
Job submission

João Pedro Athayde Marcondes de André

Feburary 2024

1 Standard submission (JDL)
▶ Submit generic job
▶ Submit JUNO jobs

2 JSUB
▶ Submit JUNO jobs

3 Production tool
▶ Not covered in this presentation – see

DocDB-8164
▶ To use production tool need to be in production

group in VOMS

JP AM de Andre (IPHC) Job submission Feburary 2024 1 / 25

https://juno.ihep.ac.cn/cgi-bin/Dev_DocDB/ShowDocument?docid=8164

Part #1
Standard submission (JDL)

JP AM de Andre (IPHC) Job submission Feburary 2024 2 / 25

Submitting your first job
myscript.sh
#!/bin/sh

echo "===== Begin ====="
date
echo "The program is running on $HOSTNAME"

test.jdl
JobName = "mysimplejob";
Executable = "/bin/bash";
Arguments = "myscript.sh";
StdOutput = "stdout.out" ;
StdError = "stderr . err " ;
InputSandbox = { "myscript.sh" };
OutputSandbox = { "stdout.out", "stderr . err " };
VirtualOrganisation = "vo.juno.ihep.ac.cn";

Create the myscript.sh and test.jdl files
Submit job:

% dirac−wms−job−submit test.jdl
JobID = 5923594

JP AM de Andre (IPHC) Job submission Feburary 2024 3 / 25

Job status

% dirac−wms−job−submit test.jdl
JobID = 5923594

% dirac−wms−job−status 5923594
JobID=5923593 Status=Waiting; MinorStatus=Pilot Agent

Submission; Site=ANY;

% dirac−wms−job−status 5923594
JobID=5923594 Status=Done; MinorStatus=Execution

Complete; Site=CLOUD.IHEPCLOUD.cn;

% dirac−wms−job−get−output 5923594
Job output sandbox retrieved in /afs/ihep.ac.cn/users/ j /

jpandre/dirac/5923594/

% cat 5923594/stdout.out
===== Begin =====
Sun Jul 21 10:01:13 CST 2019
The program is running on idirac−20190721−095925−12

c787ff

JP AM de Andre (IPHC) Job submission Feburary 2024 4 / 25

DIRAC API (advanced)
DIRAC API written in python
Python API provides more flexibility than
pre-made commands
CLI tools written in python

▶ possible to read/adapt them

#!/usr/bin/env python

from DIRAC.Core.Base import Script
Script .parseCommandLine(ignoreErrors=False)
from DIRAC.Interfaces.API.Job import Job
from DIRAC.Interfaces.API.Dirac import Dirac

dirac = Dirac()

j = Job()
j .setCPUTime(500)
j .setExecutable(’/bin/echo Begin’)
j .setExecutable(’/bin/date’)
j .setExecutable(’/bin/hostname’)
j .setExecutable(’/bin/echo End’)
j .setName(’test−API’)
#j .setNumberOfProcessors(2)

jobID = dirac .submitJob(j)
print("Submission result:", jobID)
if jobID[’OK’]:

print("status: " , dirac .getJobStatus(jobID[’JobID’]))

JP AM de Andre (IPHC) Job submission Feburary 2024 5 / 25

Exercise: Submitting JUNO jobs

Now we can start to submit JUNO jobs. . .

Can you modify the previous JDL & script to
submit a short simulation job?

Remember:
▶ Given job might run anywhere you cannot use

any “local” file paths!
▶ CVMFS is your friend
▶ Alternative put tar-ball in DFC and download &

extract it before using software.

Add OutputData = { "*.root" }; to JDL file
▶ What happens if you don’t put it?
▶ Did you find your ROOT output files?

