

Photon-photon collisions with arbitrary polarization in ReneSANCe Monte Carlo generator

Renat Sadykov

November 1st 2023, IHEP, Beijing

Outline

- Motivation
- SANC framework and ReneSANCe Monte Carlo generator
- Polarized photon-photon collisions at future ee colliders
- Results for polarized $\gamma\gamma\to\gamma\gamma,\gamma Z,ZZ$
- Summary and plans

Motivation

- New opportunities for physics of photon-photon collisions are associated with the future high-energy *ee* collider
- Photon colliders have high potential in:
 - Higgs physics
 - Gauge boson physics
 - Hadron physics and QCD
 - New physics beyond SM

Cross sections

[V. Serbo. arXiv:hep-ph/0510335]

The SANC framework and products family

Publications:

SANC - CPC 174 (2006), 481-517;

```
MCSANC - CPC 184 (2013), 2343-2350; JETP Letters 103 (2016), 131-136;
```

```
SANCphot - arXiv:2201.04350;
```

```
ReneSANCe - CPC 256 (2020), 107445 (ee-mode);
```

CPC 285 (2023) 108646 (pp-mode).

SANC products are available at http://sanc.jinr.ru/download.php ReneSANCe is also available at http://renesance.hepforge.org

ReneSANCe generator

ReneSANCe (Renewed SANC Monte Carlo event generator) is a Monte Carlo event generator for simulation of processes at ee and $pp(p\bar{p})$ colliders.

- The following processes are fully implemented:
 - $e^+e^- \rightarrow e^-e^+, ZH, \mu^+\mu^-, \tau^+\tau^-, Z\gamma, \gamma\gamma, t\bar{t}$
 - $e^-e^- \to e^-e^-$, $\mu^+\mu^+ \to \mu^+\mu^+$, $\mu^+e^- \to \mu^+e^-$
 - $pp(p\bar{p}) \rightarrow \ell^+\ell^- X, \ell^+\nu_\ell X, \ell^-\bar{\nu}_\ell X$
 - $\gamma\gamma \to \gamma\gamma, \gamma Z, ZZ$
- Based on the SANC (Support for Analytic and Numeric Calculations for experiments at colliders) modules
- Complete one-loop and some higher-order electroweak radiative corrections
- All the particle masses and polarizations
- Effectively operates in the collinear region and in wide \sqrt{s} range
- New processes can be easily added

Helicity density matrix for photons

• Circular polarization

$$\rho_{\gamma}^{\text{circ}} = 1/2 \begin{pmatrix} 1+\xi_2 & 0\\ 0 & 1-\xi_2 \end{pmatrix} = 1/2 \begin{pmatrix} 1+\mathcal{P}^{\text{circ}} & 0\\ 0 & 1-\mathcal{P}^{\text{circ}} \end{pmatrix}$$

 $\mathcal{P}^{circ} = \xi_2 \in [-1; 1]$ is the *circular polarization degree* ($\mathcal{P}^{circ} = +1$ corresponds to photon with positive helicity $\lambda = +1$)

• Linear polarization

$$\rho_{\gamma}^{\rm lin} = 1/2 \begin{pmatrix} 1 & -\xi_3 + i\xi_1 \\ -\xi_3 - i\xi_1 & 1 \end{pmatrix} = 1/2 \begin{pmatrix} 1 & -\mathcal{P}^{\rm lin}e^{-2i\phi} \\ -\mathcal{P}^{\rm lin}e^{2i\phi} & 1 \end{pmatrix}$$

 $\xi_1, \xi_3 \in [0; 1], \mathcal{P}^{lin} = \xi_{13} = \sqrt{\xi_1^2 + \xi_3^2} \in [0; 1]$ is the linear polarization degree, $\phi = \frac{1}{2} Arg(\xi_1 - i\xi_3) \in [0; \pi]$ is the linear polarization angle.

Helicity density matrix for photons

• Mixed polarization

$$\begin{split} \rho^{\gamma} &= 1/2 \begin{pmatrix} 1+\xi_2 & -\xi_3+i\xi_1\\ -\xi_3-i\xi_1 & 1-\xi_2 \end{pmatrix} = 1/2 \begin{pmatrix} 1+\mathcal{P}^{circ} & -\mathcal{P}^{lin}e^{-2i\phi}\\ -\mathcal{P}^{lin}e^{2i\phi} & 1-\mathcal{P}^{circ} \end{pmatrix} \\ \xi_1^2 &+\xi_2^2 + \xi_3^2 = (\mathcal{P}^{circ})^2 + (\mathcal{P}^{lin})^2 \leqslant 1, \ \mathcal{P}^{lin} \geqslant 0. \end{split}$$

