Observation of WZy production in pp collisions at 13 TeV with the ATLAS detector

arXiv: 2305.16994, accepted by PRL

Xiaocong Ai (ZZU)

中大-北大联合论坛, Dec 13, 2023

Motivation

- No observation of $pp \rightarrow WZ\gamma$ reported yet
- Goals of this analysis
 - See evidence of WZy production
 - Measure the integral cross section at 13 TeV in a region (m(ll)>81 GeV) that enhances WZγ (ISR/TGC/QGC) and suppresses FSR (considered to be WZ)

Individual contribution is not gauge invariantly separable

Data samples

- Full Run2 data set (140 fb⁻¹)
- MC samples
- Signal: 2.5 M inclusive $pp \rightarrow WZ\gamma \rightarrow lvll\gamma$

Sample	Generator	Order	PDF Set	DSID
$\ell \nu \ell \ell \gamma$	Sherpa 2.2.11	LO	NNPDF3.0NNLO	700356
$\ell\ell\ell\ell\gamma$	Sherpa 2.2.11	LO	NNPDF3.0NNLO	700350
$\ell\ell\gamma\gamma$	Sherpa 2.2.10	NLO	NNPDF3.0NNLO	700195-700196
WZ, ZZ	Powheg-Box	NLO	CT10NLO	361601, 361603
$\ell\ell\gamma$	Sherpa 2.2.4	LO	NNPDF3.0NNLO	366140 - 366149
$t\bar{t}\gamma$	MadGraph5_aMC@NLO 2.3.3	LO	NNPDF2.3LO	410389
Z+jets	Powheg-Box v1	NLO	CT10NLO	361106

Event selection

		Photons	Electrons	Muons
 Using Run2 data Full leptonic states: 	η Identification Isolation Track origin	η < 2.37 ^(*) Tight FixedCutLoose -	$ \eta < 2.47^{(*)}$ Tight Gradient $ d_0/\sigma(d_0) < 5$ $ z_0 \sin \theta < 0.5 \text{ mm}$	$ \eta < 2.5$ Medium PflowTight_FixedRad $ d_0/\sigma(d_0) < 3$ $ z_0 \sin \theta < 0.5$ mm
	<i>p</i> _T lepton veto	$p_{\rm T}^{\gamma} > 15 {\rm GeV}$ no "loose" lepto	$p_{\rm T}^{\ell_1,\ell_2,}$ n (Medium ID, and loose	$\ell_3 > 30, 20, 20 \text{ GeV}$ e isolation for μ) with $p_T^{\ell_4} > 10 \text{ GeV}$
	ℓ_Z selection ΔR $ZZ(e \rightarrow \gamma)$ rejection missing E_T Z candidate mass	1	for eee, $\mu\mu\mu$: choose so $\Delta R(\ell, \gamma) > 0.4$, $\Delta R(\ell, \gamma) - m_Z$ $ m(e_W, \gamma) - m_Z$ $E_T^{miss} > 20$ $m_{\ell\ell} > 81$	mallest $ m_{\ell\ell} - m_Z $ $\Delta R(\mu, e) > 0.2$ > 10 GeV GeV

- Unprescaled single electron and single muon triggers
- Event vetoed if a 4th lepton passing looser critria and p_{T} > 10 GeV is present
- MET > 20 GeV to suppress backgrounds (ZZ γ , ZZ(e $\rightarrow \gamma$), Z $\gamma\gamma$)
- $m(e_{W}, \gamma)$ away from Z to suppress ZZ($e \rightarrow \gamma$) background
- m(ll) > 81 GeV and $\Delta R(l, \gamma)$ >0.4 to suppress FSR contribution

Fiducial region

- The lepton and photon are required to be not from hadron or τ
- Build Z by find the same flavor, opposite-charged dilepton pair closest to Z
- Build W using the third lepton and the same flavor leading neutrino

Quantity	cut
Photon and Lepton $ \eta $ cuts	$ \eta^{\gamma} < 2.37, \eta^{\ell} < 2.5$
Photon pt cut	$p_T^{\gamma} > 15 \text{ GeV}$
Lepton pt cuts	$p_T^{\ell_1} > 30 \text{ GeV}, p_T^{\ell_2}, p_T^{\ell_3} > 20 \text{ GeV}, p_T^{\nu} > 20 \text{ GeV}$
Photon isolation	$E_T^{cone20}/E_T^{\gamma} < 0.07$
Overlap Removal	$\Delta R(l,\gamma) > 0.4$
Mass cuts	$m_{\ell\ell} > 81 \text{ GeV}$

