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4+ Introduction

+ Simulate hadronic scatterings from quantum computing
= parton distribution in hadron
= partonic scatterings
= hadronization

4+ Summary and outlook



Probing nuclear structure at different energy scales
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scattering: a fundamental tool to explore the nuclear structure!



The benefits from hadronic scattering

4+ Extract proton PDFs from world data

x=0.0001

gluon sea quark valence quark

4+ High precision test of standard model



High energy hadronic scatterings

.| Final state |
hadronization |

the highest collision energy
in the world!

| Intermediate state |
 partonic scatterings |



Simulate hadronic scatterings

4+ S-matrix in high energy scatterings

(out| eI |in) q :
Yy

R

For the LHC 10°MeV S E < 1TeV

Dy
e Hilbert space dimension: dim = (1,,)" " nPv ~ 10"
e Classically: gigantic size, diagonalize H with For the hadron: 10°MeV < E < 1GeV
infinite dim, impossible/hard ! nPyv ~ 103
e Quantum computing: requires qubits, Suppose n,, =2 = 32

12
nq,I_HC ~ 5 X 1() / nQ,hadrOn ~ SOOO, .
reasonable size im — oo



Quantum computing
4+ A bit history

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

The Computer as a Physical System: A Microscopic Simulating Physics with Computers

Quantum Mechanical Hamiltonian Model of Computers
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In this paper a microscopic quantum mechanical model of computers as
represented by Turing machines is constructed. It is shown that for each
number N and Turing machine Q there exists a Hamiltonian H,° and a class
of appropriate initial states such that if ¥o¥(0) is such an initial state, then
Wo(r) = exp(—iHy®t) ¥'o"(0) correctly describes at times s, f,..., I3y
model states that correspond to the completion of the first, second,..., Nth
computation step of Q. The model parameters can be adjusted so that for an
arbitrary time interval A around fs, ..., fax, the “machine” part of ¥'o"(¢)
is stationary.

KEY WORDS: Computer as a physical system; microscopic Hamiltonian
models of computers; Schrodinger equation description of Turing machines;
Coleman model approximation; closed conservative system; quantum spin
lattices.
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1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that
anybody needs to talk about the same thing or anything like it. So what I
want to talk about is what Mike Dertouzos suggested that nobody would
talk about. I want to talk about the problem of simulating physics with
computers and I mean that in a specific way which I am going to explain.

R. Feynman, 1981
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Abstract

A computer is generally considered to be a universal
computational device; i.e., it is believed able to simulate
any physical computational device with a cost in com-
putation time of at most a polynomial factor. It is not
clear whether this is still true when quantum mechanics
is taken into consideration. Several researchers, starting
with David Deutsch, have developed models for quantum
mechanical computers and have investigated their compu-
tational properties. This paper gives Las Vegas algorithms
for finding discrete logarithms and factoring integers on
a quantum computer that take a number of steps which is
polynomial in the input size, e.g., the number of digits of the
integer to be factored. These two problems are generally
considered hard on a classical computer and have been
used as the basis of several proposed cryptosystems. (We
thus give the first examples of quantum cryptanalysis.)

P.Shor,

[1, 2]. Although he did not ask whether quantum mechan-
ics conferred extra power to computation, he did show that
a Turing machine could be simulated by the reversible uni-
tary evolution of a quantum process, which is a necessary
prerequisite for quantum computation. Deutsch [9, 10] was
the first to give an explicit model of quantum computation.
He defined both quantum Turing machines and quantum
circuits and investigated some of their properties.

The next part of this paper discusses how quantum com-
putation relates to classical complexity classes. We will
thus first give a brief intuitive discussion of complexity
classes for those readers who do not have this background.
There are generally two resources which limit the ability
of computers to solve large problems: time and space (i.c.,
memory). The field of analysis of algorithms considers
the asymptotic demands that algorithms make for these
resources as a function of the problem size. Theoretical
computer scientists generally classify algorithms as effi-
cient when the number of steps of the algorithms erows as

IBM Q System One (2019), the first
circuit-based commercial quantum
computer

"... and 1f you want to make a simulation of nature, you’d better make
it quantum mechanical, ...

