	4	70	mA	
Total power loss to SR	16	185	kW	
Wall loss per cavity	94	58	kW	
Total RF voltage	5	3.96	MV	_
Limiting factor	SSA	FPC	-	

Booster RF

Normal-conducting cavities

- Contract of 6 cavities signed with RI GmbH in 03.2020
- Delivery of all 6 cavities in 11.2022, high-power tests complete in 12.2022

Booster RF installation & commissioning

- 30 Jun. 2022, handover of the BST RF hall
- 8 Oct. 2022, utilities completed installation in BST RF hall
- 24-28 Oct. 2022, 3 cavities installed in BST tunnel
- 16 Dec. 2022, BST-RF installation started
- 06 Jan. 2023, 100kW SSAs installed
- 10 Jan. 2023, waveguide installed
- 14 Apr. 2023, 100kW SSAs passed SAT
- 15 May. 2023, LLRF installation and cabling completed
- 20 Jul. 2023, RF conditioning and system commissioning completed
- 25 Jul. 2023, BST beam commissioning started
- 6 Oct. 2023, BST beam commissioning stopped

BST-RF control room

Change of commissioning plan

• Change of plan (Sep 26, 2023)

Acc. Phys. demands higher RF voltage for longer beam lifetime at 6 GeV, higher RF power for commissioning at 5 nC bunch charge, ramp & stay from 500 MeV to any energy up to 6 GeV in 1s
 HEPS management decided to add 2 more NC cavities (5 cavs. in total) for booster commissioning

• Impacts

- Resource & schedule: 5 pers., 1.5 mos. for installation & commissioning of 2 additional RF systems
- Insufficient NCRF cavities for storage-ring commissioning (risk A9-R12)
- **Risk A9-R12:** Insufficient NCRF cavities for storage-ring commissioning
- HEPS management suggested using SRF cavities for commissioning on Day1 (risk A9-R13)
- Remove the 2 cavities after booster commissioning and stick to the original commissioning plan (require additional resources and time)
- Risk A9-R13: SRF cavity contamination due to storage-ring commissioning
- Learn from other labs' experience: Diamond LS, Taiwan PS, etc.

Booster RF installation & commissioning

- 7 Oct. 2023, 2 more cavities and RF systems start installation in BST
- 25 Oct. 2023, RF conditioning and commissioning (no beam) complete
- 17 Nov. 2023, BST beam commissioning complete

Storage-ring RF

RF parameter (SR)

Parameter	Value	Unit
Circumference	1360.4	m
RF frequency (f ₀)	166.6	MHz
Total energy loss per turn (U ₀)	5.16	MeV
Total beam power (P _b)	850	kW
Total RF voltage (V _{RF})	5.4	MV
Number of main RF cavities	5	-
RF power per main cavity	170	kW
Cavity type	QW + Elliptical SCC	-
HOM control	Heavy damping	-
Harmonic RF frequency (f _{HC})	499.8	MHz
Number of RF stations	5 + 2	-
Transmitter power per RF station	260	kW
Field noise (pk-pk)	±0.1%, ±0.1°	-

Pei Zhang

166MHz SRF cavity: VT

- First batch of cavities: 3 prototype bare cavities passed acceptance tests ullet
- First jacketed cavity performance preserved: no chemistry aft. vessel welding ۲

Cavity string (w/o ion pumps) assembly in class 10 clean room.

Baking and leak check

Collimation, assembly with two-phase pipe Integration of cavity string and cryomodule Cryomodule installation completed

class 100 clean room

Pei Zhang

Assembly of ion pump and cryomodule

in Class 100 clean room

Ion pump installation completed

Assembly of tuner and cryomodule

in experiment hall

• Performance demonstrated: assembly procedure, processing, cooldown

Q0: 1.7×10⁹ @ 1.2MV Dynamic heat loss: 6.2W @ 1.2MV No early field emission Little Q degradation

- All 4 cavities BCP processed, VT complete, fulfill requirements
- Cryomodule assembly to be started by 2023

- Booster RF system commissioned and in operation
- SRF cavity and module
 - 166MHz SRF cavity module developed and performance demonstrated
 - 500MHz SRF bare cavities VT complete, module assembly to be started

• RF power sources

- Booster SSAs installed and in operation (~3000 hours)
- SR SSAs series production completed FAT in Q3.2023
- SR SSAs installation in Q1.2024
- Low-level RF
 - In-house developed 2nd generation (Xilinx FPGA) in booster operation
 - Beam trip diagnostics under development

Photo taken in Sep. 2023

[1] G. Xu et al., "On-axis Beam Accumulation Enabled by Phase Adjustment of a Double-frequency RF System for ...", IPAC2016, WEOAA02.

- [2] D. Zhe et al., "Top-up injection schemes for HEPS", eeFACT2016, TUT2H4.
- [3] S. Jiang and G. Xu, "On-axis injection scheme based on a triple-frequency rf system for ...", Phys. Rev. Accel. Beams 21 (110701) 2018.