Background estimation

- Non-prompt lepton (jet \rightarrow l) or photon (jet \rightarrow γ) background
 - Data driven estimation based on fake factor of lepton-like/photon-like jet
- - MC estimation with dedicated CRs
- WZ+pileup γ
 - Overlay MC
- Zүү (ү→е)
 - MC estimation

Separation between ZZ(jet $\to \gamma$) and ZZ(e $\to \gamma$) is based on truth information of selected photon

Non-prompt background

$$\begin{split} N_X^{data} &= \sum_i (N_{X,i}^{prompt} + N_{X,i}^{non-prompt}) \\ N_{X,i}^{prompt} &= \mu_{sig} \cdot N_{X,i}^{WZ\gamma} + \mu_{ZZ\gamma} \cdot N_{X,i}^{ZZ\gamma} + \mu_{ZZ(e \to \gamma)} \cdot N_{X,i}^{ZZ(e \to \gamma)} + N_{X,i}^{Z\gamma\gamma} + N_{X,i}^{Pile-up \ \gamma} \end{split}$$

$$\begin{split} F_i^\ell &= \frac{N_{A,i}^{dijet}}{N_{B,i}^{dijet}} = \frac{N_{C,i}^{dijet}}{N_{D,i}^{dijet}}\\ F_i^\gamma &= \frac{N_{A,i}^{Z+jets}}{N_{C,i}^{Z+jets}} = \frac{N_{B,i}^{dijet}}{N_{D,i}^{Z+jets}} \end{split}$$

Signal photon "Loose" photon

$$N_{A}^{non-prompt} = \sum_{i} F_{i}^{\ell} \cdot (N_{B,i}^{data} - N_{B,i}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt})$$

X= A, B, C, D, i(j) means the lepton(photon) pt/eta/flavor bin number

F_l (F_y) is the fake factor of lepton-like(photon-like) jet Denoted as "Lepton (photon) fake factor"

- Determined from dijet (Z+jets) events

Estimation of lepton fake factor

• Follow procedure used in ATLAS ssWW analysis

Dijet event selection

GRL Trigger Trigger matching $N_l = 1$ and $p_T^l > 20 \, GeV$ $N_{jet} > 0$ $p_T^{\text{tagging jet}} > 25(30) \, \text{GeV}$ $|\Delta \phi(l, j)| > 2.8$ $E_{T,track}^{miss} + m_T < 50 \, \text{GeV}$ ID or Anti-ID lepton

ID electron	Anti-ID electron	
ni fueto de de una estas poletidas	$p_{\rm T} > 20 {\rm GeV}$	
$ \eta <$	1.37 and $1.52 < \eta < 2.47$	
1.5.19	$ d_0/\sigma_{d_0} < 5$	
	$ z_0 \sin \theta < 0.5 \mathrm{mm}$	
LHTight ID LHMedium ID		
Gradient isolation		
	Fail LHTight ID fail Gradient isolation	

ID muon	Anti-ID muon	
	$p_{\rm T} > 20 {\rm GeV}$	
	$ \eta < 2.5$	
	$ z_0 \sin \theta < 0.5 \mathrm{mm}$	
	Medium ID	
$ d_0/\sigma_{d_0} < 3$	$ d_0/\sigma_{d_0} < 10$	
PflowTight_FixedRad isolation PflowLoose_FixedRad isolation		
-	$ d_0/\sigma_{d_0} > 3$ or fail PflowTight_FixedRad isolation	

Estimation of photon fake factor

 Follow and extend procedure for fake background estimation in ATLAS Zγ analysis

Signal photon	Loose photon				
	$p_T > 15$				
$ \eta < 1$	$ \eta < 1.37$ and $1.52 < \eta < 2.37$				
Tight	LoosePrime5 ID				
FixedCutLoose	$p_T^{iso} < 0.05 \times E_T^{\gamma}$ (track isolation)				
	Fail Tight $E_T^{iso} > 0.065 p_T + E_{gap}$				

$Z\gamma$ event selection

	Photons	Electrons	Muons	
Kinematics:	$E_{\rm T} > 30 { m ~GeV}$	$p_{\rm T} > 30, 25 { m ~GeV}$	$p_{\rm T} > 30, 25 { m ~GeV}$	Vield of 7+iets in
	$ \eta < 2.37$	$ \eta < 2.47$	$ \eta < 2.5$	
	excl. $1.37 < \eta < 1.52$	excl. $1.37 < \eta < 1.52$		signal/loose region is
Identification:	Tight [55]	Medium [55]	Medium [56]	estimated using data-driver
Isolation:	FixedCutLoose [55]	FCLoose [55]	FCLoose_FixedRad [56]	method
	$\Delta R(\ell,\gamma) > 0.4$	$\Delta R(\mu,e) > 0.2$		
Event selection:	$m(\ell\ell) > 4$	$40 \text{ GeV}, m(\ell\ell) + m(\ell\ell\gamma)$	> 182 GeV	