— Feynman



Quantum computing

Quantum circuit https://qiskit.org/
|0000)
0 - H
|0010) |01o|3)001) 11000) i . . —a
o ' + r g, — H H

10101) .'\luni)‘——'—'—f"IOIIO) gs — H H &K—_——-/@%
» ~
|0111) 11101) qs —J NN

‘ ﬂ

® /2 c \ 4 v v 3 /2

1111) F
ms’o 1111111 0
3x/2 3x/2

Superposition of

R Computation driven interference Solution
all possibilities

4+ Building blocks of qguantum computing

* Qubit: takes infinitely many different values %) := «[0) + B[1) = (2)

 Quantum gate: unitary operators (X. Y. Z. CNOT)

N vl N . 0)+[1) X) X)
0) +B8|1) —X|— B10) + 1) 0) —H— " y) \% y ® X)

e Measurements: Hermitian



Increasing interest Iin

Solving a Higgs optimization problem with quantum
annealing for machine learning

Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar & Maria Spiropulu

Nature 550, 375-379 (2017) | Cite this article
9683 Accesses \ 53 Citations | 180 Altmetric | Metrics

Abstract

The discovery of Higgs-boson decays in a background of standard-model processes was
assisted by machine learning methods2. The classifiers used to separate signals such as
these from background are trained using highly unerring but not completely perfect
simulations of the physical processes involved, often resulting in incorrect labelling of
background processes or signals (label noise) and systematic errors. Here we use
quantum?>%°-¢ and classical’-8 annealing (probabilistic techniques for approximating the
global maximum or minimum of a given function) to solve a Higgs-signal-versus-
background machine learning optimization problem, mapped to a problem of finding the
ground state of a corresponding Ising spin model. We build a set of weak classifiers based on
the kinematic observables of the Higgs decay photons, which we then use to constructa

Quantum Algorithm for High Energy Physics Simulations

Benjamin Nachman, Davide Provasoli, Wibe A. de Jong, and Christian W. Bauer
Phys. Rev. Lett. 126, 062001 — Published 10 February 2021

Article References Citing Articles (6) Supplemental Material ﬂ HTML m

Simulating quantum field theories is a flagship application of quantum computing. However,
calculating experimentally relevant high energy scattering amplitudes entirely on a quantum
computer is prohibitively difficult. It is well known that such high energy scattering processes can be
factored into pieces that can be computed using well established perturbative techniques, and
pieces which currently have to be simulated using classical Markov chain algorithms. These classical
Markov chain simulation approaches work well to capture many of the salient features, but cannot
capture all quantum effects. To exploit quantum resources in the most efficient way, we introduce a
new paradigm for quantum algorithms in field theories. This approach uses quantum computers only
for those parts of the problem which are not computable using existing techniques. In particular, we
develop a polynomial time quantum final state shower that accurately models the effects of
intermediate spin states similar to those present in high energy electroweak showers with a global
evolution variable. The algorithm is explicitly demonstrated for a simplified quantum field theory on a
quantum computer.

Access by S

Cloud Quantum Computing of an Atomic Nucleus

E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G.R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean,
and P. Lougovski
Phys. Rev. Lett. 120, 210501 — Published 23 May 2018

Ph)/SICS See Viewpoint: Cloud Quantum Computing Tackles Simple Nucleus

Article References Citing Articles (127) m HTML

We report a quantum simulation of the deuteron binding energy on quantum processors accessed via
cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a
low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver
algorithm, and compute the binding energy to within a few percent. Our work is the first step towards
scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on
how to map scientific computing applications onto nascent quantum devices.

