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Outline
✦ Introduction 

✦ Simulate hadronic scatterings from quantum computing


➡ parton distribution in hadron

➡ partonic scatterings

➡ hadronization


✦ Summary and outlook
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scattering: a fundamental tool to explore the nuclear structure! 

Probing nuclear structure at different energy scales 

Rutherford	scattering

1911

Electron-Ion Collider (EIC) 

!  A giant “Microscope” 

!  A sharpest “CT” 

To “see” quarks and gluons 

To “cat-scan” nucleons and nuclei 
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To “cat-scan” nucleons and nuclei 

Electron-Ion Collider (EIC) 

!  A giant “Microscope” 

!  A sharpest “CT” 

To “see” quarks and gluons 

To “cat-scan” nucleons and nuclei 
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The benefits from hadronic scattering
✦ Extract proton PDFs from world data

✦ High precision test of standard model

gluon sea quark valence quark
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High energy hadronic scatterings

Figure 3: Sketch of a hadron-hadron collision as simulated by a Monte-Carlo event generator. The red
blob in the center represents the hard collision, surrounded by a tree-like structure representing
Bremsstrahlung as simulated by parton showers. The purple blob indicates a secondary hard
scattering event. Parton-to-hadron transitions are represented by light green blobs, dark
green blobs indicate hadron decays, while yellow lines signal soft photon radiation.

At hadron colliders, multiple scattering and rescattering e↵ects arise, which must be simulated by Monte-
Carlo event generators in order to reflect the full complexity of the event structure. This will be discussed
in Sec. 5. Eventually we need to convert the full partonic final state into a set of color-neutral hadrons,
which is the topic of Sec. 6. The interplay of all these e↵ects makes for the full simulation of hadron-hadron
collisions. This is sketched in Fig. 3.

2 The hard scattering

Event simulation in parton-shower Monte-Carlo event generators starts with the computation of the hard-
scattering cross section at some given order in perturbation theory. Traditionally, this calculation was
performed at leading order (LO), but nowadays, with next-to-leading-order (NLO) calculations completely
automated, it is often done at NLO. Computing the hard cross section at NLO requires a dedicated
matching to the parton shower, which will be discussed in Sec. 4. For now we focus on the evaluation of
the di↵erential cross sections and the related phase-space integrals.

The basis for our calculations is the factorization formula, Eq. (1.1). We rewrite it here, in order to
simplify the discussions in the following sections. The full initial and final state in a 2 ! (n � 2)
reaction can be identified by a set of n particles, which is denoted by {~a} = {a1, . . . , an}. Their flavors

and momenta are similarly specified as {~f } = {f1, . . . , fn} and {~p} = {p1, . . . , pn}. The di↵erential
cross section at leading order is a sum over all flavor configurations, and it depends only on the parton
momenta:

d�(LO)({~p}) =
X

{~f }

d�(B)

n ({~a}) , where d�(B)

n ({~a}) = d�̄n({~p}) Bn({~a}) . (2.1)

Each individual term in the sum consists of the di↵erential phase-space element, d�n, the squared matrix
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Initial state 
hadron structure

Final state 
hadronization

Intermediate state 
partonic scatterings 

and showers

LHC～TeV

 the highest collision energy 

in the world!
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Simulate hadronic scatterings
✦ S-matrix in high energy scatterings

⟨out |e−iH[ψ]t | in⟩

ψ

ψ1

ψ2

ψ3

ψ4 L = na

[…][ ] ]
[…… (na)−1 ≲ E ≲ a−1

For the LHC 102MeV ≲ E ≲ 1TeV

nDsp ∼ 1012

nψ = 25 = 32Suppose 

For the hadron: 102MeV ≲ E ≲ 1GeV

nDsp ∼ 103

dim → ∞

• Hilbert space dimension:  

• Classically: gigantic size, diagonalize  with 
infinite dim, impossible/hard ! 

• Quantum computing: requires qubits,
, , 

reasonable size

dim = (nψ)nDsp

H

nq,LHC ∼ 5 × 1012 nq,hadron ∼ 5000
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Quantum computing
✦ A bit history

“... and if you want to make a simulation of nature, you’d better make 
it quantum mechanical, ...” 
                                                                                                                                                                                                                                                                                                                                                                                                                                                —Feynman 
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Quantum computing
https://qiskit.org/

• Qubit: takes infinitely many different values

• Quantum gate: unitary operators (X、Y、Z、CNOT)

✦ Building blocks of quantum computing

• Measurements: Hermitian
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Increasing interest in HEP and NP using quantum computing

Inspire: 

find t quantum computing and date>2015

350

175
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Community-wide efforts

Opportunities for  
Nuclear Physics &  
Quantum Information Science
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Figure 3: Sketch of a hadron-hadron collision as simulated by a Monte-Carlo event generator. The red
blob in the center represents the hard collision, surrounded by a tree-like structure representing
Bremsstrahlung as simulated by parton showers. The purple blob indicates a secondary hard
scattering event. Parton-to-hadron transitions are represented by light green blobs, dark
green blobs indicate hadron decays, while yellow lines signal soft photon radiation.

At hadron colliders, multiple scattering and rescattering e↵ects arise, which must be simulated by Monte-
Carlo event generators in order to reflect the full complexity of the event structure. This will be discussed
in Sec. 5. Eventually we need to convert the full partonic final state into a set of color-neutral hadrons,
which is the topic of Sec. 6. The interplay of all these e↵ects makes for the full simulation of hadron-hadron
collisions. This is sketched in Fig. 3.

2 The hard scattering

Event simulation in parton-shower Monte-Carlo event generators starts with the computation of the hard-
scattering cross section at some given order in perturbation theory. Traditionally, this calculation was
performed at leading order (LO), but nowadays, with next-to-leading-order (NLO) calculations completely
automated, it is often done at NLO. Computing the hard cross section at NLO requires a dedicated
matching to the parton shower, which will be discussed in Sec. 4. For now we focus on the evaluation of
the di↵erential cross sections and the related phase-space integrals.

The basis for our calculations is the factorization formula, Eq. (1.1). We rewrite it here, in order to
simplify the discussions in the following sections. The full initial and final state in a 2 ! (n � 2)
reaction can be identified by a set of n particles, which is denoted by {~a} = {a1, . . . , an}. Their flavors

and momenta are similarly specified as {~f } = {f1, . . . , fn} and {~p} = {p1, . . . , pn}. The di↵erential
cross section at leading order is a sum over all flavor configurations, and it depends only on the parton
momenta:

d�(LO)({~p}) =
X

{~f }

d�(B)

n ({~a}) , where d�(B)

n ({~a}) = d�̄n({~p}) Bn({~a}) . (2.1)

Each individual term in the sum consists of the di↵erential phase-space element, d�n, the squared matrix
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parton distribution function f
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✦ Operator definition of quark PDF

• Light cone momentum fraction: 
x = k+/p+, k+ = (k0 + kz)/ 2

• Wilson line to ensure gauge invariance
𝒲(0,y−) = 𝒫e−ig ∫y−

0 dη−A+(η−)

fq/p(x) = ∫
∞

−∞

dy−

2π
eixp+y−⟨p | ψ̄(0)

γ+

2
𝒲(0,y−)ψ(y−) |p⟩

✦ The probability density of finding a parton inside a proton

Simulate hadron partonic structure on quantum computer

σ ∼ fA ⊗ H ⊗ D

✦ PDFs are extremely challenge to simulate in classical/Euclidean lattice 
calculation, due to multidimensional oscillating integral.

✦ QC can naturally simulate real-time dynamics.



✦ A toy model - 1+1D NJL (Gross, Neveu, 1974), no gauge

ℒ = ψ̄(i∂/ − m)ψ + g(ψ̄ψ)2 (no gauge, 1+1) Gross, Neveu, 1974

f(x) = ∫ dz−e−ixMhz−⟨h | ψ̄(z−)γ+ψ(0) |h⟩ = ∫ dz−e−ixMhz−⟨h |eiHzψ̄(0, − z)e−iHzγ+ψ(0) |h⟩

16

A toy model 

Map the QFT on to a qubits+gates system 

Prepare the external state  

Evolution

|h⟩

Li, et al, PRD letter 22

QuNu Collaboration 

•  Map QFT to qubits+gates system


•  Prepare the external hadronic state 


•  Evaluate the real-time dynamical correlation function


|h⟩

Simulate hadron partonic structure on quantum computer
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✦ Quantum field to qubits+gates
• Discretization: staggered fermion, put different 

fermion components, flavors on different sites


     


•  Jordan-Wigner transformation


     


• Discretized PDF:   


    


ψ = (ψ1
ψ2) → ( ϕ2n

ϕ2n+1)

ϕn = ∏
i<n

Zi(X + iY)n

f(x) → ∑
i,j

∑
z

1
4π

e−ixMhz⟨h |eiHzϕ†
−2z+ie

−iHzϕj |h⟩

ℒ = ψ̄(i∂/ − m)ψ + g(ψ̄ψ)2

H = H1 + H2 + H3 + H4 H1 = ∑
n=even

1
4 [XnYn+1 − YnXn+1]

Simulate hadron partonic structure on quantum computer
1+1D NJL Model

• Lagrangian: 

• Discretization: staggered fermion 

• Hamiltonian:

ℒ = ψ̄α(iγμ∂μ − mα)ψα + g(ψ̄αψα)2

ψα(x) = (
ψα,1(x)
ψα,2(x)) ≡ (

ϕα,2n

ϕα,2n+1)

H = ∑
α,n

[− i
2 ϕ†

α,nϕα,n+1 − h . c) + (−1)nmαϕ†
α,nϕα,n]

−g ∑
α,n=even

[ϕ†
α,nϕα,n + ϕ†

α,n+1ϕα,n+1 − 2ϕ†
α,nϕα,nϕ†

α,n+1ϕα,n+1]
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• Hadron states are the eigenstates of the Hamiltonian with certain     
quantum numbers.  


• Prepare the state by variational quantum eigensolver (VQE)


• VQE is a hybrid method involves both classical and quantum computers

✦ Hadron state preparation - VQE

2103.08505 + … 

Potential energy surfaces

show its power in quantum chemistry

Nature 549, 242 (2017)

Simulate hadron partonic structure on quantum computer
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I. Construct a trial hadronic state , and a 
symmetry-preserving unitary operator 


II. The -th state with quantum number  



III. Optimization for hadronic state, minimize the 
cost function (PRL 113, 020505)




IV. ,  is the optimized 
parameter set

|ψlk⟩
U(θ)

k l
|ψlk(θ)⟩ = U(θ) |ψlk⟩

El(θ) =
k

∑
i=1

wli⟨ψli(θ) |H |ψli(θ)⟩

|h⟩ = U(θ*) |ψlk⟩ θ* Step II is carried out on quantum 
computer, all the others are computed 
on a classical one 

✦ Hadron state preparation - VQE
Simulate hadron partonic structure on quantum computer

Li et al (QuNu), PRD (letter, 2022)
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• Construct : quantum alternating operator ansatz (QAOA)U(θ)

I. Divide the hamiltonian, each term inherits the 
symmetries of ， 


II.  consists  layers, each layer evolve  with 

time duration , 


III. Prepare the input reference states for QAOA
   




H H = H1 + H2 + H3 + H4

U(θ) p Hj

θij U(θ) ≡
p

∏
i=1

n

∏
j=1

exp(i θijHj)

|ψΩ,1⟩ = |010101…01⟩

|ψΩ,2⟩ =
1

N/2 ( |1001,…,01⟩ + |0110,…,01⟩

+… + |0101,…,10⟩)

✦ Hadron state preparation
Simulate hadron partonic structure on quantum computer

“quark pair” excitation

Naive vacuum
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Smn(t) = ⟨h |eiHtΞ3
mσi

me−iHtΞ3
nσ

j
n |h⟩

Measure the ancillary qubit on  basis to get the  
real (imaginary) part of  

X (Y)
Smn(t)

PDFs can be written as a sum of such correlation functions

Pedernales et al, PRL. 113, 020505 (2014) 
✦ Evaluate the real-time dynamical correlation function

✦ Measure the observable with one auxiliary qubit

Simulate hadron partonic structure on quantum computer

Dynamical correlations function
• The measurement on the quantum computer is achieved by one auxiliary qubit 

and the controlled gates. [Phys. Rev. B 101, 014411] 

•  

•  

•  

• What we measure: , 

|α⟩a |0⟩b → 2
2 |α⟩a( |0⟩b + |1⟩b) → |ϕ⟩ ≡ 2

2 ( |α⟩a |0⟩b + Ô |α⟩a |1⟩b)