Uncertainty of non-prompt background estimation

$$N_{A}^{non-prompt} = \sum_{i} F_{i}^{\ell} \cdot (N_{B,i}^{data} - N_{B,i}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt})$$

- From F₁ determination (follow uncertainty estimation in ATLAS ssWW analysis)
 - Vary prompt lepton backgrounds being subtracted by +/-5% (prediction and data agree within 5% in W+jets CR dominated by those prompt lepton backgrounds)
 - Jet flavor composition (difference between $N_{b-jets = 0}$ and $N_{b-jets >= 1}$)
 - \circ Vary E^{miss}_{T, track} + m_T cut
- From F_v determination (follow uncertainty estimation in ATLAS Zy analysis)
 - Zγ signal leakage factor
 - Z+jets correlation factor R
 - Fake photon p_T spectrum difference between Z+jets and WZ+jets
- From modelling of prompt backgrounds in B, C,D
- From statistics of data in B, C, D region (dominant)
- From statistics of MC in B, C, D region

Determined lepton&photon fake factor

Electron fake factor

- Lepton fake factor is derived separately with b jet requirement (N_{b-jets} >= 1) and b jet veto (N_{b-jets} = 0). The average between N_{b-jets} = 0 and N_{b-jets} >= 1 is used as the nominal value
- Integral value of photon fake factor used: $F_v = 0.399 + 0.030$

Muon fake factor

11

Photon fake factor

Pile-up γ estimation

- Using Overlay MC method:
 - \circ Simulate the WZ+pile-up γ at truth-level, $N^{FR}_{\ WZ+v}$
 - Apply detector efficiency (C_{WZ+y}) correction to the overlayed sample

	Overlay MC
$WZ+\gamma$	1.62 ± 0.60
$(WZ)_{\tau} + \gamma$	0.02 ± 0.02
$(WZ)_{bgd} + \gamma$	0.27 ± 0.27
sum (total prompt)	1.91 ± 0.68

Source	Relative uncertainty
MC event statistics	2.5%
σ_{γ} scale variations	28%
$\sigma_{\gamma} \text{ PDF} \oplus \alpha_{s}$	2.4%
σ_{WZ} (ATLAS measurement)	4.6%
Modelling of $WZ + \gamma$ pileup events	16%
Detector efficiency	3.3%
Integrated luminosity	1.7%
Total uncertainty	33%
$(WZ)_{bgd} + \gamma$ component	100% (33% corr.)
Total uncertainty	36%

Dominant sys. from $\gamma\text{+jets}$ modelling and WZ+pile-up γ modelling

ZZy and ZZ($e \rightarrow \gamma$) backgrounds estimation

ZZY CR

- → Requiring 4th lepton with p_T >10 GeV and passing "loose" criteria
- → Removing MET cut
- → m(ll) > 40 GeV

ZZ(e->γ) CR

- → $|m(e_W, γ) m_Z| > 10 \text{ GeV}$
- → MET < 20 GeV</p>

Signal extraction

• Profile likelihood fit to extract the signal strength μ_{sig} together with $\mu_{ZZ\gamma}$ and $\mu_{ZZ(e \rightarrow \gamma)}$ (three POIs) in three bins (SR + 2 CRs)

$$L(n, \theta^{0} | \mu_{\text{sig}}, b, \theta) = P_{SR} \times P_{CR} \times C_{\text{syst}}$$

= $P(n_{S} | \lambda_{S}(\mu_{\text{sig}}, b, \theta)) \times \prod_{i \in CRs} P(n_{i} | \lambda_{i}(\mu_{\text{sig}}, b, \theta)) \times G(\theta^{0}, \theta)$

• Inputs for parameterizing non-prompt background: $F_{l}, F_{\gamma}, N_{X}^{data}, N_{X}^{prompt}$ (X=B, C, D)

$$N_{A}^{non-prompt} = \sum_{i} F_{i}^{\ell} \cdot (N_{B,i}^{data} - N_{B,i}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{D,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{D,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{D,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{D,j}^{prompt}) - \sum_{i,j} F_{i}^{j} (N_{D,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{D,j}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{D,j}^{prompt}) + \sum_{i,j} F_{i}^{\gamma} (N_{D,j}^{prompt}) + \sum_{i$$