Access by South

Quantum simulation of open quantum systems in heavy-ion
collisions

Wibe A. de Jong, Mekena Metcalf, James Mulligan, Mateusz Ptoskon, Felix Ringer, and Xiaojun Yao
Phys. Rev. D 104, LO51501 — Published 7 September 2021

Article References No Citing Articles Supplemental Material ﬂ HTML Export Citati

We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a
hot, strongly coupled quark-gluon plasma (QGP) on a quantum computer. Hard probes in the QGP
can be treated as open quantum systems governed in the Markovian limit by the Lindblad equation.
However, due to large computational costs, most current phenomenological calculations of hard
probes evolving in the QGP use semiclassical approximations of the quantum evolution. Quantum
computation can mitigate these costs and offers the potential for a fully quantum treatment with
exponential speed-up over classical techniques. We report a simplified demonstration of our
framework on IBM Q quantum devices and apply the random identity insertion method to account for
cNoT depolarization noise, in addition to measurement error mitigation. Our work demonstrates the
feasibility of simulating open quantum systems on current and near-term quantum devices, which is
of broad relevance to applications in nuclear physics, quantum information, and other fields.

EP and NP using quantum computing

350

175

20 2023

Inspire:
find t guantum computing and date>2015



Community-wide efforts

QUANTUM COMPUTING

FOR THEORETICAL =
Opportunities for Q) e
NUCLEAR PHYSICS Nuclear-Physics &
Quantum Information Science
A White Paper prepared for the U.S. Department of Quantum support vector machines for
Energy, Office of Science, Office of Nuclear Physics HiggS boson classification

= I‘Xiv > quant-ph > arXiv:2209.14839 T = I‘le > quant-ph > arXiv:2307.03236 TS — d T>(1V > nucl-ex > arXiv:2303.00113 T e
Quantum Physics Quantum Physics Nuclear Experiment
[Submitted on 29 Sep 2022] [submitted on 6 Jul 2023] Bubmitted on 26 eb 20231 . .
Report of the Snowmass 2021 Theory Quantum Computing for High-Energy $ua;tulm '"f:rmNat"l’" SCI;‘:‘"C? a"Id ]
Physics: State of the Art and Challenges. echnology tor Nuclear Fhysics. Inpu

Frontier Topical Group on Quantum

- into U.S. Long-Range Planning, 2023
Information Science Summary of the QC4HEP Working Group

Douglas Beck, Joseph Carlson, Zohreh Davoudi, Joseph Formaggio,
Sofia Quaglioni, Martin Savage, Joao Barata, Tanmoy Bhattacharya,
Michael Bishof, lan Cloet, Andrea Delgado, Michael DeMarco,
Caleb Fink, Adrien Florio, Marianne Francois, Dorota Grabowska,
Shannon Hoogerheide, Mengyao Huang, Kazuki lkeda, Marc llla,

Alberto Di Meglio, Karl Jansen, Ivano Tavernelli, Constantia
Alexandrou, Srinivasan Arunachalam, Christian W. Bauer, Kerstin
Borras, Stefano Carrazza, Arianna Crippa, Vincent Croft, Roland de
Putter, Andrea Delgado, Vedran Dunjko, Daniel J. Egger, Elias

Simon Catterall, Roni Harnik, Veronika E. Hubeny, Christian W.
Bauer, Asher Berlin, Zohreh Davoudi, Thomas Faulkner, Thomas
Hartman, Matthew Headrick, Yonatan F. Kahn, Henry Lamm,

Yannick Meurice, Surjeet Rajendran, Mukund Rangamani, Brian Fernandez-Combarro, Elina Fuchs, Lena Funcke, Daniel Gonzalez- Kyungseon Joo, Dmitri Kharzeev, Karol Kowalski, Wai Kin Lai, Kyle
Swingle Cuadra, Michele Grossi, Jad C. Halimeh, Zoe Holmes, Stefan Kuhn, Leach, Ben Loer, lan Low, Joshua Martin, David Moore, Thomas
e — T ———————
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Simulate hadron partonic structure on quantum computer
4+ Operator definition of quark PDF c~fLQHQD

© dyT ., "
fq/p(X) - J oo Zyﬂ e | W(O)%W(O,y_)l//(y_) )

® | ight cone momentum fraction:
x=ktIpt, kt = (k° + k9)/4/2

® Wilson line to ensure gauge invariance
W (0,y7) = Pe 8l dn"A™(r")

4+ The probability density of finding a parton inside a proton

4+ PDFs are extremely challenge to simulate in classical/Euclidean lattice
calculation, due to multidimensional oscillating integral.