⟨ϕ | Ia ⊗ Xb |ϕ⟩ = 1
2 + Re(⟨α | Ô |α⟩)

⟨ϕ | Ia ⊗ Yb |ϕ⟩ = 1
2 − Im(⟨α | Ô |α⟩)

Smn(t) = ⟨h | Ômn(t) |h⟩ Ômn(t) = eiHtΞ3
mσi

me−iHtΞ3
nσ j

n

16
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Numerical results from quantum computing
✦ Measurement of hadron mass Mh = ⟨h |H |h⟩ − ⟨Ω |H |Ω⟩

• Considering the current limitations of using real quantum devices, 
the results are generated using a classical simulation of the 
quantum circuit


• Measure the mass of the lowest-lying -like hadron in NJL model 
with 2 flavors, QAOA has good accuracy


• For small quark mass, the dominant contribution comes from the 
interaction rather than the quark masses


• For , the quark masses are dominant

ud

ma = 0.8

ma = 0.2

N = 12 Higgs  
mechanism

QCD  
dynamics
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✦  quark PDF of the lowest-lying zero-charge hadron
Numerical results from quantum computing

ma = 0.8 N = 18 nf = 1

• The real part is consistent with 0
fq(x) = fq̄(x) = − fq(−x)

• quark PDF in position space

• The bound state behavior
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Numerical results from quantum computing
✦  quark PDF of the lowest-lying zero-charge hadron

• Good agreement between quantum 
computing and numerical 
diagonalization


• The non-vanishing contributions in 
the  are partly due to the finite 
volume effect


• We observe the expected peak 
around  and qualitative 
agreement with pion PDFs

x > 1

x = 0.5

Li et al (QuNu), PRD (letter, 2022)
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0.01 x

0.1

0.2

0.3

0.4

xf
i(x

)

0.1 0.3 0.5 0.7 0.9

qv

0.01 x 0.1 0.3 0.5 0.7 0.9

qsNLO

NLO+NLL cosine

NLO+NLL expansion

NLO+NLL double Mellin

0.01 x 0.1 0.3 0.5 0.7 0.9

g/10

0.95 1

FIG. 2. Distribution of replicas for the pion valence quark (left), sea quark (middle), and gluon (⇥1/10) (right) PDFs versus
x at the scale µ0 for the NLO fixed order (red), and NLO+NLL cosine (green), expansion (blue), and double Mellin (gold)
analyses. The inset in the left panel magnifies the very large-x region. The central values of the sea quark and gluon posterior
samples are indicated by solid lines.

at high x than the other methods. Additionally, the cen-
tral values exhibit larger gluon distributions for the co-
sine and expansion methods compared to the NLO for
0.01 . x . 0.1, whereas the double Mellin resummation
favors a larger gluon at higher x.

To quantify the behavior of the valence PDF at large x,
we compute the e↵ective �v parameter reflecting the ex-
ponent of the (1 � x)�v term in Eq. (4), defined by [76]

�e↵
v (x, µ) =

@ log |qv(x, µ)|

@ log(1 � x)
. (5)

The results for the various resummation scenarios are
shown in Fig. 3 as a function of x at the input scale, µ0,
and compared with the ASV [33] analysis that fit the va-
lence PDF to DY data using the cosine method of thresh-
old resummation. In contrast to this work, ASV set hxiv

between 0.55 and 0.7 and fixed the sea quark and gluon
distributions from the earlier GRS analysis [36]. Con-
sistent with previous studies [37, 40, 43, 46], our NLO
analysis shows a linear fallo↵ of the valence PDF with
�e↵
v ⇡ 1 for x ! 1. Inclusion of threshold resummation

FIG. 3. E↵ective exponents �e↵
v for the various prescriptions

versus x at the scale µ0, compared with the ASV extrac-
tion [33]. The values �e↵

v = 1 and 2 are shown for reference.

results in a wide variety of �e↵
v values, with the cosine

and expansion methods yielding �e↵
v > 2, consistent with

ASV [33], and as large as ⇡ 2.6. However, with the dou-
ble Mellin method the e↵ective exponent is much closer
to the NLO case, with �e↵

v ⇡ 1.2 as x ! 1. This suggests
that with currently available data and theoretical meth-
ods, we cannot distinguish between �e↵

v ⇠ 1 and ⇠ 2
asymptotic behaviors.
Momentum fractions and pion mass decomposition —

A consequence of applying the NLL corrections to the DY
cross section is that the large-x momentum of the valence
quarks is redistributed to gluons at small x. The values of
the total momentum fractions hxii ⌘

R 1
0 dxxfi(x) for the

di↵erent flavors are shown in Table I. Interestingly, while
the shapes of the PDFs for the various resummed fits
di↵er, the momentum fractions are rather stable, with
⇡ 5%–6% of the momentum moving from the valence
quark to the gluon sectors.
This has important implications for the decomposition

of the pion mass into the quark and gluon energy and mo-
mentum, and trace anomaly contributions [77]. In par-
ticular, the gluon contribution to the mass is given by 3/4
of its momentum fraction, which amounts to 40(6) MeV,
or ⇡ 30% of the pion mass. This represents an increase
of ⇡ 14% on the gluonic fraction of the mass from the
NLO analysis without resummation.
Outlook — In the future, theoretical improvements will

extend the treatment of resummation to NNLO correc-
tions, allowing the analysis to be generalized to the gg
and qq0 channels and resummation e↵ects on sea quark
and gluon PDFs. Concurrently, planned high luminos-

TABLE I. Total momentum fractions of the valence quark,
sea quark, and gluon distributions at the input scale µ = µ0

for various resummation prescriptions.

resummation method hxiv hxis hxig
NLO 0.53(2) 0.14(4) 0.34(6)
NLO+NLL cosine 0.47(2) 0.14(5) 0.39(6)
NLO+NLL expansion 0.46(2) 0.16(5) 0.38(6)
NLO+NLL double Mellin 0.46(3) 0.15(7) 0.40(5)

JAM Collaboration, PRL, 2021
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• Global fitting with quantum circuit at initial scale

SU(2) Hamiltonian:

Atas et al, Nature Commun. 2021

Simulate SU(2) hadron on quantum computer

our case the B= 1 baryon circuit can be seen as a specialized
instance of the B= 0 circuit, so only the more general circuit
needs to be implemented on the quantum hardware, namely the
lower-left panel in Fig. 2.

The IBM Casablanca processor37 consists of seven qubits with the
coupling topology displayed in Fig. 3a. We arranged the active qubits
in a fashion such that only one SWAP gate is required to perform the
circuit. The reduced circuit possesses three variational parameters,
each modifying several single-qubit gates marked by the colored
boxes in Fig. 3a. In order to perform one measurement of the
Hamiltonian we need to repeat the ansatz state preparation and
measure each of the 36 multi-qubit Pauli operators in which it is
decomposed, and we average the measurement results over 8192
repetitions. In order to mitigate CNOT errors this procedure is
repeated three times for different noise rates, which allows to
extrapolate the results to the noise-free limit (see “Methods”).

The baryon mass obtained from the experimental VQE is
shown in Fig. 3b and we find good agreement with the exact
diagonalisation result.

Accessing excited states on quantum hardware. As a next step
in studying the properties of the baryon we address its mass ratio
with its partner particle, the meson. We consider the lightest
meson, which is the first excited state in the B= 0 sector with
energy Em, and mass Mm= Em− Ev.

In order to access excited states within the VQE approach, we
need to modify the cost function appropriately. Since the
eigenstates of the Hamiltonian are mutually orthogonal, we add
a term that penalizes variational states that overlap with the
lower-energy eigenstates. More precisely, after obtaining the
parameters θv that minimize ΨðθÞ

! ""Ĥ ΨðθÞ
"" #

, we consider as
cost function CðθÞ ¼ ΨðθÞ

! ""Ĥ ΨðθÞ
"" #

þ βjhΨðθÞjΨðθvÞij to
obtain the energy of the meson state, where β is a weight
chosen larger than the expected energy gap52. The measure-
ment of the overlap can be obtained by applying the unitary
ÛðθÞyÛðθvÞ to the initial state. This composite unitary evolution
can be realized by a further application of the inverse quantum
circuit. Consequently, the overlap is directly given by the
probability of measuring the initial state Ψ0

"" #
in the final state

ÛðθÞyÛðθvÞ Ψ0

"" #
. This procedure is trivially extendable, i.e.

higher excited states can be obtained recursively (see “Methods”
for more details).

Similar to the study of the baryon, we can simplify the VQE by
enforcing the suitable symmetries of the state directly within the
construction of the circuit, so that it creates only basis states that
have the correct B number, are gauge singlets, and contain a
limited number of particles. However, given the current
limitations on the fidelities of available gates, calculating the
required overlap is still a nontrivial task since it requires a deeper
circuit. We, therefore, reduce our lattice size to enable the
calculation on the quantum machine and compute the properties
of the meson for N= 2. By applying the strategies discussed in the
baryon case we can reduce the number of necessary qubits from
four to three. In Fig. 4 we report the results from an experimental
VQE calculation performed on the IBM Athens processor38,
where we obtain the energies necessary to compute the meson
mass. The vacuum and meson states are successfully computed
with good accuracy (Fig. 4a), and the mass of the meson is shown
in Fig. 4d. In Fig. 4b–c, we give the two circuits required to
calculate the cost function for the computation of the excited
meson state, namely one computing the expectation value of Ĥ,
and one computing the overlap with the previously calculated
vacuum.

Path towards the continuum limit. In the continuum limit,
SU(2) gauge theory dictates that the masses of the baryon and the
meson are equal53 because of a global SU(2) symmetry. Some
lattice discretisations will preserve this degeneracy but for others
it will only be restored in the continuum limit. Staggered
fermions40, as used here, are in the latter category, which means
the distinction between meson and baryon masses is a valuable
measure of approaching the continuum limit.

To study this effect quantitatively, let us define the hadron mass
ratio

r ¼
Mm

Mb
; ð8Þ

and obtain this quantity with explicit calculations from the qubit
Hamiltonian in Eqs. (3–6) on classical computers. In general, in order
to extrapolate lattice calculations to the continuum limit, it is
necessary to take the limit x→∞, while keeping a physical length
scale fixed4. Our small lattices are insufficient for performing a
continuum extrapolation, but we are able to consider the x
dependence while holding the mass ratio fixed. Figure 5a shows
curves of constant r in the plane spanned by x and ~m. Notice that any
curve with a fixed r > 1 does not allow for x→∞. The only constant-
physics curve that allows it is the one in the limit of r→ 1, therefore
the correct value of the mass ratio in the continuum limit has to be 1
as required by the theory’s SU(2) global symmetry.

VQE preparation of the baryon massb

x
1 2 3 4 5 0

0

5

10

15

20

Mb

SU(2) “quark”

SU(2) “proton”

N = 4

1

2

3

4

5

6
a VQE circuit to prepare baryon and vacuum states

Exact baryon mass

Baryon mass (VQE)

Fig. 3 VQE calculation of a baryon. We variationally study an effective
eight sites chain with the experimental circuit shown in (a). The boxes
represent single-qubit gates. Gray boxes are fixed gates while the color
coding indicates dependence from three variational parameters. Their exact
implementation changes depending on the combination of the parameter
values, which is automatically compiled from the original circuit shown in
Fig. 2. This takes into account the coupling topology of the IBMQ
Casablanca processor, which, together with the qubit identification for the
B= 0 sector are shown on the left. b The circuit yields the mass of the
baryon (error bars are smaller than markers, see “Methods” for a more
detailed discussion), an SU(2)-"proton” (see inset), for a range of x and
~m ¼ 1 as explained in the main text.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26825-4 ARTICLE

NATURE COMMUNICATIONS | ��������(2021)�12:6499� | https://doi.org/10.1038/s41467-021-26825-4 |www.nature.com/naturecommunications 5

our case the B= 1 baryon circuit can be seen as a specialized
instance of the B= 0 circuit, so only the more general circuit
needs to be implemented on the quantum hardware, namely the
lower-left panel in Fig. 2.

The IBM Casablanca processor37 consists of seven qubits with the
coupling topology displayed in Fig. 3a. We arranged the active qubits
in a fashion such that only one SWAP gate is required to perform the
circuit. The reduced circuit possesses three variational parameters,
each modifying several single-qubit gates marked by the colored
boxes in Fig. 3a. In order to perform one measurement of the
Hamiltonian we need to repeat the ansatz state preparation and
measure each of the 36 multi-qubit Pauli operators in which it is
decomposed, and we average the measurement results over 8192
repetitions. In order to mitigate CNOT errors this procedure is
repeated three times for different noise rates, which allows to
extrapolate the results to the noise-free limit (see “Methods”).