JDL files support many more options still. . .
▶ This tutorial is not meant to cover them all
▶ and I don’t know them all either. . .
▶ https://dirac.readthedocs.io/en/latest/

UserGuide/GettingStarted/UserJobs/
JDLReference/index.html

JP AM de Andre (IPHC) Job submission Feburary 2024 6 / 25

https://dirac.readthedocs.io/en/latest/UserGuide/GettingStarted/UserJobs/JDLReference/index.html
https://dirac.readthedocs.io/en/latest/UserGuide/GettingStarted/UserJobs/JDLReference/index.html
https://dirac.readthedocs.io/en/latest/UserGuide/GettingStarted/UserJobs/JDLReference/index.html

Exercise: Submitting JUNO jobs 2
In previous exercise we ran detsim

▶ No input needed ⇒ easier to handle

Now, let’s try to run a job using an input!
▶ for example, run elecsim on previous output

Option 1:
▶ Add InputData field to JDL file

⋆ path should correspond to DFC path!

Option 2 (advanced!):
▶ Use xrootd for local access
▶ Need to know where the file is
▶ Need to know xrootd path for each cluster

root :// junoeos01.ihep.ac.cn:1094//eos/juno/dirac
root :// xfer−archive−03.cr.cnaf.infn . it :1094//

dirac
root :// ccxrootdegee.in2p3.fr:1094//pnfs/in2p3. fr

/data/juno/dirac
root :// eos. jinr .ru:1094//eos/juno/dirac

▶ Add Site field to JDL file with location

JP AM de Andre (IPHC) Job submission Feburary 2024 7 / 25

More exercise ideas!
If you’ve completed previous exercises, try finding out
how you’d like to do a few different things & test them
out:

Send job to specific site

▶ Add Site to JDL

Send output to specific SE

▶ Add OutputSE to JDL

Submit many similar jobs
(ie, change only random seed)

▶ Use parametric jobs!
▶ Add to jdl: Parameters, ParameterStart,

ParameterStep, . . .
▶ Change Arguments to include parameter
▶ Change script to take in CLI option

Group multiple jobs

▶ Add JobGroup to JDL
▶ Use -g flag in various commands

(check their help!)

Put output in specified folder

▶ Add OutputPath to JDL
▶ Note: folder is relative path to your user folder!

JP AM de Andre (IPHC) Job submission Feburary 2024 8 / 25

Part #2
JSUB

JP AM de Andre (IPHC) Job submission Feburary 2024 9 / 25

What is JSUB

Goal: make JUNO DCI (user) job submission
easier & more efficient

Tool developped by Xianghu Zhao and Yifan Yang
(postdoc @IHEP)

Resources from Yifan:
▶ DocDB-7303: JSUB tutorial
▶ https://jsubpy.github.io/

Examples in CVMFS:
/cvmfs/dcomputing.ihep.ac.cn/frontend/jsub/
1.2/install/jsub/examples/juno/

On the down side original developpers finished
their postdocs. . .

▶ For now things work, and we will try mantain it. . .
▶ But current DCI manpower is very limited. . .

Let us know if you’d like to help maintain JSUB!

JP AM de Andre (IPHC) Job submission Feburary 2024 10 / 25

https://juno.ihep.ac.cn/cgi-bin/Dev_DocDB/ShowDocument?docid=7303
https://jsubpy.github.io/

Getting started with JSUB

JSUB config file (∼/.jsubrc):

package: [jsub_juno, jsub_dirac]

taskDir:
location: /path/to /my/jsub/manager/folder
#location: /home/jp/jsub

backend:
default: dirac

Activate JSUB:

% source /cvmfs/dcomputing.ihep.ac.cn/frontend/
jsub/activate.sh −e juno

JP AM de Andre (IPHC) Job submission Feburary 2024 11 / 25

Getting started with JSUB 2

% jsub −−help
Usage: jsub [OPTIONS] COMMAND [ARGS]...

Options:
−−jsubrc TEXT Configuration file to run JSUB with.
−−help Show this message and exit.

Commands:
create Create a task from a task description file .
getlog Retrieve log files of selected subjobs.
jobvar View the values of jobvar lists
ls List all tasks.
package Show active packages.
register Upload files to SE and register them to

DFC.
remove Delete a task.
rename Rename a task.
reschedule Reschedule selected subjobs.
resubmit Equivalent to ’ jsub submit −r’ command
run Create from a task profile , and submit.
show Show detailed description of a task.
status Show the backend status of a task.
submit Submit a task to backend.
version Show the version of the software.