4+ QC can naturally simulate real-time dynamics.

12



Simulate hadron partonic structure on quantum computer
4+ A toy model - 1+1D NJL (Gross, Neveu, 1974), no gauge

k= ’(;a (i’}’uau — ma)wa T g(¢a¢a)2

) = [ dzmem 16 (1 y0) 1) = [ e G 500, = e 00

 Map QFT to qubits+gates system

. Prepare the external hadronic state | 7)*

 Evaluate the real-time dynamical correlation function



Simulate hadron partonic structure on quantum computer
4 Quantum field to qubits+gates L =(id — my + g(y)?

» Discretization: staggered fermion, put different
fermion components, flavors on different sites

. 41 R ¢2n
v ¥2 Do+

e Jordan-Wigner transformation

b= || zx+iv),

I<n

e Discretized PDF:
1 . . ]
f(.X) N Z Z 4—]T€_ZXMhZ<h ‘ elHZ¢j2Z+ie_lHZ¢j | h>
l,] 2

1
H = H1 +H2 + H3 + H4 Hl — Z Z [XnYn+1 o Yan+1]

n=cven

14



Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE

® Hadron states are the eigenstates of the Hamiltonian with certain
quantum numbers.

® Prepare the state by variational quantum eigensolver (VQE)

® \VVQE is a hybrid method involves both classical and guantum computers
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Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation - VQE Li et al (QuNu), PRD (letter, 2022)

. Construct a trial hadronic state |y, ), and a

symmetry-preserving unitary operator U(6) GARY PARAMETERSH]

I. The k-th state with quantum number / ~ AL co—=)
() = UO) vy wd . 5] B liim il

1l. Optimization for hadronic state, minimize the = - | 16’1 =
cost funct]i{on (PRL 113, 020505) @-ﬁ_ZJ =]
E(0) = ) wilwi(0)| H|y,(0)) il

i=1
V. | ) = U(0F) |yy), 0% is the optimized Step Il'is carried out on qUantum j.

parameter set .computer, all the others are Computed
on a classical one

#

16



Simulate hadron partonic structure on quantum computer

4+ Hadron state preparation

e Construct U(6): quantum alternating operator ansatz (QAOA)

|. Divide the hamiltonian, each term inherits the GARY PARAMETERSO >
SymmetrieS of H H = Hl —+ H2 + H3 —+ H4 § V
A —
II. U(6) consists p layers, eaoh Iayer evolve H; with % §§ =l
[y7) S | &5 @ ST
time duration 6., U(0) = HHexp(l = Do m3 |
/ 3| s
i=1 j=1 @‘&, )
lll. Prepare the input reference states for QAOA PREPARE |h)

h//m) =1010101...01) ——»
|
\Wg,z) = (\ 1001,...,01) +|0110,...,01)

Nalve vacuum

+... 4 \0101,---,LQ>>

“quark pair” excitation
17



Simulate hadron partonic structure on quantum computer

: . _ . Pedernales et al, PRL. 113, 020505 (2014)
4 Evaluate the real-time dynamlcal correlation function N

) = (h| ™S o M0 | ) i

QUBIT 0

PDFs can be written as a sum of such correlation functions QUBIT |
QUBIT n

4+ Measure the observable with one auxiliary qubit il

Measure the ancillary qubit on X (Y) basis to get the S —————
real (imaginary) part of §, (?)