The baryon mass obtained from the experimental VQE is
shown in Fig. 3b and we find good agreement with the exact
diagonalisation result.

Accessing excited states on quantum hardware. As a next step
in studying the properties of the baryon we address its mass ratio
with its partner particle, the meson. We consider the lightest
meson, which is the first excited state in the B= 0 sector with
energy Em, and mass Mm= Em− Ev.

In order to access excited states within the VQE approach, we
need to modify the cost function appropriately. Since the
eigenstates of the Hamiltonian are mutually orthogonal, we add
a term that penalizes variational states that overlap with the
lower-energy eigenstates. More precisely, after obtaining the
parameters θv that minimize ΨðθÞ

! ""Ĥ ΨðθÞ
"" #

, we consider as
cost function CðθÞ ¼ ΨðθÞ

! ""Ĥ ΨðθÞ
"" #

þ βjhΨðθÞjΨðθvÞij to
obtain the energy of the meson state, where β is a weight
chosen larger than the expected energy gap52. The measure-
ment of the overlap can be obtained by applying the unitary
ÛðθÞyÛðθvÞ to the initial state. This composite unitary evolution
can be realized by a further application of the inverse quantum
circuit. Consequently, the overlap is directly given by the
probability of measuring the initial state Ψ0

"" #
in the final state

ÛðθÞyÛðθvÞ Ψ0

"" #
. This procedure is trivially extendable, i.e.

higher excited states can be obtained recursively (see “Methods”
for more details).

Similar to the study of the baryon, we can simplify the VQE by
enforcing the suitable symmetries of the state directly within the
construction of the circuit, so that it creates only basis states that
have the correct B number, are gauge singlets, and contain a
limited number of particles. However, given the current
limitations on the fidelities of available gates, calculating the
required overlap is still a nontrivial task since it requires a deeper
circuit. We, therefore, reduce our lattice size to enable the
calculation on the quantum machine and compute the properties
of the meson for N= 2. By applying the strategies discussed in the
baryon case we can reduce the number of necessary qubits from
four to three. In Fig. 4 we report the results from an experimental
VQE calculation performed on the IBM Athens processor38,
where we obtain the energies necessary to compute the meson
mass. The vacuum and meson states are successfully computed
with good accuracy (Fig. 4a), and the mass of the meson is shown
in Fig. 4d. In Fig. 4b–c, we give the two circuits required to
calculate the cost function for the computation of the excited
meson state, namely one computing the expectation value of Ĥ,
and one computing the overlap with the previously calculated
vacuum.

Path towards the continuum limit. In the continuum limit,
SU(2) gauge theory dictates that the masses of the baryon and the
meson are equal53 because of a global SU(2) symmetry. Some
lattice discretisations will preserve this degeneracy but for others
it will only be restored in the continuum limit. Staggered
fermions40, as used here, are in the latter category, which means
the distinction between meson and baryon masses is a valuable
measure of approaching the continuum limit.

To study this effect quantitatively, let us define the hadron mass
ratio

r ¼
Mm

Mb
; ð8Þ

and obtain this quantity with explicit calculations from the qubit
Hamiltonian in Eqs. (3–6) on classical computers. In general, in order
to extrapolate lattice calculations to the continuum limit, it is
necessary to take the limit x→∞, while keeping a physical length
scale fixed4. Our small lattices are insufficient for performing a
continuum extrapolation, but we are able to consider the x
dependence while holding the mass ratio fixed. Figure 5a shows
curves of constant r in the plane spanned by x and ~m. Notice that any
curve with a fixed r > 1 does not allow for x→∞. The only constant-
physics curve that allows it is the one in the limit of r→ 1, therefore
the correct value of the mass ratio in the continuum limit has to be 1
as required by the theory’s SU(2) global symmetry.

VQE preparation of the baryon massb
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a VQE circuit to prepare baryon and vacuum states

Exact baryon mass

Baryon mass (VQE)

Fig. 3 VQE calculation of a baryon. We variationally study an effective
eight sites chain with the experimental circuit shown in (a). The boxes
represent single-qubit gates. Gray boxes are fixed gates while the color
coding indicates dependence from three variational parameters. Their exact
implementation changes depending on the combination of the parameter
values, which is automatically compiled from the original circuit shown in
Fig. 2. This takes into account the coupling topology of the IBMQ
Casablanca processor, which, together with the qubit identification for the
B= 0 sector are shown on the left. b The circuit yields the mass of the
baryon (error bars are smaller than markers, see “Methods” for a more
detailed discussion), an SU(2)-"proton” (see inset), for a range of x and
~m ¼ 1 as explained in the main text.
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connecting sites n and n+ 1 (see Supplemental Information for
the continuum model).

The last term in the Hamiltonian corresponds to the invariant
Casimir operator of the theory and represents color electric field
energy stored in the gauge links. Here, L̂

2
n ¼ ∑aL̂

a
nL̂

a
n ¼ ∑aR̂

a
nR̂

a
n

where L̂
a
n and R̂

a
n (with a= x, y, z) are respectively the left and

right color electric field components on the link n. For a non-
Abelian gauge group, the right and left color electric field are
different and are related via the adjoint representation

R̂
a
n ¼ ∑bðÛ

adj
n ÞabL̂

b
n, where ðÛadj

n Þab ¼ 2Tr ÛnT
aÛ

y
nT

b
h i

, Ta are

the three generators of the SU(2) algebra and are given by half the
Pauli matrices41.

Symmetries and non-Abelian physics. By virtue of its gauge
invariance, the Hamiltonian in Eq. (1) commutes with the local
gauge transformation generators, also called the Gauss’s law
operators, and are given by Ĝ

a
n $ L̂

a
n % R̂

a
n%1 % Q̂

a
n; where the

non-Abelian charges Q̂
a
n acting on the site n are defined as

Q̂
a
n ¼ ∑

ij
ϕ̂
iy
n ðT

aÞijϕ̂
j
n; a ¼ x; y; z: ð2Þ

More precisely, the physical Hilbert space of the theory is span-
ned by the eigenstates of the Gauss’s law operators Ĝ

a
n. In the

following, we choose to work in the sector with no external
charges which is specified by Ĝn Ψj i ¼ 0, ∀ n, and in the neutral
total charge sector Q̂

a
tot Ψj i ¼ ∑N

n¼1 Q̂
a
n Ψj i ¼ 0, ∀ a.

Remarkably, the non-Abelian nature of the model allows the
existence of gauge-invariant singlet states which are forbidden in
the Abelian case due to symmetry constraints. To see this, we
note that the total color charges Q̂

a
tot ¼ ∑N

n¼1 Q̂
a
n are conserved

quantities and commute with the Hamiltonian. Besides the three
non-Abelian charges, the Hamiltonian also commutes with the

redness and greenness operators defined as R̂ ¼ ∑N
n¼1 ϕ̂

1y
n ϕ̂

1
n %

N=2 and Ĝ ¼ ∑N
n¼1 ϕ̂

2y
n ϕ̂

2
n % N=2, which respectively measure the

red and green color charges. Because redness and greenness do
not have convenient symmetry properties, it is more natural to
use their difference (which is purely within the SU(2) gauge
symmetry, since R̂%Ĝ

2 ¼ Q̂
z
tot ) and their sum (which is a global

U(1) symmetry). We therefore define the baryon quantum

number of the model as B̂ ¼ R̂þĜ
2 ¼ 1

2∑
N
n¼1 ϕ̂

y
nϕ̂n % N=2 which

measures the matter-antimatter imbalance.
The existence of multiple conserved charges in the non-

Abelian theory has to be contrasted with the Abelian U(1) case
of quantum electrodynamics (QED), where the electric charge
is the only conserved quantity. In QED, the total electric charge
coincides with the baryon number B of the system42, and the
neutral charge constraint thus imposes the value of the matter-
antimatter imbalance to be zero. In other words, neutral gauge
invariant states of QED must contain as many electrons as
positrons leading to meson-type singlet states only. On the
other hand, the constraint of neutral charge for the SU(2)
theory Q̂

i
tot Ψj i ¼ 0, ∀ i does not enforce the value of the baryon

quantum number B, since these are different quantum
numbers. Therefore, it is possible to construct color-neutral
gauge-invariant singlets with B ≠ 0, which are forbidden in
QED. While the states in the B= 0 sector are similar to the
neutral states of QED, the states in the sector with B ≠ 0 have no
equivalent in Abelian theories. In particular, we will refer to the
ground state in the sector with B= 1 as a baryon state, the
ground state in B= 0 will be the vacuum and the first excited
state will be called a meson state. A pictorial comparison of a
meson and a baryon is given in Fig. 1b.

Elimination of the gauge fields and qubit formulation. To
study the energy spectrum of the SU(2) theory on a quantum
computer, we map the lattice Hamiltonian in Eq. (1) to a qubit
system. In one spatial dimension and with open boundary
conditions, the gauge degrees of freedom can be integrated out
and implicitly contribute to the non-Abelian physics through
long-range exotic interactions43–47 (see Supplemental Note 2
for details and Eq. (6) below). This approach eliminates
redundant degrees of freedom and allows us to calculate our
target model with a minimal number of qubits. As a second
step, a Jordan-Wigner transformation is applied to map the
fermionic matter degrees of freedom to Pauli spin operators
(see Supplementary Note 3 for details). The Hamiltonian is
rescaled into the dimensionless form

Ĥ ¼ x ~mĤm þ Ĥel þ xĤkin; ð3Þ

where we have defined the dimensionless Hamiltonian para-
meters ~m ¼ alm, x ¼ 1

a2l g
2, and we have added a constant to

normalize the strong coupling (x→ 0) ground state energy to
zero. The different terms in the Hamiltonian are given by

Ĥm ¼ 2 ∑
N

n¼1

ð%1Þn

2
σ̂z2n%1 þ σ̂z2n
! "

þ 1
# $

; ð4Þ

Ĥkin ¼ % ∑
N%1

n¼1
σ̂þ2n%1σ̂

z
2nσ̂

%
2nþ1 þ σ̂þ2nσ̂

z
2nþ1σ̂

%
2nþ2 þ H:C:

! "
; ð5Þ

Spatial lattice and qubit encodinga
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Abelian vs. non-Abelian (color-) neutral matter configurationsb

QED
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positron electron Zero matter-antimatter imbalance for 
any Abelian theory.

red & green fermionantiparticle - particle pairs
B = 1 B = 0 

Non-zero matter-antimatter 
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+

Fig. 1 Gauge theory on a lattice. To study the SU(2) theory in one
dimension, we employ the spatial lattice in (a), where each site consists of
either matter or antimatter particles of the two possible colors. In the
equivalent qubit formulation, each particle is represented by a qubit on a
one-dimensional chain, which hence contains a number of qubits that
equals twice the number of staggered sites. For a full discussion of the qubit
representation see Supplementary Fig. 1. b Illustrates a comparison
between the different gauge invariant states allowed in the neutral charge
sector of Abelian QED and SU(2). While in the Abelian case neutral states
require an equal number of matter (full spheres) and antimatter (striped
spheres) particles, in the non-Abelian case, color-neutral states with a non-
zero matter-antimatter imbalance are possible.
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Quantum computing technologies are developing quickly
in recent years with applications in a broad range of
scientific areas from chemistry to fundamental interac-

tions of Nature. Prime candidates for the application of such
quantum simulations are gauge theories, which play a major role
in many branches of physics and comprise the entire Standard
Model of particle physics. Within this area, quantum computa-
tion of non-Abelian gauge theories is an outstanding challenge.

The most prominent example, quantum chromodynamics (QCD),
is a non-Abelian gauge theory that explains the strong interactions
between quarks and gluons and ultimately underlies nuclear physics.
There are also suggestions of non-Abelian forces beyond the Stan-
dard Model (BSM) that are completely separate from QCD and
might, for example, underlie the Higgs sector of the Standard Model1
or provide a strongly interacting theory for dark matter2.

Lattice gauge theory (LGT)3 is a mature and successful dis-
cretisation strategy for computational methods that have devel-
oped into an extremely successful field of science. The
formulation of the theory on a spacetime lattice provides a non-
perturbative regularization of the theory with the lattice spacing
playing the role of an inverse UV cutoff. Modern LGT calcula-
tions have provided precise quantitative results and important
insights for QCD4, nuclear physics5, and non-Abelian BSM
theories6, and they will continue to do so for the foreseeable
future. Quantum computers offer a possibility to extend the reach
of LGT into regimes that are presently unattainable7. Funda-
mental issues like the sign problem8,9 prevent classical methods
for LGTs from studying many properties of interest such as real-
time particle dynamics and highly entangled matter, so quantum
simulations will play an essential role in improving our under-
standing of Nature.