JP AM de Andre (IPHC) Job submission Feburary 2024 12 / 25

JUNO simulation – job definition file
based on 101_detsim.yaml example from Yifan
detsim.yaml
taskName: juno_sim
experiment: juno
#softVersion: ’centos7_amd64_gcc830/Pre−Release

/J20v1r0−Pre2’
softVersion:

arch: ’centos7_amd64_gcc830/’
release: ’J20v1r0−Pre2’

backend:
type: dirac
outputSubDir: ’temporary_jsub_tests’

splitter :
mode: splitByEvent
evtMaxPerJob: 5
njobs: 2

workflow:
steps: [detsim]

detsim:
seed: 1
additionalArgs: ’gun’

JP AM de Andre (IPHC) Job submission Feburary 2024 13 / 25

JUNO simulation – submitting job
2 options for submitting job:

create job, then submit:
▶ Gives the chance to check if that was indeed the

job you wanted to submit

% jsub create detsim.yaml
Task created successfully
− ID : 1
− Name : juno_sim
− Job Number : 2

% jsub submit 1
Submitting task 1
[2022−05−15 22:05:21.442 +0200 CEST][JSUB|INFO

]: 2 jobs successfully submitted to backend.

Submit in a single step:

% jsub run detsim.yaml
[2022−05−15 22:13:40.400 +0200 CEST][JSUB|INFO

]: 2 jobs successfully submitted to backend.
Task submitted successfully
− ID : 2
− Name : juno_sim
− Job Number : 2

JP AM de Andre (IPHC) Job submission Feburary 2024 14 / 25

Job management with JSUB
% jsub ls
[2022−05−15 22:20:16.003 +0200 CEST][JSUB|INFO]:

Fetching backend status info update for tasks. May
take some time.

Task ID Name Experiment Backend Status (D|F|R|W|
O) Creation Time (UTC) Info Updated (UTC)

−−−−−−−− −−−−−−−−− −−−−−−−−−−− −−−−−−−−
−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−

1 juno_sim juno dirac 2|0|0|0|0
2022−05−15 20:03:32 2022−05−15

20:20:20
2 juno_sim juno dirac 2|0|0|0|0

2022−05−15 20:13:32 2022−05−15
20:20:23

% jsub getlog 1 −s D
Fetching the log files of task 1
Specifying job status: D
[2022−05−15 22:21:25.596 +0200 CEST][JSUB|INFO]:

Retrieved log files of 2 subjobs

% ls ~/jsub/1/logfiles
0/ 1/
% ls ~/jsub/1/logfiles /0/unit/detsim
detsim.log

JP AM de Andre (IPHC) Job submission Feburary 2024 15 / 25

JSUB output ROOT files

FC:/juno/user/ j / jpandre/temporary_jsub_tests/juno_sim/
detsim>ls

detsim_1.root
detsim_2.root
detsim_user_1.root
detsim_user_2.root

Saves file in DFC based on taskName and
outputSubDir

Easier to know what corresponds to each file
Better natural organization between
detsim/elecsim/. . .
Note: possible to do that with JDL also, but in
JSUB it gets done automatically

JP AM de Andre (IPHC) Job submission Feburary 2024 16 / 25

Exercise: Submit a detsim+elecsim job

Modify the previous YAML script to run also
elecsim

Bonus: change some configuration from elecsim

How are the output files organized?

How are the log files organized?

JP AM de Andre (IPHC) Job submission Feburary 2024 17 / 25

Simulating multiple similar configurations

This is very useful if you want to simulate many
similar jobs with varying inputs

Change splitter from splitByEvent to
splitByJobvar for more flexibility

splitByJobvar also creates variables that can be
used when configuring jobs

▶ a list of isotopes can be provided
▶ some of those informations used to define

filename
▶ any other variable (like a seed) could be added. . .