. |a),10), >\/§|a>(|0>b+\1>b)—>\cb):\/;(\a)am)ﬁ@\a)a\l)b)
- (P, R X, | p) = —+Re(<a\0\a>)

1 A
- (P, BY,|P) =5—IM(<06\0|06>)
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Numerical results from quantum computing
4 Measurement of hadron mass M, = (h|H|h) — (Q|H|Q)

g 0.2 |04 |06 (0.8 [1.0
My oca |1.002(1.810|2.674|3.534(4.352
M, numa|1.001[1.801(2.659 (3.509 |4.342| ma = 0.2

N=12

e Considering the current limitations of using real quantum devices,
the results are generated using a classical simulation of the
quantum circuit

e Measure the mass of the lowest-lying ud-like hadron in NJL model
with 2 flavors, QAOA has good accuracy

® For small quark mass, the dominant contribution comes from the
Interaction rather than the quark masses

e For ma = 0.8, the quark masses are dominant

19



Numerical results from quantum computing

4+ quark PDF of the lowest-lying zero-charge hadron

e quark PDF in position space 0.

ma=08 N=18 n =1 ol - RelD()] g = 1

® The real part is consistent with0 =

£.(0) = f,(x) = = f,(=x)

—005}-

—A— Im:D(z):,g =0.6 -
® [he bound state behavior : Im[D(z)],g =1
—0.1
| | | ‘ | | | ‘ | | | | ‘ | | | ‘ | | | ‘ |
—4 —3. =2 —1 1. 2. 3.
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Numerical results from quantum computing

Li et al (QuNu), PRD (letter, 2022)

4+ quark PDF of the lowest-lying zero-charge hadron
L. l

® Good agreement between quantum
computing and numerical
diagonalization

® [he non-vanishing contributions in

the x > 1 are partly due to the finite
volume effect

® \We observe the expected peak

around x = (.5 and qualitative
agreement with pion PDFs

JAM Collaboration, PRL, 2021

0.5

G
= 0.

—0.9

! /%/ \X\A ]
/ \ﬁ“ﬁ-—g-__é-—ﬁ—-~»ﬁ--—ATA—
— —— NUM, g =0.6 Zg QC,g=0.6 —
NUM, g =1.0 QC,g=1.0
| | | | | |
0. 1 2 3.

“01 0305 07 009
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Simulate SU(2) hadron on quantum computer

e Global fitting with quantum circuit at initial scale

G 7 N ot agtN=l
SU(2) Hamiltonian: Z <¢ U,$,., +H. C) + mn; (—1)"¢, ¢, nZ:jl L

Zaln 1

a Spatial lattice and qubit encoding

B\ (%
5i) \o

a VQE circuit to prepare baryon and vacuum states

2

VQE preparation of the baryon mass

N=4 62002200

| o Baryon mass (VQE)

| — Exact baryon mass

@ % '—Tl-7 i
7 - o 7"—.2 5‘—-:; o
9 P

Toab
e

G— == '_/‘ ./—

Atas et al, Nature Commun. 2021
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Alternative approaches U0, x)|0Y®" = (6. x))
e Global fitting with quantum circuit at initial scale 0) — A=
1 —z,(0,x) 0) = U(0) A R
quantum parametrization: ~ qPDFi(x, Q0. 0) = 1 (0% 0) QR
o _ . di “E Classical Optimizer —= L(0) s
variational quantum circuit:  z;(6,x) = (w (0, x)|Z; |y (0, x))
gat 1.7 GeV
Stage 1
Quantum G e
Y
PDF data > 20s8 2.5 -
* Ansgtz
Optimization Tuning -
v X o0
No x
Convergence? 1.5 -
Yes
1.0 -
Stage 2 Stage 3
Quantum Hardware .—— gPDF fit from data 0.5 -—e ~ -
107> 10~ 1073 1074 1071 10°
X

Salinas et al, PRD 2021
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Alternative approaches