Quantum simulations of LGTs are a growing research area10,
addressing both real-time dynamics and equilibrium problems.
Our work contributes to the latter. Equilibrium problems include
important sign-problem afflicted settings such as models with
high matter density (with finite chemical potentials) and topo-
logical theories. While current proof-of-concept demonstrations
of equilibrium problems still address sign-problem-free settings,
they form the foundation for extensions to more complicated
models. This foundation is currently built by simulating low-
dimensional benchmarking models. Even though the ultimate
goal is the simulation of three-dimensional (3D) theories, so far
all quantum simulation experiments realize 1D models. More-
over, while different experimental realisations of 1D Abelian
LGTs have been successful11–16, non-Abelian theories are fun-
damentally different. Efforts to confront this challenge are
underway17–31, and a first important step has been made by
experimentally realising pure gauge non-Abelian theories32,33. In
this work, we present the first quantum computer calculation for
a non-Abelian gauge theory with the dynamically coupled matter.

We consider as gauge group SU(2), which is the smallest non-
Abelian Lie group and is thus a key step towards studying full
QCD. In contrast to an Abelian theory, it is possible to build
gauge singlet states from valence fermions, without any valence
antifermions; the lowest energy state that exhibits this distinctly
non-Abelian feature is called a baryon and it has no counterpart
in an Abelian theory. The non-Abelian theory also contains a
meson, which is built from one valence fermion and one valence
antifermion and is thus the counterpart to a neutral state in an
Abelian theory.

While the considered non-Abelian model can in principle be
realized by adapting the very successfully explored purely quan-
tum simulations11,15,16,34,35, its complexity is currently out of
reach for implementing such strategies on present-day devices.
We, therefore, use a hybrid quantum-classical approach and
employ a so-called variational quantum eigensolver (VQE).

Within the VQE protocols, the task of preparing the baryon and
meson state is cast into the form of an optimisation problem
which is solved by a classical algorithm with cost function eva-
luations made on a quantum co-processor.

Running deep quantum circuits on present-day devices is a
formidable challenge in the current era of noisy intermediate-
scale quantum (NISQ)-devices36, which pose severe restrictions
in the number of qubits used and the number of gates applied.
Given these restrictions, we use a number of measures to make
the calculations possible: (i) We integrate out the gauge field
degrees of freedom to reduce the experimental resources needed.
(ii) We design efficient circuits that generate an ansatz state
containing only components relevant for the chosen parameter
regimes and (iii) we reduce the depth of the experimental circuit
by relegating part of the computation to classical preprocessing
that can be performed efficiently. Note that the techniques
developed in points (ii) and (iii) are general and not exclusive to
the studied non-Abelian theory or LGT calculations.

In this work we study an SU(2) gauge theory with dynamical
matter fields on the IBM Quantum Experience37,38, and we
experimentally study physics beyond the Abelian features
demonstrated so far. More specifically, we perform a quantum
computation experiment to variationally access the lowest hadron
energies of the model, namely the non-Abelian baryon and the
meson state. This allows us to calculate their masses on the
quantum computer. In particular, we perform calculations for
different lattice sizes to show how a known physical symmetry
emerges: the baryon and meson masses are equal in the physical
limit where lattice artifacts vanish.

Results
SU(2) gauge theory. The quantum field theory for SU(2) gauge
fields interacting with fundamental fermions is well known39. At
each point in spacetime a matter field operator can annihilate a
fermion of one of two possible colors (here named red and green),
or it can create the corresponding antiparticle. The gauge fields
(or “gluons”) at each point mediate the interactions between color
charges. The quantum field theory in the continuum is described
in more detail in Supplementary Note 1.

Because the non-Abelian nature of SU(2) leads to strong
interactions and the confinement of color charge, these fermions
and gluons are confined within color-singlet hadrons that cannot
be studied perturbatively. In order to access the non-perturbative
regime, both classical and quantum simulations require for-
mulating the gauge theory on a lattice. Lattice calculations on
classical computers are successful in Euclidean spacetime with a
least-action approach, but quantum computers can address new
regimes of the theory by working directly in Minkowski
spacetime with a Hamiltonian approach.

We follow the staggered fermion formulation of Kogut and
Susskind, where fermions and antifermions occupy separate
lattice sites, arranged in an alternating pattern along the lattice
(Fig. 1a). The lattice Hamiltonian40,41 in natural units (ℏ= c= 1)
is

Ĥl ¼
1
2al

∑
N"1

n¼1
ϕ̂
y
nÛnϕ̂nþ1 þH:C:

! "

þ m ∑
N

n¼1
ð"1Þnϕ̂

y
nϕ̂n þ

alg
2

2
∑
N"1

n¼1
L̂
2
n;

ð1Þ

where H.C. denotes the Hermitian conjugate, N is the number of
lattice sites with spacing al, g is the gauge coupling, m is the

fermion mass, ϕ̂n ¼ ϕ̂
1
n; ϕ̂

2
n

! "T
is the staggered fermion field at

site n with a red and a green component, and Ûn is the gauge link
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Quantum computing technologies are developing quickly
in recent years with applications in a broad range of
scientific areas from chemistry to fundamental interac-

tions of Nature. Prime candidates for the application of such
quantum simulations are gauge theories, which play a major role
in many branches of physics and comprise the entire Standard
Model of particle physics. Within this area, quantum computa-
tion of non-Abelian gauge theories is an outstanding challenge.

The most prominent example, quantum chromodynamics (QCD),
is a non-Abelian gauge theory that explains the strong interactions
between quarks and gluons and ultimately underlies nuclear physics.
There are also suggestions of non-Abelian forces beyond the Stan-
dard Model (BSM) that are completely separate from QCD and
might, for example, underlie the Higgs sector of the Standard Model1
or provide a strongly interacting theory for dark matter2.

Lattice gauge theory (LGT)3 is a mature and successful dis-
cretisation strategy for computational methods that have devel-
oped into an extremely successful field of science. The
formulation of the theory on a spacetime lattice provides a non-
perturbative regularization of the theory with the lattice spacing
playing the role of an inverse UV cutoff. Modern LGT calcula-
tions have provided precise quantitative results and important
insights for QCD4, nuclear physics5, and non-Abelian BSM
theories6, and they will continue to do so for the foreseeable
future. Quantum computers offer a possibility to extend the reach
of LGT into regimes that are presently unattainable7. Funda-
mental issues like the sign problem8,9 prevent classical methods
for LGTs from studying many properties of interest such as real-
time particle dynamics and highly entangled matter, so quantum
simulations will play an essential role in improving our under-
standing of Nature.

Quantum simulations of LGTs are a growing research area10,
addressing both real-time dynamics and equilibrium problems.
Our work contributes to the latter. Equilibrium problems include
important sign-problem afflicted settings such as models with
high matter density (with finite chemical potentials) and topo-
logical theories. While current proof-of-concept demonstrations
of equilibrium problems still address sign-problem-free settings,
they form the foundation for extensions to more complicated
models. This foundation is currently built by simulating low-
dimensional benchmarking models. Even though the ultimate
goal is the simulation of three-dimensional (3D) theories, so far
all quantum simulation experiments realize 1D models. More-
over, while different experimental realisations of 1D Abelian
LGTs have been successful11–16, non-Abelian theories are fun-
damentally different. Efforts to confront this challenge are
underway17–31, and a first important step has been made by
experimentally realising pure gauge non-Abelian theories32,33. In
this work, we present the first quantum computer calculation for
a non-Abelian gauge theory with the dynamically coupled matter.

We consider as gauge group SU(2), which is the smallest non-
Abelian Lie group and is thus a key step towards studying full
QCD. In contrast to an Abelian theory, it is possible to build
gauge singlet states from valence fermions, without any valence
antifermions; the lowest energy state that exhibits this distinctly
non-Abelian feature is called a baryon and it has no counterpart
in an Abelian theory. The non-Abelian theory also contains a
meson, which is built from one valence fermion and one valence
antifermion and is thus the counterpart to a neutral state in an
Abelian theory.

While the considered non-Abelian model can in principle be
realized by adapting the very successfully explored purely quan-
tum simulations11,15,16,34,35, its complexity is currently out of
reach for implementing such strategies on present-day devices.
We, therefore, use a hybrid quantum-classical approach and
employ a so-called variational quantum eigensolver (VQE).

Within the VQE protocols, the task of preparing the baryon and
meson state is cast into the form of an optimisation problem
which is solved by a classical algorithm with cost function eva-
luations made on a quantum co-processor.

Running deep quantum circuits on present-day devices is a
formidable challenge in the current era of noisy intermediate-
scale quantum (NISQ)-devices36, which pose severe restrictions
in the number of qubits used and the number of gates applied.
Given these restrictions, we use a number of measures to make
the calculations possible: (i) We integrate out the gauge field
degrees of freedom to reduce the experimental resources needed.
(ii) We design efficient circuits that generate an ansatz state
containing only components relevant for the chosen parameter
regimes and (iii) we reduce the depth of the experimental circuit
by relegating part of the computation to classical preprocessing
that can be performed efficiently. Note that the techniques
developed in points (ii) and (iii) are general and not exclusive to
the studied non-Abelian theory or LGT calculations.

In this work we study an SU(2) gauge theory with dynamical
matter fields on the IBM Quantum Experience37,38, and we
experimentally study physics beyond the Abelian features
demonstrated so far. More specifically, we perform a quantum
computation experiment to variationally access the lowest hadron
energies of the model, namely the non-Abelian baryon and the
meson state. This allows us to calculate their masses on the
quantum computer. In particular, we perform calculations for
different lattice sizes to show how a known physical symmetry
emerges: the baryon and meson masses are equal in the physical
limit where lattice artifacts vanish.

Results
SU(2) gauge theory. The quantum field theory for SU(2) gauge
fields interacting with fundamental fermions is well known39. At
each point in spacetime a matter field operator can annihilate a
fermion of one of two possible colors (here named red and green),
or it can create the corresponding antiparticle. The gauge fields
(or “gluons”) at each point mediate the interactions between color
charges. The quantum field theory in the continuum is described
in more detail in Supplementary Note 1.

Because the non-Abelian nature of SU(2) leads to strong
interactions and the confinement of color charge, these fermions
and gluons are confined within color-singlet hadrons that cannot
be studied perturbatively. In order to access the non-perturbative
regime, both classical and quantum simulations require for-
mulating the gauge theory on a lattice. Lattice calculations on
classical computers are successful in Euclidean spacetime with a
least-action approach, but quantum computers can address new
regimes of the theory by working directly in Minkowski
spacetime with a Hamiltonian approach.

We follow the staggered fermion formulation of Kogut and
Susskind, where fermions and antifermions occupy separate
lattice sites, arranged in an alternating pattern along the lattice
(Fig. 1a). The lattice Hamiltonian40,41 in natural units (ℏ= c= 1)
is

Ĥl ¼
1
2al

∑
N"1

n¼1
ϕ̂
y
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where H.C. denotes the Hermitian conjugate, N is the number of
lattice sites with spacing al, g is the gauge coupling, m is the

fermion mass, ϕ̂n ¼ ϕ̂
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is the staggered fermion field at

site n with a red and a green component, and Ûn is the gauge link
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Alternative approaches 
• Global fitting with quantum circuit at initial scale

updated and new measurements are performed. Although
the general scheme for variational circuits is pretty simple,
lots of details can be deployed regarding the three pieces of
this algorithm.
We propose a model based on the general framework of

VQC to tackle the problem of fitting one or several PDFs
flavors using quantum computers. In this case, the problem
to be solved is mathematically reduced to approximate
arbitrary one-dimensional functions within a certain target
accuracy. That is, we define the PDF model to be para-
metrized by a VQC as

qPDFiðx;Q0; θÞ; ð2Þ

where x is the momentum fraction of the incoming hadron
carried by the given parton with flavor i (quarks and gluon),
so 0 ≤ x ≤ 1, at a fixed initial energy scale Q0. Following
this definition, we propose some superficial modifications
to adjust the VQC to this particular problem.
First, we need to introduce the value of x into the circuit.

