

TRR110: NSFC Grant No. 12070131001, DFG Project-ID 196253076 DOE: DE-SC0016582, DE-AC05-06OR23177, DE-FG02-95ER40907 DFG: Heisenberg Programme (project number: 532635001) NSF: PHY-2012289

<u>马克西姆·麦</u>

伯尔尼大学

乔治华盛顿大学

第二十三届少体问题会议北京 2024年9月23日

THEORY OF HADRON RESONANCES

TRR110: NSFC Grant No. 12070131001, DFG Project-ID 196253076 DOE: DE-SC0016582, DE-AC05-06OR23177, DE-FG02-95ER40907 DFG: Heisenberg Programme (project number: 532635001) NSF: PHY-2012289

MAXIM MAI

UNIVERSITY OF BERN (MAIN) THE GEORGE WASHINGTON UNIVERSITY

23rd Few-Body Conference Beijing 23.09.2024

HADRON SPECTRUM

Mostly excited states

- ≈ 100 mesons
- \approx 50 baryons (****)

Key questions

>> More experiments & cross-channel models <<

"how are they formed?"

>> change the probe (photon, heavy pions – lattice QCD) <<

Talks: Masahiko Iwasaki – Bingran He – Shuqi Sheng – Yuhao Wang – Zhenwei Yang...

HADRON SPECTRUM

Theoretical tools

- Quark models
 - Functional methods
 - Dynamical coupled-channel models
 - Chiral EFT

. . .

Lattice QCD

Review: Eichmann/Sanchis-Alepuz/Alkofer/Fischer Prog.Part.Nucl.Phys. 91 (2016) 1-100 Review: Döring/Haidenbauer/Sato/MM PPNP in progress Review: MM/Meißner/Urbach Phys.Rept. 1001 (2023) 1-6 Review: Chen/Chen/Liu/Liu/Zhu Rept.Prog.Phys. 86 (2023) 2 TALKS: Epelbaum — Bingran He — Ahmad Jafar Arifi — 思危 胡...

1200

1000

1400

1600

1800

2000

Physical input

- many available data and ongoing experiments
- ° resonances \Rightarrow increased interaction rates
 - \rightarrow depends on the reaction-type

Talk on Strangeness resonances in many body environment: M. Iwasaki

Physical input

- many available data and ongoing experiments
- ° resonances \Rightarrow increased interaction rates
 - \rightarrow depends on the reaction-type

Physical input

- many available data and ongoing experiments
- ° resonances \Rightarrow increased interaction rates
 - \rightarrow depends on the reaction-type

B

need P Ø G="particle bump group"

UNIVERSAL* RESONANCE PARAMETER

(*) Reaction independent

S-matrix theory: transition amplitude

- Unitarity/Analyticity/Crossing symmetry
- Poles on unphysical Riemann Sheets

S-matrix theory: *transition amplitude*

- Unitarity/Analyticity/Crossing symmetry
- Poles on unphysical Riemann Sheets

Boundary ($E \in \mathbb{R}$):

- Experiment
- Lattice QCD
- CHPT

Data: SAID: Phys. Rev. C 74 (2006) 045205 Model: MM et al. Phys.Rev.D 86 (2012) 094033

S-matrix theory: *transition amplitude*

- Unitarity/Analyticity/Crossing symmetry 0
- Poles on unphysical Riemann Sheets

Boundary ($E \in \mathbb{R}$):

- Experiment
- Lattice QCD
- CHPT

Analytic continuation to unphysical

Riemann Sheet

Data: SAID: Phys. Rev. C 74 (2006) 045205 Model: MM et al. Phys.Rev.D 86 (2012) 094033

S-matrix theory: transition amplitude

- Unitarity/Analyticity/Crossing symmetry
- Poles on unphysical Riemann Sheets

Boundary ($E \in \mathbb{R}$):

- Experiment
- Lattice QCD
- CHPT

Data: SAID: Phys. Rev. C 74 (2006) 045205 **Model**: MM et al. Phys.Rev.D 86 (2012) 094033

THREE-HADRON STATES

Most known states have large 3-body content

- $\circ \omega(782) \rightarrow \pi \pi \pi$
- $\circ a_1(1260) \rightarrow \pi\pi\pi$
- $\circ N(1440) \rightarrow \pi \pi N$
- $^{\circ}X(3872) \rightarrow DD\pi$

Beyond Standard Model searches (*t***-EDM/...)**

Exotic states of matter

GlueX@JLAB; COMPASS@CERN;

Singularity structure, long-range forces ...