® Global fitting based hadronic tensor NuQS, PRR 2020

Hadronic tensor: WH(q) = Re/ddx e (P|T{J*(x)J" (0)}|P)

Collinear factorization: WH"¥ = Zfi QP @WH
]

® A test from exact diagonalization of Hamiltonian in Thirring model
0.2 ;

15.9=00
114G =04

0.15 |
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Quantum computing for scattering amplitudes

+ Computing scattering amplitudes for strongly-coupled QFT

E Science Current Issue First release papers Archive About v Subm

Quantum Algorithms for Quantum Field Theories

STEPHEN P. JORDAN , KEITH S. M. LEE, AND JOHN PRESKILL Authors Info & Affiliations

SCIENCE - 1Jun2012 - Vol 336, Issue 6085 - pp.1130-1133 - DOI: 10.1126/science.1217069

¥ 1,061 99 251 ‘

Quantum Leap?

Quantum computers are expected to be able to solve some of the most difficult prob-
lems in mathematics and physics. It is not known, however, whether quantum field
theories (QFTs) can be simulated efficiently with a quantum computer. QFTs are used
in particle and condensed matter physics and have an infinite number of degrees of

freedom; discretization is necessary to simulate them digitally. Jordan et al. (p. 1130;

see the Perspective by Hauke et al.) present an algorithm for the efficient simulation

of a particular kind of QFT (with quartic interactions) and estimate the error caused
by discretization. Even for the most difficult case of strong interactions, the run time
of the algorithm was polynomial (rather than exponential) in parameters such as the
number of particles, their energy, and the prescribed precision, making it much more
efficient than the best classical algorithms.

R

* No reliable way on classical computers (real time
dynamics, exponentially costly)

* Quantum computing offers a possible way,
complexity scaling polynomially in energies and
number of particles.

1. Incoming particles are widely separated wave packets
L>d;> 1/|p;| —> requires large lattice

2. Adiabatically turn on coupling, interactions happen
Long time span of evolution, broadening of wave packet

3. Adiabatically turned off coupling, measure final states

26



Quantum computing for scattering amplitudes

4+ A new proposal - LSZ reduction formula Li et al (QuNu), arXiv: 2207.13258

 Lehmann-Symanzik-Zimmermann (LSZ) reduction formula
s et (00 (flow) o
Pl {}{}(H 1;[1 (ks) \ /Pz

k?-—)m _

e connected n-point function iIn momentum space

h

out Nin—1
G({pi},1ki}) = (H /d4337, P ) ( H /d4yj e’:kj'yj) o
X QT {$(1) - $(@n )0 (¥1) - BT (Unia—1)0" (0) } 1) con
* two-point function in momentum space (propagator)
K(p) = [ d'ac(@IT{#(z)8' 0)}12)

e field normalization

R = |(Q]¢(0)|h(p = 0))|?
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Quantum computing for scattering amplitudes

4+ A new proposal - LSZ reduction formula Li et al (QuNu), arXiv: 2207.13258
* Lehmann-Symanzik-Zimmermann (LSZ) reduction formula hk1 hp1
Nout Nin h
M — Rn/Q 13 , k. K p'r K—l ks k2 \ / h
2 2 i)mm G({pi},{k;}) (H ) (SHI ( )) \ / 2
kJZ — m?

 connected n-point function in momentum space / \
H/d4xz ) (H /d4y] —1k; ya) hk h

G(ipi}, 1kj}) = (

X AUT {9(21) ~ $@nu )9 (1) - 8" (Unin-1)8"(0)} [Deon & 1516 singularities cancel
* two-point function in momentum space (propagator) mass-shell, giving finite

| scattering amplitude g
K(p) = / d*z e (QT{p(x)$'(0)}|) — - -

e field normalization

R = [(Q|¢(0)|h(p = 0))|?