Thus, we modify the definition of the Ansatz to depend on
θ and x, that is UðθÞ → Uðθ; xÞ. This x value is introduced
as inner circuit parameters following the reuploading
procedure in Ref. [28]. The effect of the quantum circuit
is then defined as

Uðθ; xÞj0i⊗n ¼ jψðθ; xÞi; ð3Þ

which produces a significant change in the output state,
since it depends now on x and not only on θ. The key
ingredient in this approach is that, as the variable x serves as
input several times in every circuit, it is possible to obtain
nonlinear mathematical structures that allow arbitrary
fittings. The exact design of some Uðθ; xÞ Ansätze are
further explained in Sec. III B.
The second ingredient in our model is the way PDF

information is extracted from the quantum circuit. We use
the Z Pauli gates to define a series of Hamiltonians to
perform measurements with. Let us consider a n-qubit
circuit to run our variational algorithm on. The set of
Hamiltonians to build is

Zi ¼ ⊗
n

j¼0
Zδij ; ð4Þ

where δij is the Kronecker delta function.
The choice of this Hamiltonian is heuristic. This model

creates as many Hamiltonians as qubits are available in the
circuit, and those Hamiltonians are created by measuring a
certain qubit with the Z Pauli matrix, while all other qubits
remain unmeasured. These observables measures the pop-
ulation of the states j0i and j1i of a particular qubit. The
Hamiltonian is proposed in order to encode the PDF
functions within the probability of measuring a certain
qubit in its excited state. Following the Hamiltonians
previously stated, we can define the function

ziðθ; xÞ ¼ hψðθ; xÞjZijψðθ; xÞi: ð5Þ

The next step is to relate these zi functions to the PDF
values. We associate each function ziðθ; xÞ to only one
parton i. That is, if the model aims to fit n partons, the
circuit width must be n qubits. We define the qPDF model
for flavor i at a given ðx;Q0Þ as

qPDFiðx;Q0; θÞ ¼
1 − ziðθ; xÞ
1þ ziðθ; xÞ

: ð6Þ

With this choice only positive values are available,
although there is no upper bound. The reason to choose
this particular definition is heuristic and is supported by
empirical results detailed in a later section. It is, however,
not a hard constraint, as it is possible to drop this positivity
constraint with a simple rescaling. A theoretical motivation
can be drawn from the fact that PDF functions can be made
non-negative [47] but their values may in principle grow to
any real value, see for instance the gluon PDF in Fig. 4.

III. IMPLEMENTATION

A. Workflow design

In order to achieve our goal to determine a set of PDFs
based on quantum circuits, we have defined a workflow
based on a step-by-step procedure composed by three
stages: (1) the identification of the most adapted quantum
circuit Ansatz for qPDF parametrization, (2) the feasibility
study to deploy the qPDF model into real quantum devices,
and finally, (3) the integration of the quantum circuit model
in a global PDF fitting framework.
In Fig. 2 we show schematically the three stages we

followed. First, we perform simulations to identify the best
model architecture and capacity to represent PDF-like func-
tions. This stage is similar to the usual hyperoptimization
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updated and new measurements are performed. Although
the general scheme for variational circuits is pretty simple,
lots of details can be deployed regarding the three pieces of
this algorithm.
We propose a model based on the general framework of

VQC to tackle the problem of fitting one or several PDFs
flavors using quantum computers. In this case, the problem
to be solved is mathematically reduced to approximate
arbitrary one-dimensional functions within a certain target
accuracy. That is, we define the PDF model to be para-
metrized by a VQC as

qPDFiðx;Q0; θÞ; ð2Þ

where x is the momentum fraction of the incoming hadron
carried by the given parton with flavor i (quarks and gluon),
so 0 ≤ x ≤ 1, at a fixed initial energy scale Q0. Following
this definition, we propose some superficial modifications
to adjust the VQC to this particular problem.
First, we need to introduce the value of x into the circuit.

Thus, we modify the definition of the Ansatz to depend on
θ and x, that is UðθÞ → Uðθ; xÞ. This x value is introduced
as inner circuit parameters following the reuploading
procedure in Ref. [28]. The effect of the quantum circuit
is then defined as

Uðθ; xÞj0i⊗n ¼ jψðθ; xÞi; ð3Þ

which produces a significant change in the output state,
since it depends now on x and not only on θ. The key
ingredient in this approach is that, as the variable x serves as
input several times in every circuit, it is possible to obtain
nonlinear mathematical structures that allow arbitrary
fittings. The exact design of some Uðθ; xÞ Ansätze are
further explained in Sec. III B.
The second ingredient in our model is the way PDF

information is extracted from the quantum circuit. We use
the Z Pauli gates to define a series of Hamiltonians to
perform measurements with. Let us consider a n-qubit
circuit to run our variational algorithm on. The set of
Hamiltonians to build is

Zi ¼ ⊗
n

j¼0
Zδij ; ð4Þ

where δij is the Kronecker delta function.
The choice of this Hamiltonian is heuristic. This model

creates as many Hamiltonians as qubits are available in the
circuit, and those Hamiltonians are created by measuring a
certain qubit with the Z Pauli matrix, while all other qubits
remain unmeasured. These observables measures the pop-
ulation of the states j0i and j1i of a particular qubit. The
Hamiltonian is proposed in order to encode the PDF
functions within the probability of measuring a certain
qubit in its excited state. Following the Hamiltonians
previously stated, we can define the function

ziðθ; xÞ ¼ hψðθ; xÞjZijψðθ; xÞi: ð5Þ

The next step is to relate these zi functions to the PDF
values. We associate each function ziðθ; xÞ to only one
parton i. That is, if the model aims to fit n partons, the
circuit width must be n qubits. We define the qPDF model
for flavor i at a given ðx;Q0Þ as

qPDFiðx;Q0; θÞ ¼
1 − ziðθ; xÞ
1þ ziðθ; xÞ

: ð6Þ
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quantum parametrization:

which compares a wide set of experimental data
with theoretical predictions computed with a PDF
parametrization.
In this work we first propose the most suitable QML

architecture for PDFs representation and then perform
experiments about its deployment on real quantum devices,
taking into account the current experimental limitations.
Then, we adapt the NNPDF methodology [38–44], based
on ML techniques, to operate in a QML environment,
replacing neural-networks with quantum circuits.
The novel quantum circuit parametrization for PDFs,

that we call qPDFs in the next paragraphs, follows the
quantum model described in Ref. [28]. The model is
constructed as a parametrized quantum circuit (PQC)
whose inner parameters depend both on PDF data and
trainable parameters. A PQC whose parameters are train-
able is known as a variational quantum circuit (VQC). The
circuit is applied to an initial quantum state, for instance the
ground state j0i, and the output state contains information
on PDFs. The determination of the circuit parameters is
done with standard classical optimization methods, using a
predefined cost function.
There are different reasons for attempting a qPDFs

determination. First, quantum computing is expected to
have a reduced energy consumption when compared to an
equivalent classical computer, and thus, we may expect
saving power and reducing its environmental impact.
Second, as we show in this work, the number of parameters
needed to obtain an acceptable PDF fit is in average lower
with quantum models in comparison to modern PDF
models. Furthermore, the qPDF approach may take advan-
tage from quantum entanglement, since the potential out-
standing power of quantum computing emerges from there.
Finally, quantum hardware may bring performance
improvements in terms of running time for this model
when compared to the standard ML approach since the
number of operations needed to obtain an acceptable
solution is lower and the model has an exact hardware
representation. On the other hand, we consider the qPDF
model presented in this work as proof-of-concept for future
implementations, given that the performance of quantum
simulation on classical hardware and the stability of real
quantum device measurements are not competitive with the
ML tools used by modern PDF determinations.
The paper is structured as follows. Section II provides an

overall description of the quantum circuit model for PDFs,
while in Sec. III we identify its best architecture. In Sec. IV
we discuss about the deployment of qPDFs on real
quantum devices. In Sec. V we integrate the qPDF model
in the NNPDF fitting framework and perform a first global
qPDF determination using data from experiments such as
Tevatron or LHC. In Sec. VI we compute Higgs observable
predictions using the qPDF fit. Finally, in Sec. VII we
present our conclusion and future development directions.

II. QUANTUM CIRCUITS FOR PDFs

Quantum circuits are mathematically defined as oper-
ations acting on an initial quantum state. Quantum com-
puting usually makes use of quantum states constructed
out of qubits, that is, binary states represented as jψi ¼
αj0iþ βj1i. The states of a quantum circuit are commonly
defined by its number of qubits n, and, in general, the initial
state of the circuit jψ0i is the zero state j0i⊗n. A quantum
circuit implements an inner unitary operation U to the
initial state jψ0i to transform it into the final output state
jψfi. For some algorithms, this U gate is fully determined
[1,2], while other algorithms define its inner operation by
means of some fixed structure, so-called Ansatz, and
tunable parameters UðθÞ [14,23,24]. Those are known as
parametrized quantum circuits (PQC). This kind of circuits
is useful in the NISQ era of quantum computing, since they
provide a great flexibility and allow to approximate unitary
operations up to arbitrary precision [45,46]. The parameters
defining the PQCs can be trained using an optimization
procedure known as a variational quantum circuit (VQC). It
is possible then to use classical computational resources to
find the optimal configuration of a quantum circuit.
A VQC follows roughly three steps to solve a given

problem, as schematically shown in Fig. 1. First, a PQC
UðθÞ is constructed using a small set of single- and two-
qubit parametric gates. The Ansatz of such circuit may
follow a particular path exploiting the special features of
the problem, or may also be a general one. After the Ansatz
is applied to the circuit, we must perform some measure-
ments on the output quantum state to extract information.
Those measurements are used to evaluate a loss function
LðθÞ encoding the problem. The loss function should reach
its minimum as the problem is perfectly solved. The loss
function LðθÞ is passed to a classical optimizer that looks
for the value

θ% ¼ argminðLðθÞÞ: ð1Þ

Classical optimizers need several function evaluations, thus
when modifying the set of parameters θ the Ansatz UðθÞ is

FIG. 1. Operational scheme of a variational quantum circuit.
A unitary gate U, depending on some parameters θ, transforms
the initial j0i state into some output state. This state is measured
and used to compute a loss function LðθÞ. The classical optimizer
performs an update on the parameters to minimize the value of
LðθÞ. New parameters are then sent to the quantum circuit and the
loop starts again.
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variational quantum circuit:

implementation for the reasons mentioned above.
Instead, in qPDF these are only checked afterwards,
finding a good agreement with the expected values
(despite not being imposed at fitting time). Indeed, for
qPDF the result for the average over all replicas is:

R
1
0 dxxfgðx;Q0Þ

1 −
R
1
0 dxxfΣðx;Q0Þ

¼ 1.01$ 0.01: ð13Þ

which is to be compared with the NNPDF3.1 result of
1.000$ 0.001, where the constraint was imposed at
fit time.

C. qPDF

Once all ingredients are implemented, we are in a
position to be able to run a NNPDF3.1-like fit using the

new prescription based on the VQE and the Qibo library.
As a base reference for the comparison we take the
NNPDF3.1 NNLO fit [42], which is the latest release by
the NNPDF collaboration. The plots comparing the
NNPDF sets with qPDF are then produced using a
reportengine [62] based internal NNPDF tool.
The dataset included in this fit correspond to that of

NNPDF3.1, which is detailed in Section 2.1 of [42] and
includes data from deep-inelastic scattering experiments,
fixed-target Drell-Yan-like data and hadronic collider data
from experiments at Tevatron and LHC.
We can start by comparing the χ2=N result for the

datasets that have been considered in the fit, shown in
Fig. 10. One would expect a perfect fit when χ2=N ¼ 1,
however this is not the case even in the reference and it is
due to a combination of missing higher order corrections
(a lack of a better theory) or inconsistencies in the
experimental results.
The similarity on the phenomenological results obtained

by both fitting methodologies as shown in Fig. 10 is well
understood as well by looking at the distance plots between
the qPDF and the reference in Fig. 11,

d2ðfi; riÞ ¼
hfii − hrii

1
Nf

σðfiÞ2 þ 1
Nr
σðriÞ2

; ð14Þ

where i is the flavor being considered and f and r
corresponds to qPDF and the reference (NNPDF3.1)
respectively. The central value is taken over the N replicas
of the set, generally of the order of 100.
Indeed, for most partons the difference between both fits

are under the 1-σ level (distance equal to 10 for 100
replicas) growing up to 2-σ for the u and s quarks.
This point is clearly seen in Fig. 12 where we compare

the published PDFs (with their corresponding error bars)
for the gluon and the d and u quarks. We note that for these
quark flavors the qPDF central result is almost always
within the 1-σ range of the reference, with an overlapping
error band for the whole considered range.

FIG. 11. Distance [as defined by Eq. (14)] between qPDF and
NNPDF3.1. When the distance is kept under dðfi; riÞ ¼ 10 the
two fits are 1-σ compatible. All partons except for u and s are
below or around the 1-σ distance for the entire range considered.
Note however, by comparing to Fig. 4 that the fits for both the
u and s quarks are compatible in the most relevant regions for
these particles.