• The cross section for the process $\gamma\gamma \rightarrow X$ with polarized initial photons can be written as

$$d\sigma = \sum_{\lambda_1 \lambda_2 \lambda_1' \lambda_2'} \rho_{\lambda_1 \lambda_1'}^{\gamma_1} \rho_{\lambda_2 \lambda_2'}^{\gamma_2} \mathcal{H}_{\lambda_1 \lambda_2} \mathcal{H}_{\lambda_1' \lambda_2'}^* d\Phi,$$

where $\mathcal{H}_{\lambda_1\lambda_2}$ - helicity amplitudes for generic process $\gamma\gamma \to X$.

Photon collider based on linear ee collider

 $e \rightarrow \gamma$ conversion through the Compton scattering of laser light on high-energy electrons (I.F. Ginzburg, G.L. Kotkin, V.G. Serbo and V.I. Telnov. ZhETF Pis'ma. 34 (1981) 514):

Basic parameters:

- $x_0 = \frac{4E\omega_0}{m_e^2}$, where *E* electron energy, ω_0 the laser photon energy
- P_e electron beam long. polarization, P_{γ} laser beam long. polarization, P_t laser beam linear polarization, Φ azimuthal angle of lazer photon linear polarization
- $y = \frac{\omega}{E} \leqslant \frac{x_0}{1+x_0}$, where ω energy of the back-scattered photon

Density matrices for backscattered photons

$$\begin{split} \rho &= 1/2 \begin{pmatrix} 1+\xi_2(y) & -\xi_{13}(y)e^{-2i(\Phi-\phi)} \\ \\ -\xi_{13}(y)e^{2i(\Phi-\phi)} & 1-\xi_2(y) \end{pmatrix}, \\ \rho' &= 1/2 \begin{pmatrix} 1+\xi'_2(y') & -\xi'_{13}(y')e^{2i(\Phi'-\phi)} \\ \\ -\xi'_{13}(y')e^{-2i(\Phi'-\phi)} & 1-\xi'_2(y') \end{pmatrix} \end{split}$$

$$\xi_2(y) = \frac{P_e f_2(y) + P_\gamma f_3(y)}{C(y)}, \quad \xi_{13}(y) = \frac{2r^2(y)P_t}{C(y)}, \quad C(y) = f_0(y) + P_e P_\gamma f_1(y)$$

$$f_0(y) = \frac{1}{1+y} + 1 - y - 4r(1-r),$$

$$f_1(y) = \frac{y}{1-y}(1-2r)(2-y),$$

$$f_2(y) = x_0r[1+(1-y)(1-2r)^2],$$

$$f_3(y) = (1-2r)(\frac{1}{1-y} + 1 - y),$$

$$r(y) = \frac{y}{x_0(1-y)}$$

10/27

Cross sections for $\gamma\gamma \rightarrow \gamma\gamma, \gamma Z, ZZ$

$$\frac{d\sigma}{dydy'\,d\cos\theta^*d\phi} = \frac{d\mathcal{L}_{\gamma\gamma}}{dydy'} \left(\frac{d\bar{\sigma}_0}{d\cos\theta^*} + \langle \xi_2 \xi_2' \rangle \frac{d\bar{\sigma}_{22}}{d\cos\theta^*} + \langle \xi_{13} \rangle \cos 2(\Phi - \phi) \frac{d\bar{\sigma}_3}{d\cos\theta^*} \right. \\ \left. + \langle \xi_{13}' \rangle \cos 2(\Phi' - \phi) \frac{d\bar{\sigma}_3'}{d\cos\theta^*} + \langle \xi_{13} \xi_{13}' \rangle \cos 2(\Phi + \Phi' - 2\phi) \frac{d\bar{\sigma}_{33}}{d\cos\theta^*} \right. \\ \left. + \langle \xi_{13} \xi_{13}' \rangle \cos 2(\Phi - \Phi') \frac{d\bar{\sigma}_{33}'}{d\cos\theta^*} + \langle \xi_2 \xi_{13}' \rangle \sin 2(\Phi' - \phi) \frac{d\bar{\sigma}_{23}}{d\cos\theta^*} \right. \\ \left. + \langle \xi_{13} \xi_2' \rangle \sin 2(\Phi - \phi) \frac{d\bar{\sigma}_{23}'}{d\cos\theta^*} \right)$$