+ |QAOAfor | Q) and |h) |

|

28



Quantum computing for scattering amplitudes

4+ A new proposal - LSZ reduction formula Li et al (QuNu), arXiv: 2207.13258
* Lehmann-Symanzik-Zimmermann (LSZ) reduction formula hk1 hp1
Nout Nin h
iM = R? lim ({pi},{k K (p,) K (k, ks \ / h
7 {}{}(H )(H <>) ~2 ~
ka — m?
* No preparation of incoming wave packets, smaller lattice is . '
allowed. h
knin hp

* No adiabatic turn on and turn off of coupling constants, no
associated extra time evolution

 Bound-states are allowed as incoming and outgoing particles

 Complexity scales exponentially in particle number n, ideal for
exclusive scattering process, e.g. 2 — 2 scattering. JLP
formalism scales polynomially with n.

29



Quantum computing for scattering amplitudes
4+ LSZ reduction formula - 1+1 NJL

- ip-a ; * pr tor of composit rator
* Fermion propagator XKy(p) = / d°z P (QT{y(x)y(0)}|Q) propagator ot composite operato
. . KO(p) - /de 62px<Q|T{O(w)O(O)}|Q>COH
Lowest lying quark state Lowest lying bound state
. (2g+qgbar) _
j O(z) = (z)Y(x)
4.8 :_ L o« = = 1 e QL% F = I % % g | i e ] & % 5 ;f‘ :
4.0F - f
— 3.2 E I
S 2.4F = ol |
S - ] _
S 08F \ 2
K 0.0F . %Q 1 -
-0.8F . =,
2 ] QO
6F o Y e 3 = -
3 =2 < 0 1 2 23 0 -
pla _
Real part of TrK,,(p) a function of pYa with p' = 0. ] O N T D I T
3 2 -1 0 I 2 3
pa
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Quantum computing for scattering amplitudes
4+ LSZ reduction formula - 1+1 NJL

‘Our quantum algonthm succeeds in recovermg
* Four point correlation function the expected pole structure, which is crucial to |
wthe implementation of LSZ formula

Lowest lying quark state

=0)]
—
>
o
|

12.0 - -

100? .

8.0F :

6.0F E Lowest lying bound state
{ " (2g9+qgbar)

(poa,0),p2=(0,nx),p3

|
|
4.0F
e -
i
i
2.0F
-
- B
-t B
- B
0.0 F -
e - B
- B
- B
-2.0 -
.
- B
' D — D — D — D — B — B — ’

R(’[ TI'K'(])l

poa

Real part of Giﬁaﬁ(pl,pg, k1,0) as a function of pia,
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Quantum parton shower

4+ Simulate the quantum interference effect Nachman et al, PRL 2021

L= f1i@+m)f1 + fri@ + my) fr + (0,0)°
+ 91f 1119 + gof 2 f2 + g2l f1f2 + fof 1]

(91,92, €) = (2,1,1073) (b)
05 | | | | | | |
¢ — ff excluded x  Classical MCMC
04F 4 steps simulation (g1 = 0) -
\ 4 x . . B
v simulation (g1> = 1)

o
w
<

IBMQ (91> = 0), corrected

C
©
~~
% ‘ . A IBMQ 1 ted
o 0.2F A t (912 = 1), corrected
~~
0.1F X )
A
\EOO I ! | : v | |
(_53 | | | | , | |
2E 2 \ _
DO | e T L
S5 ) j | . e | |

Number of emissions (n)

32



' hadron fragmentation |

Final state
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Quantum computing for exclusive hadronization

4+ LCDA - light cone distribution amplitude, describes the formation/decay of a
hadron

4+ LCDA is an essential ingredient in exclusive high-energy QCD processes, €.g.

form factor in the process y*y — 7"
1 WL (1—-a)p
F(Q?) =fﬂJ dx Ty (x, Q% W (x; 1) + O(AGcp/ Q) E
0
1 .
P(x) = ; sze_’(x_l)”'&@ [ p(zn)y "y (0) | h(P)) & ap