(a) (b) (c)

FIG. 12. Fit results for the gluon and the u and s quarks. As previously seen in Fig. 4, qPDF is able to reproduce the features of
NNPDF3.1. We now see this is also true when the fit performed by comparing to data and not by comparing directly to the goal function.
The differences seen at low-x can be attributed to the lack of data in that region.
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the exchange of a photon with momentum q by [1]

d2σ

dx dy
= α2y

Q4
LµνW µν . (14)

In these equations, Q2 = −q2, x = Q2/2P · q, y = P · q/
P · k, and k′ = k − q.

With an eye toward implementation on a quantum com-
puter, Eq. (12) has two critical features. First, it is gauge
invariant without the need for a Wilson line. In fact, because
it involves only gauge-invariant operators, it can be defined
and measured without reference to unphysical gauge-variant
(Gauss-law-violating) states. Second, each operator in the
correlator is individually Hermitian so that the decomposition
procedure of the previous section is not required.

Several options exist for measuring the integrand of the
hadronic tensor. One may follow the procedure of the previous
section closely, decomposing Jµ(x) as a sum of N unitary
operators. After this, the operator in the integrand becomes
a sum of N2 unitary operators, each of whose expectation
values may be directly evaluated à la Ref. [52]. However,
as mentioned above, this is needlessly complicated for the
hadronic tensor.

In this context, the procedure of Ref. [55] for studying
linear response is more straightforward. Consider a unitary
evolution operator,

U (ϵx, ϵ0) = eiHt eiJµ(x⃗)ϵx e−iHt e−iJν (0⃗)ϵ0 . (15)

The first derivative of the expectation value of this operator
with respect to either ϵ vanishes. The second derivative gives
the desired correlator,

d
dϵx

d
dϵ0

⟨P|U (ϵx, ϵ0)|P⟩ = ⟨P|Jµ(x)Jν (0)|P⟩. (16)

Finally, a more sophisticated procedure for the calculation
of linear response is given in Ref. [56].

After measuring Eq. (16) at many values of x, the Fourier
transform may be taken classically via Eq. (9). Alternatively,
the (regulated) Fourier transform may be subsumed into the
expectation value, yielding

W µν (q) = ⟨P|T
{

Jµ(0)
∫

dd x eiqx−x2/ϵJν (x)
}
|P⟩. (17)

This expression requires only one quantum circuit for a de-
sired value of q; however, when many values of q are to be
obtained, it is not efficient.

There is an important way in which these procedures are
not analogous to those performed in the laboratory: On a
quantum computer, one may introduce a current coupling only
to particular flavors of fermions. This allows one to isolate
a single-flavor distribution function or hadronic tensor in a
straightforward way without any fitting.

To apply this method to the Thirring model, one needs the
staggered form of Jµ,

J0(x) = χ†(x)χ (x), (18)

J1(x) = i
4

(−1)x{χ†(x)[χ (x + 1) + χ (x − 1)]

− [χ†(x + 1) + χ†(x − 1)]χ (x)}. (19)

As mentioned, the leading-order cross section for lepton-
hadron scattering may be computed once the hadronic tensor
is in hand. This is not the first proposal for computing a scat-
tering cross section on a quantum computer; in Refs. [45–47]
is detailed a procedure in which two asymptotic states are
prepared adiabatically on a large lattice and then allowed to
propagate towards each other. When obtaining a cross section
via the hadronic tensor, the need to prepare two asymptotic
states is removed—reducing substantially the cost of state
preparation. Instead, we prepare only a single asymptotic
(zero momentum, in fact) state and probe it with arbitrary
momentum. Additionally, this avoids the long-range nature of
the QED interaction that complicates lattice calculations. This
procedure is substantially simpler, but the trade-off comes in
that, whereas Refs. [45–47] compute the full cross section,
our procedure is perturbative: To obtain higher-order contri-
butions in α, one must calculate multiple matrix elements
defined by additional current insertions.

If one ultimately wants the PDF, one can extract it from
W µν (q) via a procedure analogous to how the experimental
determinations are performed. To first review, there are a
number of processes where collinear factorization can be
proven (e.g., deep inelastic scattering, Drell-Yan, weak boson
production, and inclusive jet production). Here, we consider
deep inelastic scattering, but similar expressions are derivable
for the other processes. The cross-section σeP→eX can be
schematically decomposed into

σeP→eX =
∑

i, j

fi ⊗ Pi→ j ⊗ σe j→e j, (20)

where i and j run over all species of parton, fi are parton
distributions, Pi→ j is the splitting function required to match
all experimental data at a single scale and can be computed
perturbatively, and σe j→e j is the hard partonic cross section.
Theoretical expressions, such as Eq. (20), are used to numer-
ically fit parametrized PDFs to the experimental data over
large ranges of kinematics [1]. The complicated nature of
the perturbative splitting function and hard cross section in
addition to the need to perform two convolutions prove to
make this process highly nontrivial.

In the same spirit, the hadronic tensor that would be
obtained by a quantum computer can be defined in terms of
the PDFs as

W µν =
∑

i, j

fi ⊗ Pi→ j ⊗ Ŵ µν, (21)

where Ŵ µν are partonic tensors that couple to external cur-
rents. Thus, if one desires the PDFs, they can be extracted
by numerical fits to parametrized PDFs when the hadronic
tensor is computed in the kinematic regime of collinear fac-
torization’s validity. It is important to note that our procedure
can, by allowing different four-momenta for the hadronic
states, be trivially generalized to computing generalized par-
ton distributions [57] and similar small changes to obtain
other distributions—something that is not trivially possible for
Euclidean field theory.

IV. STATE PREPARATION

Thus far, we have neglected to discuss the preparation
of the state |P⟩. This is not a trivial matter, and, in this
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real and imaginary parts, respectively, of the terms in Eq. (6),
⟨P|Ui j |P⟩.

Two technical complications remain. First, because the cor-
relators are evaluated along the light cone, the speed of light
must be known precisely. Without the hypercubic symmetry
of the Euclidean lattice preventing renormalization, the speed
of light must be computed nonperturbatively. In principle, we
could measure the speed of light on the quantum computer.
This is a formidable task, entailing careful measurements of
the dispersion relation near the continuum limit. But this is,
in fact, unnecessary. The dispersion relation is reflected in the
low-energy portion of the spectrum of the Hamiltonian, which
can be readily determined on an anisotropic Euclidean lattice
[53,54]. Thus, the speed of light on a quantum computer may
be determined without any calculations being performed on a
quantum computer as long as the Hamiltonian limit is taken on
both the classical and the quantum machines. In the specific
case at hand of the (1 + 1)-dimensional Thirring model, the
situation is even simpler: Numerical experiments reveal that
the speed of light in the continuum limit is 1 in lattice units.

The speed of light is only defined in the continuum limit.
On the lattice, no exact light cone exists, and “spacelike”
separated fermionic operators need not exactly anticommute.
As a result, the lattice PDF will not have the desired symmetry
properties until the continuum limit is taken. Additionally, if
periodic boundary conditions are used, care must be taken not
to evaluate the quark correlator at separations larger than the
spatial size of the lattice.

Finally, we must take the Fourier transform. Only a finite
number of values of the quark correlator may be computed,
and naively taking the Fourier transform will show highly
oscillatory artifacts (as in Euclidean lattice calculations [11]).
In order to take the Fourier transform in a stable way, without
these artifacts, we impose a Gaussian window, defining

f (x) =
∫ L

−L
dx eixP+y−x2/ϵφ(y), (9)

and first taking the limit L → ∞, and only then allowing
ϵ → 0. These limits may be taken numerically.

This completes the description of how to obtain the PDF of
the Thirring model on a quantum computer, given an already-
prepared hadronic state. In Fig. 1 is shown a calculation by
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FIG. 1. The quark distribution function of the lowest-lying
fermion in the Thirring model, computed on a ten-site lattice. The
Fourier transform of Eq. (9) is taken with ϵ = 3.

exact diagonalization of the Hamiltonian of the fermion distri-
bution function of the lowest-lying fermion state at vanishing
and weak couplings.

The PDFs of asymptotic states in the Thirring model may
be interesting in the context of quantum supremacy: The qubit
cost of this calculation makes it potentially accessible in the
NISQ era, whereas classical algorithms struggle to obtain this
observable. Ultimately, however, we would like to calculate
the PDFs of mesons and baryons in QCD. Quark distribution
functions in QCD are given by

fi(x) =
∫

dx eixP+y⟨P|ψ̄i(y)γ +W (y; 0)ψi(0)|P⟩, (10)

where W (y; 0) is a lightlike Wilson line connect y to the origin
required to ensure gauge invariance [50] and i enumerates the
quark flavors.

Several proposals have been advanced for how gauge-field
theories may be simulated on a quantum computer. Let us
consider the scheme laid out in Ref. [41], which provides
a procedure for computing Wilson loops. In this scheme,
time evolution is implicitly performed in the A0 = 0 gauge
so that a W (y; 0) is approximated by a sequence of spatial
link operators applied at different points in time. (The timelike
links are fixed to be the identity in this gauge),

W (y; 0) ≈ eiHyW (y; y − a)e−iHa · · · e−iHaW (a; 0) (11)

In Ref. [41], it was shown that obtaining a time-separated
correlator of two gauge links (i.e., a temporal Wilson loop)
requires a second-order derivative to be taken numerically.
Here, perturbations to the Hamiltonian occur at every time
slice between the two operators (necessarily so that the Wilson
line is approximately lightlike). The order of the finite differ-
encing needed is equal to the number of time slices affected.
This high-order finite differencing is not practical even in
the absence of quantum noise. Nevertheless, this is the only
candidate we are aware of for directly computing correlators
of the form Eq. (10) on a quantum computer.

Fortunately, an alternative procedure can be constructed:
One may compute an easier observable—the hadronic
tensor—and extract the PDFs after the fact.

III. HADRONIC TENSOR

Unlike the PDF, the hadronic tensor is constructed of cur-
rents Jµ, which are each gauge invariant, unlike the fermionic
operators. Thus, the hadronic tensor does not require a Wilson
line, and the issue of high-order finite differencing is avoided.
The hadronic tensor of a d-dimensional theory is given explic-
itly by

W µν (q) = Re
∫

dd x eiqx⟨P|T {Jµ(x)Jν (0)}|P⟩ (12)

for a given current Jµ, where |P⟩ denotes a proton in the zero
momentum frame. Here, we will assume Jµ = ψ̄γ µψ , corre-
sponding to the current coupling to the photon. In combination
with the leptonic tensor Lµν ,

Lµν = 2(kµk′
ν + kνk′

µ − gµνk · k′). (13)

W µν (q) may be directly related at leading order (in the QED
coupling α) to the cross section of lepton-proton scattering via
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As a result, the lattice PDF will not have the desired symmetry
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Finally, we must take the Fourier transform. Only a finite
number of values of the quark correlator may be computed,
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In order to take the Fourier transform in a stable way, without
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where W (y; 0) is a lightlike Wilson line connect y to the origin
required to ensure gauge invariance [50] and i enumerates the
quark flavors.

Several proposals have been advanced for how gauge-field
theories may be simulated on a quantum computer. Let us
consider the scheme laid out in Ref. [41], which provides
a procedure for computing Wilson loops. In this scheme,
time evolution is implicitly performed in the A0 = 0 gauge
so that a W (y; 0) is approximated by a sequence of spatial
link operators applied at different points in time. (The timelike
links are fixed to be the identity in this gauge),

W (y; 0) ≈ eiHyW (y; y − a)e−iHa · · · e−iHaW (a; 0) (11)

In Ref. [41], it was shown that obtaining a time-separated
correlator of two gauge links (i.e., a temporal Wilson loop)
requires a second-order derivative to be taken numerically.
Here, perturbations to the Hamiltonian occur at every time
slice between the two operators (necessarily so that the Wilson
line is approximately lightlike). The order of the finite differ-
encing needed is equal to the number of time slices affected.
This high-order finite differencing is not practical even in
the absence of quantum noise. Nevertheless, this is the only
candidate we are aware of for directly computing correlators
of the form Eq. (10) on a quantum computer.

Fortunately, an alternative procedure can be constructed:
One may compute an easier observable—the hadronic
tensor—and extract the PDFs after the fact.