Luminosity distribution of colliding photons $\frac{d\mathcal{L}_{\gamma\gamma}}{dydy'}$ depends on the reduced distance ρ between conversion and collision points and aspect ratio A of horizontal σ_{ye} and vertical σ_{xe} sizes of electron beams (Ginzburg I. F., Kotkin G. L. Phys. J. C. 2000. V. 13. P. 295):

$$\rho^{2} = \left(\frac{b}{(E/m_{e})\sigma_{xe}}\right)^{2} + \left(\frac{b}{(E/m_{e})\sigma_{ye}}\right)^{2}, \quad A = \frac{\sigma_{xe}}{\sigma_{ye}}$$

Luminosity of backscattered photons

$$\frac{d\mathcal{L}_{\gamma\gamma}}{dydy'} = \frac{1}{(2\pi)^2} \int d\phi_1 d\phi_2 f(\mathbf{x}_0, y) f(\mathbf{x}_0, y') \exp\left[-\frac{\rho^2 \Psi}{4(1+A^2)}\right],$$

 $\Psi = A^2 \left(g(x_0, y) \cos \phi_1 + g(x_0, y') \cos \phi_2 \right)^2 + \left(g(x_0, y) \sin \phi_1 + g(x_0, y') \sin \phi_2 \right)^2,$

$$g(x_0,y)=\sqrt{\frac{x_0}{y}-x_0-1}$$

 $f(x_0, y) = N(x_0) \left[f_0(y) + P_e P_{\gamma} f_1(y) \right].$

Cross sections for $\gamma\gamma \rightarrow \gamma\gamma, \gamma Z, ZZ$

$$\begin{split} \frac{d\bar{\sigma}_{0}}{d\cos\theta^{*}} &= \frac{N}{64\pi\hat{s}} \left(|\mathcal{H}_{++}|^{2} + |\mathcal{H}_{+-}|^{2} \right), \\ \frac{d\bar{\sigma}_{22}}{d\cos\theta^{*}} &= \frac{N}{64\pi\hat{s}} \left(|\mathcal{H}_{++}|^{2} - |\mathcal{H}_{+-}|^{2} \right), \\ \frac{d\bar{\sigma}_{3}}{d\cos\theta^{*}} &= -\frac{N}{32\pi\hat{s}} \Re \mathfrak{e} \left(\mathcal{H}_{++} \mathcal{H}_{-+}^{*} \right), \\ \frac{d\bar{\sigma}_{3}}{d\cos\theta^{*}} &= -\frac{N}{32\pi\hat{s}} \Re \mathfrak{e} \left(\mathcal{H}_{++} \mathcal{H}_{+-}^{*} \right), \\ \frac{d\bar{\sigma}_{33}}{d\cos\theta^{*}} &= \frac{N}{64\pi\hat{s}} \Re \mathfrak{e} \left(\mathcal{H}_{+-} \mathcal{H}_{-+}^{*} \right), \\ \frac{d\bar{\sigma}_{23}}{d\cos\theta^{*}} &= \frac{N}{32\pi\hat{s}} \Im \mathfrak{e} \left(\mathcal{H}_{++} \mathcal{H}_{--}^{*} \right), \\ \frac{d\bar{\sigma}_{23}}{d\cos\theta^{*}} &= \frac{N}{32\pi\hat{s}} \Im \mathfrak{m} \left(\mathcal{H}_{++} \mathcal{H}_{+-}^{*} \right), \\ \frac{d\bar{\sigma}_{23}}{d\cos\theta^{*}} &= \frac{N}{32\pi\hat{s}} \Im \mathfrak{m} \left(\mathcal{H}_{++} \mathcal{H}_{-+}^{*} \right). \end{split}$$

 $N = \frac{1}{2}$ for $\gamma\gamma \to \gamma\gamma$, $N = 1 - \frac{M_Z^2}{\hat{s}}$ for $\gamma\gamma \to \gamma Z$, $N = \frac{1}{2}\sqrt{1 - \frac{4M_Z^2}{\hat{s}}}$ for $\gamma\gamma \to ZZ$

Cross sections for $\gamma\gamma \rightarrow \gamma\gamma, \gamma Z, ZZ$

The $\gamma\gamma \rightarrow \gamma\gamma, \gamma Z, ZZ$ SM processes through fermion and boson loops were calculated within the SANC framework:

- $\gamma\gamma \rightarrow \gamma\gamma$: Physics of Atomic Nuclei, 2010, Vol. 73, No. 11, pp. 1878–1888
- $\gamma\gamma \rightarrow \gamma Z$: Physics of Atomic Nuclei, 2013, Vol. 76, No. 11, pp. 1339–1344
- $\gamma\gamma \rightarrow ZZ$: Physics of Particles and Nuclei Letters, 2017, Vol. 14, No. 6, pp. 811–816