Talks: E.Epelbaum – A.Rusetsky – X.Zhang – J.Wu – Z.Zhang – A. Nefediev

3-HADRON STATES

"Infinite Volume Unitarity" — IVU formalism

• Three-body scattering amplitude

MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017) Related: Hansen/Sharpe(2014), Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C 79 (2019);

Express 3-body through 2+1 system

"Infinite Volume Unitarity" — IVU formalism

• Three-body scattering amplitude MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017) Related: Hansen/Sharpe(2014), Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C 79 (2019);

Express 3-body through 2+1 system

$$\langle \dots | T_3 - T_3^{\dagger} | \dots \rangle$$
 3b-Unitarity $i \int \langle \dots | T_3 T_3^{\dagger} | \dots \rangle$

"Infinite Volume Unitarity" — IVU formalism

• Three-body scattering amplitude MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017) Related: Hansen/Sharpe(2014), Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C 79 (2019);

• Express 3-body through 2+1 system

"Infinite Volume Unitarity" — IVU formalism

- Three-body scattering amplitude MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017) Related: Hansen/Sharpe(2014), Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C 79 (2019);
- Express 3-body through 2+1 system

- On-shell configs (B, Σ) fixed
- Off-shell parts (C, \tilde{K}) input

"Infinite Volume Unitarity" — IVU formalism

- Three-body scattering amplitude MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017) Related: Hansen/Sharpe(2014), Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C 79 (2019);
- Express 3-body through 2+1 system

- On-shell configs (B, Σ) fixed
- Off-shell parts (C, \tilde{K}) input

$$\begin{aligned} \mathbf{IVU} \\ T^{c} &= \mathbf{B} + \mathbf{C} + \int \frac{d^{3} \mathscr{C}}{(2\pi)^{3}} \frac{\left(\mathbf{B} + \mathbf{C}\right)}{2E_{l}} \frac{1}{\tilde{K}^{-1} - \Sigma} T^{c} \\ \\ \mathbf{MM/Hu/D\"{o}ring/Pilloni/Szczepaniak} \\ \\ \mathbf{Eur.Phys.J.A 53 (2017)} \end{aligned}$$

FINITE-VOLUME SPECTRUM

Lattice QCD — QCD Green's functions:

- Euclidean space-time
- unphysical pion mass
- finite-volume

Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... Reviews: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018); Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021); Talks: Han-Yang Xing/Rusetsky/Jian Liang

FINITE-VOLUME SPECTRUM

Lattice QCD — QCD Green's functions:

Quantization

condition

- Euclidean space-time
- unphysical pion mass
- finite-volume

• • • • • • •

Re E [MeV]

0.5

1 T

Re E [MeV]

FINITE-VOLUME SPECTRUM

Lattice QCD — QCD Green's functions:

- Euclidean space-time
- unphysical pion mass
- finite-volume

• • • • • •

Re E [MeV]

Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... Reviews: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018); Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021); Talks: Han-Yang Xing/Rusetsky/Jian Liang

Quantization

condition

- on-shell states "feel" the box-size
- off-shell configurations decay exponentially $\sim e^{-ML}$
- unitarity separates those

"Finite Volume Unitarity" 3-body quantization condition

FVU
det
$$\left[2L^{3}E_{\mathbf{p}} \left(\tilde{\mathbf{K}}^{-1} - \boldsymbol{\Sigma}^{L} \right) - \boldsymbol{B} - \boldsymbol{C} \right]^{\Lambda} \equiv 0$$