JP AM de Andre (IPHC) Job submission Feburary 2024 18 / 25

Simulating multiple similar configurations
[...]

splitter :
mode: splitByJobvars
maxSubJobs: 5
evtMaxPerJob: 10
jobvarLists:

nuclear:
type: enumerate
list : [’U−238’, ’Th−232’]
group: nuclear

subjob:
type: range
group: same_nuclear

workflow:
steps: [detsim]
detsim:

output: ’$(nuclear).$(subjob).detsim.root ’
userOutput: ’$(nuclear).$(subjob).user.detsim.

root’
additionalArgs: ’gendecay −−nuclear $(nuclear

) −−volume pTarget −−material LS’

JP AM de Andre (IPHC) Job submission Feburary 2024 19 / 25

Exercise: Submit an elecsim job

Now, if you had to run elecsim from the detsim
generated, how would you do?

▶ For simplicity consider the files produced by the
first detsim with JSUB

Option 1:
▶ Pass an input: to elecsim

Option 2 (advanced):
▶ Use the file catalog to know which files to use as

input!
▶ Need to use file metadata to pick files

JP AM de Andre (IPHC) Job submission Feburary 2024 20 / 25

More exercise ideas!

If you’ve completed previous exercises, try finding out
how you’d like to do a few different things & test them
out:

Submit job to specific site

▶ Add site to backend

Submit ‘gun’ with specific positions along z axis

▶ splitByJobvar should allow this configuration

Provide input file to JSUB

▶ Add input section before workflow

Run an executable from CVMFS (like Muon.exe)

▶ Create a block in workflow of type junosoft
▶ Need to provide software, arguments and

outputUpload

Create a user defined task

▶ Create a block in workflow of type user_script
▶ Need to provide file to run and args
▶ Note: could be a bit tricky to get a root output

from this step though. . .

JP AM de Andre (IPHC) Job submission Feburary 2024 21 / 25

Part #3
Production Tool

JP AM de Andre (IPHC) Job submission Feburary 2024 22 / 25

Introduction
As I mentioned before, this requires your VOMS
to have production role
% dirac−proxy−init −U −g juno_production −M
Generating proxy...
Enter Certificate password:
Added VOMS attribute /juno/Role=production
[...]

DIRAC group : juno_production
[...]

VOMS fqan : [’/ juno/Role=production’, ’/ juno ’]
[...]

It is meant for large scale production
▶ less flexible than JSUB or JDL
▶ however tuned to work with large datasets

Getting started:
% ihepdirac−juno−make−productions −−example

> production.ini

Submitting jobs:
% ihepdirac−juno−make−productions −−ini

myprod.ini −−dryrun

% ihepdirac−juno−make−productions −−ini
myprod.ini

Note: I’ve never used the production system. . .
JP AM de Andre (IPHC) Job submission Feburary 2024 23 / 25

Production example
I just stripped the comments of the example file by Xiaomei

[all]
process = Chain
softwareVersion = centos7_amd64_gcc830/Pre−Release/

J21v2r0−Pre0
prodName = JUNOProdTest
transGroup = JUNO_prod_test
outputType = user
outputSubDir = positron/prd_2021
outputMode = closest
moveTargetSE = IHEP−STORM CNAF−STORM

[Chain]
seed = 42
evtmax = 2
njobs = 10
max2dir = 10000
tagParser = (.*) _ (.*) MeV
tags = e+_0.0MeV e+_1.398MeV e+_4.460MeV
workflow = detsim elecsim_rec
moveType = detsim
userOutput = 0
detsim−mode = gun −−particles {0} −−momentums {1} −−

positions 0 0 0
elecsim_rec−mode = −−rate 0.001 −−enableWP −−

enableWPDarkPulse −−no−evtrec

JP AM de Andre (IPHC) Job submission Feburary 2024 24 / 25

The end

Thank you for your attention!

JP AM de Andre (IPHC) Job submission Feburary 2024 25 / 25