III. HADRONIC TENSOR

Unlike the PDF, the hadronic tensor is constructed of cur-
rents Jµ, which are each gauge invariant, unlike the fermionic
operators. Thus, the hadronic tensor does not require a Wilson
line, and the issue of high-order finite differencing is avoided.
The hadronic tensor of a d-dimensional theory is given explic-
itly by

W µν (q) = Re
∫

dd x eiqx⟨P|T {Jµ(x)Jν (0)}|P⟩ (12)

for a given current Jµ, where |P⟩ denotes a proton in the zero
momentum frame. Here, we will assume Jµ = ψ̄γ µψ , corre-
sponding to the current coupling to the photon. In combination
with the leptonic tensor Lµν ,

Lµν = 2(kµk′
ν + kνk′

µ − gµνk · k′). (13)

W µν (q) may be directly related at leading order (in the QED
coupling α) to the cross section of lepton-proton scattering via
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Figure 3: Sketch of a hadron-hadron collision as simulated by a Monte-Carlo event generator. The red
blob in the center represents the hard collision, surrounded by a tree-like structure representing
Bremsstrahlung as simulated by parton showers. The purple blob indicates a secondary hard
scattering event. Parton-to-hadron transitions are represented by light green blobs, dark
green blobs indicate hadron decays, while yellow lines signal soft photon radiation.

At hadron colliders, multiple scattering and rescattering e↵ects arise, which must be simulated by Monte-
Carlo event generators in order to reflect the full complexity of the event structure. This will be discussed
in Sec. 5. Eventually we need to convert the full partonic final state into a set of color-neutral hadrons,
which is the topic of Sec. 6. The interplay of all these e↵ects makes for the full simulation of hadron-hadron
collisions. This is sketched in Fig. 3.

2 The hard scattering

Event simulation in parton-shower Monte-Carlo event generators starts with the computation of the hard-
scattering cross section at some given order in perturbation theory. Traditionally, this calculation was
performed at leading order (LO), but nowadays, with next-to-leading-order (NLO) calculations completely
automated, it is often done at NLO. Computing the hard cross section at NLO requires a dedicated
matching to the parton shower, which will be discussed in Sec. 4. For now we focus on the evaluation of
the di↵erential cross sections and the related phase-space integrals.

The basis for our calculations is the factorization formula, Eq. (1.1). We rewrite it here, in order to
simplify the discussions in the following sections. The full initial and final state in a 2 ! (n � 2)
reaction can be identified by a set of n particles, which is denoted by {~a} = {a1, . . . , an}. Their flavors

and momenta are similarly specified as {~f } = {f1, . . . , fn} and {~p} = {p1, . . . , pn}. The di↵erential
cross section at leading order is a sum over all flavor configurations, and it depends only on the parton
momenta:

d�(LO)({~p}) =
X

{~f }

d�(B)

n ({~a}) , where d�(B)

n ({~a}) = d�̄n({~p}) Bn({~a}) . (2.1)

Each individual term in the sum consists of the di↵erential phase-space element, d�n, the squared matrix

6

Intermediate state 
partonic scatterings

2
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Quantum computing for scattering amplitudes
✦  Computing scattering amplitudes for strongly-coupled QFT

• No reliable way on classical computers (real time 
dynamics, exponentially costly)


• Quantum computing offers a possible way, 
complexity scaling polynomially in energies and 
number of particles.

1. Incoming particles are widely separated wave packets

      —> requires large lattice 


2. Adiabatically turn on coupling, interactions happen

     Long time span of evolution, broadening of wave packet


3. Adiabatically turned off coupling, measure final states 

L ≫ dij ≫ 1/ |pi |
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Quantum computing for scattering amplitudes
✦  A new proposal - LSZ reduction formula

• Lehmann-Symanzik-Zimmermann (LSZ) reduction formula  

• connected n-point function in momentum space 

• two-point function in momentum space (propagator)

• field normalization

Li et al (QuNu), arXiv: 2207.13258
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Quantum computing for scattering amplitudes
✦  A new proposal - LSZ reduction formula

• Lehmann-Symanzik-Zimmermann (LSZ) reduction formula  

• connected n-point function in momentum space 

• two-point function in momentum space (propagator)

• field normalization

pole singularities cancel on 
mass-shell, giving finite 
scattering amplitude

QAOA for  and |Ω⟩ |h⟩

 .

.

 .

.

 .

.

hk1

hk2

hknin

hp1

hp2

hpnout

Li et al (QuNu), arXiv: 2207.13258
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Quantum computing for scattering amplitudes
✦  A new proposal - LSZ reduction formula

• Lehmann-Symanzik-Zimmermann (LSZ) reduction formula  

• No preparation of incoming wave packets, smaller lattice is 
allowed.


• No adiabatic turn on and turn off of coupling constants, no 
associated extra time evolution


• Bound-states are allowed as incoming and outgoing particles


• Complexity scales exponentially in particle number , ideal for 
exclusive scattering process, e.g.  scattering. JLP 
formalism scales polynomially with .

n
2 → 2
n

 .

.

 .

.

 .

.

hk1

hk2

hknin

hp1

hp2

hpnout

Li et al (QuNu), arXiv: 2207.13258
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Quantum computing for scattering amplitudes
✦ LSZ reduction formula - 1+1 NJL

• Fermion propagator 

Lowest lying quark state Lowest lying bound state 
(2q+qbar)

5

can be interpreted as a bound state made up of two
quarks and one antiquark. In the continuum limit, a
pole corresponds to a peak of infinite height, while in the
discretized model we consider here the peaks have finite
height.

For the 2 ! 2 scattering of a quark and an antiquark,
q(k1)q̄(k2) ! q(p1)q̄(p2), one has to calculate the fol-
lowing connected 4-point function:

G
↵���

 
(p1, p2, k1)

=

Z
d
2
x1d

2
x2d

2
y1 e

i(p1·x1+p2·x2�k1·y1)

⇥ h⌦| ↵(x1) ̄
�(x2) ̄

�(y1) 
�(0)|⌦icon (12)

Similar to K (p), the connected 4-point function

G
↵���

 
(p1, p2, k1) is expected to have a pole structure of

1
k2
1�m2

h
+i✏

when k1 is close to the mass shell of parti-

cle h which has the same quantum numbers as the quark
field. To demonstrate this feature, with the same method
as we evaluate K (p), we evaluate G

↵���

 
(p1, p2, k1) as

a function of k
0
1 with the external-leg momenta set to

k1 = (k01, 0), p1 = (0, 0), p2 = (k01,⇡/a). This setting of
external-leg momenta makes sure that k2, p1, p2 are o↵-
shell. Figure 2 shows the real part of G↵�↵�

 
(p1, p2, k1) as

a function of k01a. Similar to the case of the propagator
in Fig. 1, the peaks at k01a = ±1.01 and k

0
1a = ±3.13 in

Fig. 2 for the connected 4-point function correspond to
the poles from the two lowest-lying states with the same
quantum numbers as the quark field.

In order to demonstrate the power of the LSZ reduc-
tion formula in handling scatterings of bound-state par-
ticles, we also simulate the propagator of the composite
operator O(x) =  ̄(x) (x), given by

KO(p) =

Z
d
2
x e

ip·x
h⌦|T{O(x)O(0)}|⌦icon . (13)

Figure 3 shows the real part of TrKO(p) as a function
of p0a, with p

1 = 0. The peaks at p
0
a = ±2.02 corre-

spond to the poles from the second lowest-lying state hO

with the same quantum numbers as the vacuum, as is
verified by solving for the mass spectrum with direct nu-
merical diagonalization, which givesmhO

a = 1.98. These
two peaks can be interpreted as a quark-antiquark bound
state. The small fluctuations in the range �1.2 <

⇠ p
0
1a

<
⇠

1.2 are discretization e↵ects and do not correspond to
any single-particle pole.

This simple example shows that our proposed quan-
tum algorithm succeeds in recovering the expected pole
structure of both the propagator and the connected n-
point function, which is crucial to the implementation of
the LSZ reduction formula.

It should be noted that, although we find that both
the quark propagator and the connected 4-point function
exhibit convergent behavior when the number of qubits
is increased to 14 from a smaller number, the speeds of

FIG. 1. Real part of TrK (p) in the 1-flavor Gross-Neveu
model as a function of p0a with p1 = 0, simulated with the
proposed quantum algorithm on classical hardware.

their convergence are quite di↵erent, with the propagator
converging faster. For 2 ! 2 quark-antiquark scattering,
since the scattering amplitude involves four powers of the
ratio of peak values of the connected 4-point function and
the quark propagator, its convergence requires that both
the quark propagator and the connected 4-point function
reach a similar speed of convergence. In our initial at-
tempt to calculate this scattering amplitude, owing to the
limited number of qubits one can use in simulations on
classical hardware with reasonable computational time
cost, a satisfactory convergence has not been observed.
However, with the quantum advantage, in a quantum
computer with more than a hundred qubits in near fu-
ture, we believe that a convergent result for the scattering
amplitude can be expected for a 1+1-dimensional model.
Conclusions. In this work, we proposed a new frame-

work for evaluating scattering amplitudes in quantum
field theory on quantum computers in a fully nonper-
turbative way. The framework was based on the LSZ re-
duction formula, which relates scattering amplitudes to
correlation functions. In this framework, as opposed to a
direct Hamiltonian simulation of the scattering process,
no preparation of wave packets of incoming particles is
required, and one only has to prepare one-particle states
of zero momentum. The framework is capable of incor-
porating scatterings of bound-state particles, and is ideal
for scatterings which involve a small number of particles.
This framework is expected to have potential applica-
tions in exclusive processes in a strongly-coupled theory,
such as 2 ! 2 scatterings of pions or nucleons. As a
proof of concept, in a simple model, the 1-flavor Gross-
Neveu model, we demonstrated by simulations on classi-
cal hardware that the propagator and the connected 4-
point function obtained from the quantum algorithm has
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However, with the quantum advantage, in a quantum
computer with more than a hundred qubits in near fu-
ture, we believe that a convergent result for the scattering
amplitude can be expected for a 1+1-dimensional model.
Conclusions. In this work, we proposed a new frame-

work for evaluating scattering amplitudes in quantum
field theory on quantum computers in a fully nonper-
turbative way. The framework was based on the LSZ re-
duction formula, which relates scattering amplitudes to
correlation functions. In this framework, as opposed to a
direct Hamiltonian simulation of the scattering process,
no preparation of wave packets of incoming particles is
required, and one only has to prepare one-particle states
of zero momentum. The framework is capable of incor-
porating scatterings of bound-state particles, and is ideal
for scatterings which involve a small number of particles.
This framework is expected to have potential applica-
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proof of concept, in a simple model, the 1-flavor Gross-
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• propagator of composite operator 
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FIG. 2. Real part of G↵�↵�
 

(p1, p2, k1) in the 1-flavor Gross-

Neveu model as a function of k0
1a, with k1 = (k0

1, 0), p1 =
(0, 0), p2 = (k0

1,⇡/a), simulated with the proposed quantum
algorithm on classical hardware.

FIG. 3. Real part of TrKO(p) in the 1-flavor Gross-Neveu
model as a function of p0a with p1 = 0, simulated with the
proposed quantum algorithm on classical hardware

the desired pole structure crucial to the implementation
of the LSZ reduction formula.
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Motivation LSZ formula Quantum algorithm Polology in Gross-Neveu model

Real part of G↵�↵� (p1, p2, k1, 0) as a function of p01a,

with p1 = (p01, 0), p2 = (0,⇡/a), k1 = (0, 0).

Similar to the case of the propagator, the peaks at p0a = ±0.97
correspond to poles from the lowest-lying quark state. The expected

peaks at p0a = ±2.61 are shifted to near p0a ⇡ ±3, probably owing to

considerable discretization artifacts at energies close to the upper

tolerance limit p0a ⇠ ⇡.

This simple example shows that the quantum algorithm succeeds in

recovering the expected pole structure of both the propagator and the

connected n-point function, which is crucial to the implementation of the

LSZ reduction formula.