Nuisance parameters

- CP systematics
- Luminosity
- From non-prompt background estimation
 - Lepton/photon Fake factor
 - Modelling of prompt backgrounds in loose lepton/photon region
 - Statistics of data&prompt backgrounds in loose lepton/photon region
- Pile-up γ background uncertainty
- Zγγ background (30% uncertainty is assigned based on ATLAS Zγγ analysis)
- Uncert. from theoretical modelling of MC (PDF, a_s, QCD scales)

Break-down uncertainty on measured cross section

Sources	Relative uncertainty [%]
Photon identification and isolation efficiency	2.5
Electron identification, isolation, reconstruction efficiency	0.3
Electron-photon resolution and energy scale	0.6
Muon identification, isolation, reconstruction, momentum resolution and scale	2.4
Missing $E_{\rm T}$ resolution and energy scale	0.3
Lepton fake factor	1.9
Photon fake factor	2.2
Prompt lepton modelling in loose-lepton region	2.2
Prompt photon leakage factor in loose-photon region	0.9
Pile-up γ background	0.9
Signal PDF and α_s , QCD Scales	1.1
Integrated luminosity	0.9
$Z\gamma\gamma$ cross-section	0.2
Signal MC statistics	1.2
Background MC statistics	0.4
Data statistics in loose-lepton and/or loose-photon region	5.4
Total systematic uncertainty	7.7
$ZZ\gamma$ and $ZZ(e \rightarrow \gamma)$ normalisation	2.6
Data statistics	14.8
Total statistical uncertainty	15.1

CP systematics (3.3%)

Arising from non-prompt background estimation (6.6%)

Dominated by Stat. Uncert. (15%)

16

Results

- Observed (expected) significance: 6.3 (5.0)σ
- Measured cross section: $\sigma_{meas} = \sigma_{pred} \cdot \mu_{sig}$
 - \circ μ_{sig} = 1.34 ± 0.20 (stat.) ± 0.10 (syst.) ± 0.07 (theory)
 - σ_{pred} (pp→WZγ) = 1.50±0.06 fb (NLO QCD and LO EW)
 - σ_{meas} (pp→WZγ) = 2.01±0.30 (stat)±0.16 (syst) fb

Process	SR	$ZZ\gamma$ CR	$ZZ(e \rightarrow \gamma) \operatorname{CR}$
WZγ	92 ± 15	0.21 ± 0.07	0.56 ± 0.14
$ZZ\gamma$	10.7 ± 2.3	23 ± 5	1.8 ± 0.4
$ZZ(e \rightarrow \gamma)$	3.0 ± 0.6	0.028 ± 0.020	30 ± 6
Ζγγ	1.05 ± 0.32	0.15 ± 0.06	0.29 ± 0.10
Nonprompt background	30 ± 6		-
Pileup γ	1.9 ± 0.7	-	-
Total yield	139 ± 12	23 ± 5	33 ± 6
Data	139	23	33

Post-fit yields

17

Post-fit distributions

SR

CRs

Summary

- Using ATLAS Run2 data, WZγ production in pp collisions at 13 TeV is observed with 6.3σ !
- Data-driven estimation for the dominant backgrounds (non-prompt background, ZZγ, ZZ(e->γ))
- The measured fiducial cross section is 2.01±0.34 fb compared to prediction cross section of 1.50±0.07 fb (consistent within 1.5**o**)
- Accepted by PRL on Nov 8, 2023

Backup

Selection optimization

- E_{T}^{miss} has best S/sqrt(B) at 20 GeV
- Cut on m_{τ} is less efficient than ETmiss
- No benefit from making $dR(l_w, \gamma)$ tighter than $dR(l, \gamma)$

Fake lepton background uncertainty

- From fake factor determination using <u>dijet</u> events (analogous to <u>ssWW</u> analysis)
 - Vary prompt lepton backgrounds being subtracted by +/-5% (prediction and data agree within 5% in W+jets CR dominated by those prompt lepton backgrounds)
 - Jet flavor composition (difference between Nb-jets = 0 and Nb-jets >= 1)
 - Vary E^{miss}, track + mt cut (e.g. +/- 5 GeV)
- From prompt-lepton modeling in Anti-ID region
 - 20% (30%) for electron/muon (based on José Pretel's studies here)