MM/Doring Eur.Phys.J.A 53 (2017) 12, 240

Soon as a python package: H.Yan+MM

- Alternatives:
 - RFT(Hansen/Sharpe 2014)

• NREFT(Rusetsky/Hammer/Pang 2017)

Re E [MeV]

Excited axial-vector meson: $a_1(1420)$

Observed by COMPASS/Belle in $\pi^-\pi^+\pi^-$ final state COMPASS:2015kdx, Rabusov:2023tna

Creation mechanisms:

- Excited state of $a_1(1260)$ COMPASS:2020yhb
- "Triangle singularity" $K^*(892)\bar{K} \xrightarrow{K} \pi f_0(980)$

Mikhasenko:2015oxp Review: Guo:2019twa Related: Dai:2018hqb, Dai:2018rra, Liang:2019jtr, Jing:2019cbw, Du:2021zdg, Duan:2023dky, Wang:2016dtb, Nakamura:2023obk, Zhang:2024dth, Achasov:2022onn, Nakamura:2023hbt, arXiv:1609.04133 [hep-ph]. Talks: J.J.Wu – Z.Zhang

Excited axial-vector meson: $a_1(1420)$

Observed by COMPASS/Belle in $\pi^-\pi^+\pi^-$ final state COMPASS:2015kdx, Rabusov:2023tna

Creation mechanisms:

- Excited state of $a_1(1260)$ COMPASS:2020yhb
- "Triangle singularity" $K^*(892)\bar{K} \xrightarrow{K} \pi f_0(980)$

Mikhasenko:2015oxp Review: Guo:2019twa Related: Dai:2018hqb, Dai:2018rra, Liang:2019jtr, Jing:2019cbw, Du:2021zdg, Duan:2023dky, Wang:2016dtb, Nakamura:2023obk, Zhang:2024dth, Achasov:2022onn, Nakamura:2023hbt, arXiv:1609.04133 [hep-ph]. Talks: J.J.Wu – Z.Zhang

- formalism to incorporate both hypothesis \bullet
- full 2- and 3-body re-scattering
- for now: only kinematic/analytical properties (no spin) \bullet

3b unitary formalism IVU

Ajay Sakthivasan/MM/Döring/Rusetsky 2407.17

7969	[hep	-ph]

Excited axial-vector meson: $a_1(1420)$

Observed by COMPASS/Belle in $\pi^-\pi^+\pi^-$ final state COMPASS:2015kdx, Rabusov:2023tna

Creation mechanisms:

- Excited state of $a_1(1260)$ COMPASS:2020yhb
- "Triangle singularity" $K^*(892)\bar{K} \xrightarrow{K} \pi f_0(980)$

Mikhasenko:2015oxp Review: Guo:2019twa Related: Dai:2018hqb, Dai:2018rra, Liang:2019jtr, Jing:2019cbw, Du:2021zdg, Duan:2023dky, Wang:2016dtb, Nakamura:2023obk, Zhang:2024dth, Achasov:2022onn, Nakamura:2023hbt, arXiv:1609.04133 [hep-ph]. Talks: J.J.Wu – Z.Zhang

- formalism to incorporate both hypothesis
- full 2- and 3-body re-scattering
- for now: only kinematic/analytical properties (no spin) \bullet

3b unitary formalism IVU

Ajay Sakthivasan/MM/Döring/Rusetsky 2407.1

Landau equations

- ➡ singularity at the same place
- can become sub-leading

$$\alpha_i(q_i^2 - m_i^2) = 0, \qquad i = 1, \dots$$
$$\sum_{i \in \text{loop } j} \alpha_i q_i^\mu(k_j) = 0, \qquad j = 1, \dots$$

7969 [hep-ph]				
_ 1				
$\dots, N,$ $\dots, L,$				

- formalism to incorporate both hypothesis
- full 2- and 3-body re-scattering
- for now: only kinematic/analytical properties (no spin) \bullet