16/18
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Quantum computing for scattering amplitudes
✦ LSZ reduction formula - 1+1 NJL

• Four point correlation function

Lowest lying quark state

Lowest lying bound state 
(2q+qbar)

Our quantum algorithm succeeds in recovering 
the expected pole structure, which is crucial to 
the implementation of LSZ formula. 
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Quantum parton shower
✦ Simulate the quantum interference effect

When interference effects are turned off (g12 ¼ 0), we
find excellent agreement for all observables between both
the classical and quantum simulator results as well as the
quantum computer measurements. For g12 ¼ 1 the spectra
are shifted to the right, leading to more emissions and at
larger angles. For all quantum simulations the fraction of
events with no emissions [first bin in (b) and (d)] agree
separately for each value of g12. This is because the
simulation is started with a single fermion state, where
the splitting ϕ → ff̄ is irrelevant. For a higher number of

emissions, the ϕ → ff̄ splitting affects the distribution, and
in particular lowers the fraction of events with a single
emission.
The experimental data points obtained running the 48

operation simulation on the IBM Q Johannesburg quantum
computer are in agreement with the quantum simulator
results, clearly showing the role of interference when the
interaction is turned on (from g12 ¼ 0 to g12 ¼ 1). Some
differences can be observed between the quantum simulator
and the actual quantum computer experiment, which can be

(a) (b)

(c) (d)

FIG. 1. The normalized differential cross section for log θmax (a),(c) and the number of emissions (b),(d). Interference effects are turned
on (g12 ¼ 1) and off (g12 ¼ 0), where the classical simulations and calculations are expected to agree with the quantum simulations and
measurements. The top plots (a),(b) show results for the case where ϕ → ff̄ is excluded as this can be run on current quantum hardware.
The bottom plots (c),(d) include the ϕ → ff̄ with fewer steps to reduce the computational complexity. The ratio plots compare the
g12 ¼ 0 and g12 ¼ 1 simulation. Over 105 events contribute to each line and the statistical uncertainties are therefore negligible.
Quantum measurements are corrected for readout errors, as described in the Supplemental Material [27]. Running coupling effects are
ignored for simplicity.

TABLE II. List of the circuit operations with the number of standard gates required for given numbers of steps assuming nI ¼ 1.
Further details about the calculations involved and the counting of the number of gates can be found in the Supplemental Material [27].
The third column provides the scaling assuming that classical registers could be used to store the history qubit at each step. This is not
implemented in the algorithm shown in Fig. 1, but may be possible on near-term hardware.

Scaling Number of gates (default algorithm)

Operation Default algorithm Measure jhi N ¼ 4

Count particles [Ucount" N lnN N ln nf 4.93 × 102

Decide emission [Ue] N4 lnN Nnf ln nf 9.29 × 103

Create history [Uh] N5 lnN Nn2f ln nf 1.96 × 105

Adjust particles [Up] N2 lnN Nnf ln nf 5.01 × 103

Classical algorithm N2nf=2
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While many current analyses are nearly insensitive to such
effects, future work will analyze the final state radiation in
more detail and new studies will be enabled with calcu-
lations that include new quantum effects.
Our goal is to develop a quantum circuit describing the

quantum properties of parton showers. In this work, we
consider showers with quantum interferences from differ-
ent intermediate particles, using a simplified model that
captures these effects without having to introduce the full
complexity of the standard model (SM). We consider
showers that use a global evolution variable. While in
classical showers the variable describing the scale of the
shower evolution is continuous, it will be discretized for the
quantum algorithm and at each step an emission can occur
or not. We will show that a classical MCMC is not able to
capture the important quantum interference effects in this
model, and that a full classical calculation scales exponen-
tially with the number of steps. [There are efficient
algorithms to account for spin correlations in quantum
chromodynamics [20–23], but these do not apply to our
model or more generally to any model such as SU(2) where
the emission probability depends on the spin [24]. We
restrict ourselves to showers using a global evolution
variable, where the evolution of a given parton in the
event depends on all other partons. Most modern parton
showers such as dipole and pT ordered showers have this
global evolution.] The proposed quantum algorithm will be
able to sample from the full probability distribution in
polynomial time.
To begin, consider a simple quantum field theory, with

two types of fermion fields, f1 and f2, interacting with one
scalar boson ϕ governed by the following Lagrangian:

L ¼ f̄1ði=∂ þm1Þf1 þ f̄2ði=∂ þm2Þf2 þ ð∂μϕÞ2

þ g1f̄1f1ϕþ g2f̄2f2ϕþ g12½f̄1f2 þ f̄2f1&ϕ: ð1Þ

The first three terms in Eq. (1) describe the kinematics of
the fermions and scalar while the latter three terms govern
their interactions. In particular, the collinear dynamics of
the theory are that the fermions can radiate scalars
(fi → fjϕ) and scalars can split into fermion pairs
(ϕ → fif̄j). These couplings of fermions to scalar bosons
occur in the Higgs sector of the SM, and it has been
demonstrated that the final state collinear radiation at high
energy can be written in terms of a parton shower [25,26].
This model can contain important quantum interference
effects when all couplings are nonzero, since the
unobserved intermediate state of the fermions can be a
superposition of fi for i ∈ f1; 2g.
In the limit g12 → 0 one can derive an efficient MCMC

method for calculating high-multiplicity cross sections.
This is performed by introducing four splitting functions,
two for a fermion radiating a scalar ½Pi→iϕðθÞ ¼ g2i P̂fðθÞ&
and two for the scalar splitting into fermions
½Pϕ→iiðθÞ ¼ g2i P̂ϕðθÞ&, where θ is the scale at which the

splitting occurs and P̂ðθÞ encodes the energy scale depend-
ence of the emission probability (we suppress additional
splitting variables, which can be handled classically as
mentioned in the Supplemental Material [27]). There are
many formally equivalent definitions of the scale; here we
use a common choice: the opening angle of the emission
with respect to the emitter. In addition to the splitting
functions, another important quantity is the no-branching
probability (Sudakov factor):

Δi;kðθ1; θ2Þ ¼ exp
!
−g2i

Z
θ2

θ1

dθ0P̂kðθ0Þ
"
: ð2Þ

The Sudakov factor encapsulates the virtual (and unre-
solved real) contributions and is responsible for the
reorganization of the perturbation series (“resummation”)
mentioned above. The Sudakov factor and splitting func-
tion satisfy the unitarity relation

Δi;kðθ1; θ2Þ þ g2i

Z
θ2

θ1

dθP̂kðθÞΔi;kðθ; θ2Þ ¼ 1: ð3Þ

A classical parton shower would then efficiently sample
from the cross section using a Markov chain algorithm by
generating one emission at a time, conditioned on the last
emission. Once the evolution variable θ is discretized,
emissions can only happen at these discrete values, and we
assume that the discretization is fine enough that at most
one emission can happen at each step. This means that at a
given step n in θ there are at most n particles and the
probability that none of them radiate or split is

QN
j¼1 Δij;kj .

If something does happen at a given step, the probabilities
are proportional to the appropriate splitting function. The
smallest scale accessible to the shower is denoted by ϵ.
When g12 > 0, there are now multiple histories with

unmeasured intermediate fermion types which contribute to
the same final state. Therefore, the above MCMC is invalid
because one must include all possible histories and cannot
condition on a given state. Including all of the interference
effects requires accounting for all histories at the amplitude
level and only computing probabilities at the end of the
evolution. When the g12 ≪ 1, the evolution is dominated by
a single emission, which can be properly treated using a
density matrix formalism [25], where each splitting func-
tion is represented through a splitting matrix. For example,
the fermion splitting matrix is Pi→jϕðθÞjfiihfjj (outer
product of a ket and bra gives a matrix). When there is
more than one emission during the evolution, this matrix
formalism is insufficient and one must compute the full
amplitude for which there are Oð2NÞ possible histories.
We propose an efficient solution by keeping track of

amplitudes and not probabilities using a quantum com-
puter. A quantum circuit implementing the quantum final
state radiation algorithm for one of N steps is given by the
following diagram:

PHYSICAL REVIEW LETTERS 126, 062001 (2021)
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Figure 3: Sketch of a hadron-hadron collision as simulated by a Monte-Carlo event generator. The red
blob in the center represents the hard collision, surrounded by a tree-like structure representing
Bremsstrahlung as simulated by parton showers. The purple blob indicates a secondary hard
scattering event. Parton-to-hadron transitions are represented by light green blobs, dark
green blobs indicate hadron decays, while yellow lines signal soft photon radiation.

At hadron colliders, multiple scattering and rescattering e↵ects arise, which must be simulated by Monte-
Carlo event generators in order to reflect the full complexity of the event structure. This will be discussed
in Sec. 5. Eventually we need to convert the full partonic final state into a set of color-neutral hadrons,
which is the topic of Sec. 6. The interplay of all these e↵ects makes for the full simulation of hadron-hadron
collisions. This is sketched in Fig. 3.

2 The hard scattering

Event simulation in parton-shower Monte-Carlo event generators starts with the computation of the hard-
scattering cross section at some given order in perturbation theory. Traditionally, this calculation was
performed at leading order (LO), but nowadays, with next-to-leading-order (NLO) calculations completely
automated, it is often done at NLO. Computing the hard cross section at NLO requires a dedicated
matching to the parton shower, which will be discussed in Sec. 4. For now we focus on the evaluation of
the di↵erential cross sections and the related phase-space integrals.

The basis for our calculations is the factorization formula, Eq. (1.1). We rewrite it here, in order to
simplify the discussions in the following sections. The full initial and final state in a 2 ! (n � 2)
reaction can be identified by a set of n particles, which is denoted by {~a} = {a1, . . . , an}. Their flavors

and momenta are similarly specified as {~f } = {f1, . . . , fn} and {~p} = {p1, . . . , pn}. The di↵erential
cross section at leading order is a sum over all flavor configurations, and it depends only on the parton
momenta:

d�(LO)({~p}) =
X

{~f }

d�(B)

n ({~a}) , where d�(B)

n ({~a}) = d�̄n({~p}) Bn({~a}) . (2.1)

Each individual term in the sum consists of the di↵erential phase-space element, d�n, the squared matrix

6

Final state

hadron fragmentation 

function Dq→h

3
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✦ LCDA - light cone distribution amplitude, describes the formation/decay of a 
hadron

F(Q2) = fπ ∫
1

0
dx TH(x, Q2; μ)ϕπ(x; μ) + 𝒪(Λ2

QCD/Q2)

✦ LCDA is an essential ingredient in exclusive high-energy QCD processes, e.g. 
form factor in the process γ*γ → π0

✦ The current knowledge on LCDA is limited, mainly on models and lattice 
calculations

✦ First try using quantum computing 

ϕ(x) =
1
f ∫ dze−i(x−1)n⋅Pz⟨Ω | ψ̄(zn)γ+ψ(0) |h(P)⟩

Quantum computing for exclusive hadronization



35

LCDA on quantum computer
✦ Quantum circuit Li et al (QuNu), SCPMA (2023)Quantum Circuit for LCDA
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LCDA on quantum computer
✦ Numerical results

• peak gets narrower with decreasing coupling constant or increasing 
hadron mass


• Converges to asymptotic result in weak coupling limit
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Quantum computing for inclusive hadron fragmentation functions
✦  Global fitting - the only reliable way to extract hadron fragmentation functions
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✦  The first attempt using quantum computing
Dq→h(z) = z∑

X
∫

dy−

2π
eik+y−Tr [⟨0 |ψq(y−) |h, X⟩⟨h, X | ψ̄(0) |0⟩γ+]

• Challenge in lattice QCD: FF is a real time dynamical function; can not define 


• Quantum computing: 

|h, X⟩

y− =
1

2
(y0 − y3)

1. Using VQE to construct multi-hadron state |h, X⟩

2. construct hadron projector

|Ω⟩ = U | I0
0 , I0

1 , …, I0
M−1⟩, |hα(i)⟩ = U | I0

0 , …, I0
i−1, Iα

i , I0
i+1, …, I0

M−1⟩ = U | h̃α⟩,

|hα(i), hβ( j)⟩ = U | I0
0 , …, I0

i−1, Iα
i , I0

i+1, …, I0
j−1, Iβ

j , I0
j+1, …, I0

M−1⟩, …

Ph = ∑
X

|h, X⟩⟨h, X | =
1

M

M−1

∑
j=0

M−1

∑
i=0

U | Ih
i ⟩⟨Ih

i |U†Tj

 is translational operator on latticeTj

Li et al (QuNu), in preparation

Quantum computing for inclusive hadron fragmentation functions
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✦  quantum circuits for fragmentation functions Li et al (QuNu), in preparation

Quantum computing for inclusive hadron fragmentation functions
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✦  hadron fragmentation functions from quantum computing

• Quantum simulation of FFs using 
NJL, , .


• Qualitative agreement with global 
fitting


• Finite volume effect significantly 
affect the small-z behavior

mq = 0.4 mh = 0.6preliminary
Quantum computing for inclusive hadron fragmentation functions
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Summary and outlook
• Systematic computing of hadronic scatterings 

1. Use NJL model as a proof of concept study  
2. Include both parton distribution function, scattering amplitude 
and fragmentation functions

• The field is still at its infant age, many more need to be done
1. Consider gauge field 

2. Extend to higher dimensions for TMDs and spin dependent processes 

3. Consider noises

• Many topics are not covered, such as phase transition, jet 
quenching, quantum machine learning for data analysis …

Thanks for your attention!


