Production of baryon clusters of B=±1 to ±4 in relativistic heavy-ion collisions

Zhangbu Xu (Kent State University& BNL)

- B=1: simplest gluon topology in QCD
- B=3,2 nuclear yield ratio as probe of quantum wavefunction overlaps and density fluctuation and correlations

In part supported by

Office of Science

- B=4,3 Hypernuclear properties
- Discovery of B=-4 hypernucleus

• Future:

charmed hypernuclei

enter for Nuclear Research

Little Big Bangs

BIG; All 4 forces at work; Gravitation dominates; QGP@10⁻⁶s; Slow expansion; Antimatter-matter annihilate;

Little Big Bangs

BIG; All 4 forces at work; Gravitation dominates; QGP@10⁻⁶s; Slow expansion; Antimatter-matter annihilate;

Little; Strong force at work; QGP@10⁻²³s; Fast expansion; Antimatter-matter decouple; repeat trillion times

Baryon Number (B) Carrier

- Textbook picture of a proton
 - Lightest baryon with strictly conserved baryon number
 - Each valence quark carries 1/3 of baryon number
 - Proton lifetime >10³⁴ years
 - Quarks are connected by gluons
- Alternative picture of a proton
 - Proposed at the Dawn of QCD in 1970s
 - A Y-shaped gluon junction topology carries baryon number (B=1)
 - The topology number is the strictly conserved number
 - Quarks do not carry baryon number
 - Valence quarks are connected to the end of the junction always

[1]: Artru, X.; String Model with Baryons: Topology, Classical Motion. Nucl. Phys. B 85, 442–460 (1975).

[2]: Rossi, G. C. & Veneziano, G. A; Possible Description of Baryon Dynamics in Dual and Gauge Theories. Nucl. Phys. B 123, 507–545 (1977)

https://en.wikipedia.org/wiki/Quark

B=1

Measurements of quark baryon number?

- Textbook picture of a proton
 - Lightest baryon with strictly conserved baryon number
 - Each valence quark carries 1/3 of baryon number
 - Proton lifetime >10³⁴ years
 - Quarks are connected by gluons
- Alternative picture of a proton
 - Proposed at the Dawn of QCD in 1970s
 - A Y-shaped gluon junction topology carries baryon number (B=1)
 - The topology number is the strictly conserved number
 - Quarks do not carry baryon number
 - Valence quarks are connected to the end of the junction always

Neither of these postulations has been verified experimentally

Model implementations of baryons at RHIC

2003 RBRC Workshop on "Baryon Dynamics at RHIC" FIRST WORKSHOP ON BARY

• Many of the models used for heavy-ion collisions at RHIC (HIJING, AMPT, UrQMD) have implemented a nonperturbative baryon stopping mechanism

V. Topor Pop, et al, Phys. Rev. C 70, 064906 (2004) Zi-Wei Lin, et al, Phys. Rev. C 72, 064901 (2005) M. Bleicher, et al, J.Phys.G 25, 1859-1896 (1999)

Baryon Stopping

• Theorized to be an effective mechanism of stopping baryons in *pp* and *AA*

D. Kharzeev, Physics Letters B 378, 238-246 (1996),

• Specific rapidity dependence is predicted:

> $p = \sim e^{-\alpha_B y}$ $\alpha_R \simeq = 0.5$

FROM RHIC TO EIC

Dates: Jan 22 - 24, 2024 Location: Center for Frontiers in Nuclear Science (CFNS), Stony Brook University Format: In-person & zoom Participation: Invited Talks + Open Mic Discussion Registration Deadline: Jan 15th. 2024 No registration fee - Limited student support available

This workshop aims to address fundamental questions such as what carries the baryo quantum number and how a baryon is stopped in high-energy collisions, which have profoun implications for understanding the baryon structure. It also challenges our current knowledg of QCD and its non-perturbative aspects, such as baryon junctions and gluonic topology. Th workshop will explore the origin and transport of baryons in high-energy collisions, from the AGS/SPS/RHIC/LHC to JLab F_{π} . HERA/EIC, and discuss the experimental an challenges and opportunities in this field.