4+ The current knowledge on LCDA is limited, mainly on models and lattice
calculations

4+ First try using quantum computing
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LCDA on quantum computer

4+ Quantum circuit Li et al (QuNu), SCPMA (2023)

Q,1

1

) =—=(12)[0) +/O0|h)| 1))

N

ZA| querr

QUBIT

QUBIT

QUBIT

QUBIT

QUBIT -
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LCDA on quantum computer

4 Numerical results

- 1
14— ED,g=0.05
1.0:_— ED,g=0.15

- —— ED,g=1

~ 0.8 .
\}3 .......... asymptotlc
< 0.0
< i
0.4:—
0.2;— =N :
-O.ZZ—TI L |Ifk.3).u| .
-2 -1 0 1
X

1.2

0.0

——— ED,m;=1. | 3a-1
ED,m,=1.5a"" OC,m,=15a"" .
- —— ED,my=1.7a" /E\B‘\\q(]) OC,m,=1.7a""
f ‘\
= I7> XM\ ,
N | I T
-2 1 0 1 2 3
X

* peak gets narrower with decreasing coupling constant or increasing

hadron mass

 Converges to asymptotic result in weak coupling limit



Quantum computing for inclusive hadron fragmentation functions

4+ Global fitting - the only reliable way to extract hadron fragmentation functions
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* —
- R

| EFETETE AR
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C
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N
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Z Z

Hard Decay
Scattering Fragmentation
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Quantum computing for inclusive hadron fragmentation functions

+ The first attempt using quantum computing Li et al (QuNu), in preparation
CdyT
D, ;(2) = ZZ QLﬂelk ST [<O | w, (y7) | 1, X)(h, X | w(0) | 0>7+] y = %(YO ~¥3)

» Challenge in lattice QCD: FF is a real time dynamical function; can not define |/, X)

* Quantum computing:

1. Using VQE to construct multi-hadron state \ h , X)

Q) =U|,I,...I0 ), |h(0)) = UL, ... 12 LIS T, . 1)) = ULh),
|h%G0), KP(j)y = UL, ... 1) I8 TD ... 10_1,1ﬂ IJOH, LI,

2. construct hadron projector
M-1M-1

P, = 2 | h, X){h, X _T Y Y Ul U

j=0 =0
T/ is translational operator on lattice
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Quantum computing for inclusive hadron fragmentation functions

4+ quantum circuits for fragmentation functions Li et al (QuNu), in preparation

(a) MEASURE

10) [H S

|£2)

(b)

NOILONNS

(0)n
SSO1 3ZININIW

w{
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Quantum computing for inclusive hadron fragmentation functions

4+ hadron fragmentation functions from quantum computing

15FT T Tt T T T T 15T T T T T T T T T T T T
- 0O QG N=10 = NNFF10_nlo - L o QCnN=10 —— NNFF10_nlo -
! QC, N=14 —— DSS nlo 1 i QC, N=14 —  DSS nlo
1.0- o qc, wn=18 - 1.0 QC' M - -
é é 0.5:—0 —
!Q IQ :
g S 00F 0
0.5[- - -
R T T R B B T
Y Y
15— —
| o | » Quantum simulation of FFs using
Lol — N=18 NJL, m, = 0.4, m;, = 0.6.
,—[\? | W sseeesens DSS_n'O’ D:;_{_a | . . .
I * (Qualitative agreement with global
Q _ e
05l fitting
* Finite volume effect significantly
; 8- affect the small-z behavior
0.4




Summary and outlook
e Systematic computing of hadronic scatterings

1. Use NJL model as a proof of concept study

2. Include both parton distribution function, scattering amplitude
and fragmentation functions

 Many topics are not covered, such as phase transition, jet
quenching, quantum machine learning for data analysis ...

* The field is still at its infant age, many more need to be done
1. Consider gauge field

2. Extend to higher dimensions for TMDs and spin dependent processes

3. Consider noises Thanks for your attention!
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