Excited axial-vector meson: $a_1(1420)$

Observed by COMPASS/Belle in $\pi^-\pi^+\pi^-$ final state COMPASS:2015kdx, Rabusov:2023tna

Creation mechanisms:

- Excited state of $a_1(1260)$ COMPASS:2020yhb
- "Triangle singularity" $K^*(892)\bar{K} \xrightarrow{K} \pi f_0(980)$

Mikhasenko:2015oxp Review: Guo:2019twa Related: Dai:2018hqb, Dai:2018rra, Liang:2019jtr, Jing:2019cbw, Du:2021zdg, Duan:2023dky, Wang:2016dtb, Nakamura:2023obk, Zhang:2024dth, Achasov:2022onn, Nakamura:2023hbt, arXiv:1609.04133 [hep-ph]. Talks: J.J.Wu – Z.Zhang

3b unitary formalism IVU

Ajay Sakthivasan/MM/Döring/Rusetsky 2407.17

- Effect is small but distinguishable
- Add spin, fit to the line-shapes ... in progress

7969	[hep	-ph]

lightest hadron decaying into three particles Maglich/Alvarez/Rosenfeld/Stevenson *Phys.Rev.Lett.* 7 (1961) 178-182 \bullet

ω(782)

- dominates the isoscalar response within the VMD picture of the photon-nucleon interactions
- generates the observed repulsion at < 1 fm in the one-boson-exchange picture of the N– N interaction Sakurai (1960); Erkelenz (1974); Brown and Jackson (1976); Barkov et al., 1985; Connell et al. (1997); Bazavov et al. (2021)

Stevenson Alvarez Rosenfeld Maglich MacMillan PRESS/TV CONFERENCE ON DISCOVERY OF OMEGA MESON Berkeley, August 31, 1961 OVR Maglic', Alvarez, Rosenfeld & Stevenson, Phys. Rev. Lett. September 1, 1961

VECTOR MESON

VECTOR MESON

lightest hadron decaying into three particles Maglich/Alvarez/Rosenfeld/Stevenson Phys. Rev. Lett. 7 (1961) 178-182

 $\omega(782)$

- dominates the isoscalar response within the VMD ulletpicture of the photon-nucleon interactions
- generates the observed repulsion at < 1 fm in the one-boson-exchange picture of the N– N interaction Sakurai (1960); Erkelenz (1974); Brown and Jackson (1976); Barkov et al., 1985; Connell et al. (1997); Bazavov et al. (2021)

Stevenson Alvarez Maglich MacMillan Rosenfeld PRESS/TV CONFERENCE ON DISCOVERY OF OMEGA MESON Berkeley, August 31, 1961 OVR Maglic', Alvarez, Rosenfeld & Stevenson, Phys. Rev. Lett. September 1, 1961

What can we learn from Lattice QCD?

- \bullet
- KSFR/Universality relations/... in EFT Gell-Mann/Sharp/Wagner/Fujiwara/Kawarabayashi... Review: Meißner Phys. Rept. 161 (1988) 213

Haobo Yan (燕浩波)/MM/Garofalo/Meißner/Lui/Liu/Urbach: 2407.16659 [hep-lat]

- two/three-body force
 - pion-mass dependence

VECTOR MESON

Finite-volume spectrum = Energy eigenvalues

VECTOR MESON

Finite-volume spectrum = Energy eigenvalues

H.Yan/MM/Garofalo/Meißner/Lui/Liu/Urbach: 2407.16659 [hep-lat]

 \mathbf{FVU} det $\left[2L^{3}E_{\mathbf{p}} \left(\tilde{\mathbf{K}}^{-1} - \boldsymbol{\Sigma}^{L} \right) - \mathbf{B} - \mathbf{C} \right]^{\Lambda} \equiv 0$

3-body quantization condition

• Volume-independent 2-, 3-body force C, K

• EFT: saturation due to ρ, ω exchange

Gell-Mann/Sharp/Wagner/Fujiwara/Kawarabayashi... **Review**: Meißner *Phys.Rept.* 161 (1988) 213