Numerical results: input parameters

We performed numerical calculations in the $\alpha(0)$ -scheme at $\sqrt{s} = 500$ GeV. The results for $\rho = 0$ were cross-checked with SANCphot program. Input parameters:

 $\begin{array}{ll} x_0 = 4.83, \\ \alpha = 1/137.035990996, \\ M_Z = 91.1867 \; {\rm GeV}, & M_W = 80.45149 \; {\rm GeV}, & M_H = 125 \; {\rm GeV}, \\ m_e = 0.51099907 \; {\rm MeV}, & m_\mu = 0.105658389 \; {\rm GeV}, & m_\tau = 1.77705 \; {\rm GeV}, \\ m_d = 0.083 \; {\rm GeV}, & m_s = 0.215 \; {\rm GeV}, & m_b = 4.7 \; {\rm GeV}, \\ m_\mu = 0.062 \; {\rm GeV}, & m_c = 1.5 \; {\rm GeV}, & m_t = 173.8 \; {\rm GeV}. \end{array}$

Polarization configurations:

- Set 1: $P_e = P'_e = 0.8, P_\gamma = P'_\gamma = -1, P_t = P'_t = 0$
- Set 2: $P_e = P'_e = 0, P_\gamma = P'_\gamma = 0, P_t = P'_t = 1, \Phi = \Phi'$
- Set 3: $P_e = 0.8, P_e^{'} = 0, P_{\gamma} = -1, P_{\gamma}^{'} = 0, P_t = 0, P_t^{'} = 1$

Cuts: $30^{\circ} < \theta < 150^{\circ}, M_{\gamma\gamma} > 20$ GeV, $M_{\gamma Z} > 100$ GeV, $M_{ZZ} > 200$ GeV.

Cross sections for $\gamma\gamma \rightarrow \gamma\gamma, \gamma Z, ZZ$ at $\sqrt{s} = 500$ GeV

$\gamma\gamma \to \gamma\gamma$	ρ	0	1	5
	σ , fb [Set 1]	9.4420(1)	1.9820(1)	0.2232(1)
	σ , fb [Set 2]	8.0452(2)	1.5473(1)	0.1448(1)
	σ , fb [Set 3]	8.0134(2)	1.6429(1)	0.1647(1)
$\gamma\gamma o \gamma Z$	ρ	0	1	5
	σ , fb [Set 1]	21.528(1)	8.884(1)	1.247(1)
	σ , fb [Set 2]	19.373(1)	7.196(1)	0.818(1)
	σ , fb [Set 3]	17.015(1)	6.426(1)	0.750(1)
$\gamma\gamma ightarrow ZZ$	ρ	0	1	5
	σ , fb [Set 1]	32.326(1)	13.520(1)	1.898(1)
	σ , fb [Set 2]	21.802(1)	8.361(1)	0.975(1)
	σ , fb [Set 3]	24.312(1)	9.599(1)	1.176(1)

Distributions for $\gamma\gamma \rightarrow \gamma\gamma$ ($\rho = 0$)

Distributions for $\gamma\gamma \rightarrow \gamma\gamma$ ($\rho = 1$)

Distributions for $\gamma\gamma \rightarrow \gamma\gamma$ ($\rho = 5$)

Distributions for $\gamma\gamma \rightarrow \gamma Z$ ($\rho = 0$)

Distributions for $\gamma\gamma \rightarrow \gamma Z$ ($\rho = 1$)

Distributions for $\gamma\gamma \rightarrow \gamma Z$ ($\rho = 5$)

Distributions for $\gamma\gamma \rightarrow ZZ$ ($\rho = 0$)

Distributions for $\gamma\gamma \rightarrow ZZ$ ($\rho = 1$)

Distributions for $\gamma\gamma \rightarrow ZZ$ ($\rho = 5$)

Summary and plans

 $\gamma\gamma$ collisions implemented in Monte Carlo event generator $\underline{\texttt{ReneSANCe}}$

- $\gamma\gamma \rightarrow \gamma\gamma, \gamma Z, ZZ$ with arbitrary polarization of initial photons
- $\bullet\,$ Events with unit weights, output in LHE and root formats
- Simple model for polarized $\gamma\gamma$ collisions at future photon collider based on linear ee colliders

Plans:

- New processes: $\gamma \gamma \rightarrow \nu \bar{\nu}, \ell^+ \ell^- (\ell = e, \mu, \tau), t\bar{t}, W^+ W^-, ZH$
- Virtual photons
- More precise description of the incoming photon spectrum

Thank you!