Fake photon estimation

 Use extended <u>ABCD</u> method based on fake photon ratio (ρvalue), i.e. fake photons failing the tight but passing the loose selection to those passing tight selection:

$$\rho = \frac{N(\gamma_{\rm f}^{\rm L})}{N(\gamma_{\rm f}^{\rm T})},$$

- ρ-value derived from Z+jets events using standard <u>ABCD</u> method as in ATLAS <u>Z</u>γ analysis
 - Tight region: A
 - Loose region: B+C+D

ho value estimation

In Zy analysis:

- N^{sig} is the yield of Zγ signal
- N^{bg} is yield of prompt photon backgrounds including tty, WZ, WWy, ZZ, WZy, ττγ, ZZy

 $R = \frac{N_A^{Z+jets} \times N_D^{Z+jets}}{N_B^{Z+jets} \times N_C^{Z+jets}}, \qquad c_B = \frac{N_B^{sig}}{N_A^{sig}}, c_C = \frac{N_C^{sig}}{N_A^{sig}}, c_D = \frac{N_D^{sig}}{N_A^{sig}}, \qquad (N_A - N_A^{bg}), (N_B - N_B^{bg}), (N_C - N_C^{bg}) \text{ and } (N_D - N_D^{bg})$

$$N_{A}^{sig} = N_{A} - N_{A}^{bg} - N_{A}^{Z+jets} = N_{A} - N_{A}^{bg} - R \frac{[(N_{B} - N_{B}^{bg}) - c_{B}N_{A}^{sig}][(N_{C} - N_{C}^{bg}) - c_{C}N_{A}^{sig}]}{(N_{D} - N_{D}^{bg}) - c_{D}N_{A}^{sig}}$$

$$N_{A}^{Z+jets} = N_{A} - N_{A}^{bg} - N_{A}^{sig},$$

$$N_{B}^{Z+jets} = N_{B} - N_{B}^{bg} - c_{B} \times N_{A}^{sig},$$

$$N_{C}^{Z+jets} = N_{C} - N_{C}^{bg} - c_{C} \times N_{A}^{sig},$$

$$N_{D}^{Z+jets} = N_{D} - N_{D}^{bg} - c_{D} \times N_{A}^{sig}$$
Estimated value:

$$\rho = 2.508 \pm 0.041 \text{ (stat.)} \pm 0.185 \text{ (sys.)}$$

Fake photon background uncertainty

- From prompt photon backgrounds subtraction in Tight, Loose region
- From WZγ Signal leakage factor c
- From p-value estimation
 - Zγ signal leakage factor
 - Z+jets correlation factor R
 - Fake photon p_T spectrum difference between Z+jets and WZ+jets
 - Integral p-value re-estimated with fake photon pT in Z+jets scaled to WZ+jets

Sources	Relative Sys. (%)
N _{BG}	2.9
$c_B, c_C \text{ and } c_D \text{ in } WZ\gamma$ $c_B, c_C \text{ and } c_D \text{ in } Z\gamma$	4.5
R in $Z\gamma$	7.1
Fake photon shape difference	10.6
Total	13.8

Taking advantage of relevant <u>sys</u> estimation in ATLAS <u>Zy</u> analysis

Triggers

Electron triggers: 2015: e24_lhmedium_L1EM20VH, e60_lhmedium, e120_lhloose 2016-2018: e26_lhtight_nod0_ivarloose, e60_lhmedium_nod0, e140_lhloose_nod0

Muons triggers: 2015: mu20_iloose_L1MU15, mu50 2016-2018: mu26_ivarmedium, mu50

Yields	in Anti	lepton/	photon	region
--------	---------	---------	--------	--------

Process	ID lepton, Loose photon	Anti-ID lepton, Tight photon	Anti-ID lepton, Loose photon	$ZZ\gamma CR$	$ZZ(e \rightarrow \gamma) \operatorname{CR}$
data	59	89	32	23	33
$WZ\gamma$ (no τ rejection)	8.3 ± 0.2	20.4 ± 0.4	2.6 ± 0.1	0.1 ± 0.0	0.4 ± 0.1
ZZγ	1.2 ± 0.0	3.3 ± 0.1	0.5 ± 0.0	18.9 ± 0.1	1.5 ± 0.0
$ZZ(e \rightarrow \gamma)$	0.5 ± 0.1	1.4 ± 0.1	0.3 ± 0.1	0.0 ± 0.0	30.6 ± 0.6
Ζγγ	0.2 ± 0.1	0.8 ± 0.1	0.0 ± 0.1	0.2 ± 0.0	0.3 ± 0.0

Table 20: The yields of processes in the regions for Anti-ID lepton or/and Loose photon, and CRs for $ZZ\gamma$ and $ZZ(e \rightarrow \gamma)$.