0.6 0.5aE0.40.332

MM/Döring

Eur.Phys.J.A 53 (2017) 12, 240

VECTOR MESON

Finite-volume spectrum = Energy eigenvalues

VECTOR MESON

Mapping to infinite volume

H.Yan/MM/Garofalo/Meißner/Lui/Liu/Urbach: 2407.16659 [hep-lat]

3-body quantization condition

• Determine pole positions in infinite volume

$$IVU$$
$$T^{c} = \mathbf{B} + \mathbf{C} + \int \frac{d^{3}\ell}{(2\pi)^{3}} \frac{(\mathbf{B} + \mathbf{C})}{2E_{l}} \frac{1}{\tilde{\mathbf{K}}^{-1} - \boldsymbol{\Sigma}} T^{c}$$

VECTOR MESON

Mapping to infinite volume

H.Yan/MM/Garofalo/Meißner/Lui/Liu/Urbach: 2407.16659 [hep-lat]

3-body quantization condition

FVU $det \left[2L^{3}E_{p} \left(\tilde{K}^{-1} - \Sigma^{L} \right) - B - C \right]^{\Lambda} \equiv 0$ MM/Döring *Eur.Phys.J.A* 53 (2017) 12, 240

• Determine pole positions in infinite volume

IVU $T^{c} = \mathbf{B} + \mathbf{C} + \int \frac{d^{3} \mathscr{E}}{(2\pi)^{3}} \frac{(\mathbf{B} + \mathbf{C})}{2E_{l}} \frac{1}{\tilde{\mathbf{K}}^{-1} - \boldsymbol{\Sigma}} T^{c}$

Synergetic approach to hadron spectrum

- Lattice QCD: ab-initio QCD calculations
- **EFTs:** quark-mass dependence, symmetries
- (S-matrix/...): 3-body Quantization condition

<u>2-body systems/3-body systems</u>

- $f_0(500), \rho(770), \ldots$ well established quark-mass dependence
- $N(1535), N(1650), \Lambda(1405), \Lambda(1380)$
- pilot results on $3\pi(I = 2)$, $\omega(782)$, $a_1(1260)$
- chiral trajectories \bullet

<u>Outlook — it is just the beginning!</u>

- $DD\pi N(1440) \dots$ spin-exotics? a₁(1420)
- systematic/statistics improvement
- EFT tests Universality of $\omega \to 3\pi, \rho \to 2\pi$ coupling? KSFR relation? ...
- Cutoff treatment Gradient flow?

SUMMARY

Current frontier: 3-body dynamics from LQCD

➡ 3-body Quantization Conditions¹

RFT / FVU / NREFT

➡ many perturbatively interacting systems are studied²

 Rusetsky, Bedaque, Grießhammer, Sharpe, Meißner, Döring, Hansen, Davoudi, Guo....
Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

2) MM/Döring PRL122(2019); Blanton et al. PRL 124 (2020); Hansen et al. PRL 126 (2021);

$$0 = \det\left(L^3\left(\tilde{F}/3 - \tilde{F}(\tilde{K}_2^{-1} + \tilde{F} + \tilde{G})^{-1}\tilde{F}\right)^{-1} + K_{\rm df},\right)$$

$$0 = \det \left(B_0 + C_0 - E_L \left(K^{-1} / (32\pi) + \Sigma_L \right) \right)$$
 FV

Pole positions

- FVU: complex energy-plane analysis¹
 - --resonance width grows ~ g^2
 - -- avoided level crossing gap >> width
- Similarly from RFT with Breit-Wigner like approximation

HILBERT'S HOTEL

"Infinite Volume Unitarity" — IVU formalism

- OPE: non-trivial analytic structure^[1]

[1] Korpa/Lutz/Guo/Heo Phys.Rev.D 107 (2023) 3; Isken et al. 2309.09695; ...

[2] Ketzer/Aceti/Dai/Oset/Mikhashenko/Bayar/Guo...

[3] Sakhtivasan/MM in preparation