- Baryon junctions and gluonic topology
- Baryon and charge stopping in heavy-ion collisions
- Baryon transport in photon-induced processes
- · Baryon-meson-transition in backward u-channel reaction
- Models of baryon dynamics and baryon-rich matter
- Novel experimental methods at EIC

Keynote speaker: Gabriele Veneziano

It is evident from the structure of (1) that the trace of baryon number should be associated not with the valence quarks, but with a non-perturbative configuration of gluon fields located at the point x - the "string junction".

Three approaches toward tracking the origin of the baryon number

1. STAR Method:

Charge (Q) stopping vs baryon (B) stopping: if valence quarks carry Q and B, Q=B at middle rapidity

2. Kharzeev-STAR Method:

If gluon topology (J) carries B as one unit, it should show scaling according to Regge theory $\alpha = \alpha e^{-\alpha RV}$

$$p = \sim e^{-\alpha_B y}$$
$$\alpha_B \simeq 0.5$$

 Artru Method: In γ+Au collision, rapidity asymmetry can reveal the origin

Separate charge and baryon transports

Three approaches toward tracking the origin of the baryon number $2.0 \begin{bmatrix} STAR RU+RU, Zr+Zr \\ \sqrt{S_{NN}} = 200 GeV, |y| < 0.5 \end{bmatrix}$

1. STAR Method:

Charge (Q) stopping vs baryon (B) stopping: if valence quarks carry Q and B, Q=B at middle rapidity B/Q=2

2. Kharzeev-STAR Method:

If gluon topology (J) carries B as one unit, it should show scaling according to Regge theory $\alpha_{\rm B}$ =0.61 $p = \sim e^{-\alpha_{B}y}$

3. Artru Method: $\alpha_B \sim =0.5$ In γ +Au collision, rapidity asymmetry can reveal the origin $\alpha_B(A+A)=0.61 < \alpha_B(\gamma+A)=1.1 < \alpha_B(PYTHIA)$

B=1,2,3 nuclear yield ratios

Fig. 1 (Color online) Density distribution of strongly interacting matter in a heavy ion collision after its expansion for the cases of crossover transition (panel **a**) and first-order chiral phase transition (panel **b**). Also shown for illustration of the latter case are deuterons and tritons produced from the density fluctuating hadronic matter and their yield ratio $\mathcal{O}_{p-d-t} = N_t N_p / N_d^2$, which depends on the magnitude of neutron density distribution as discussed in the text • Light nuclei production as a probe of the QCD phase diagram K.J. Sun, et al., PLB 781 (2018) 499

 Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions
 K.J. Sun, et al., PLB 774 (2017) 103

C.M. Ko, NST 34 (2023) 80

$$\mathscr{O}_{p-d-t} = \frac{N_{3_{\mathrm{H}}}N_p}{N_d^2} = g \frac{1+(1+2\alpha)\Delta n}{(1+\alpha\Delta n)^2}$$

Spectra and two-particle ratios

STAR, Phys.Rev.Lett. 130 (2023) 202301

Spectra and two-particle ratios

STAR, Phys.Rev.Lett. 130 (2023) 202301

Quantum Wavefunction overlap efficiency

STAR, Phys.Rev.Lett. 130 (2023) 202301 RHIC+LHC data, C. Pinto, X.F. Luo, XZB,EMMI RRTF 04/24

Coalescence wavefunction overlap between nucleus and nucleons

Quantum Wavefunction overlap efficiency

STAR, Phys.Rev.Lett. 130 (2023) 202301 RHIC+LHC data, C. Pinto, X.F. Luo, XZB,EMMI RRTF 04/24

Coalescence wavefunction overlap between nucleus and nucleons

EXTREME Matter Institute EMM EMMI Rapid Reaction Task Force Understanding light (anti-)nuclei production at RHIC and LHC

> April 8 - 12, 2024 SB1 Lecture Hall, GSI, Darmstadt , Germany

Possible sign of Density Fluctuation

4σ effect, BES-II data x10 statistics

STAR, Phys.Rev.Lett. 130 (2023) 202301

Few-body correlations at RHIC and LHC

Three-nucleon correlations at LHC

|B|=3 hypertriton lifetime

 $^{3}_{\Lambda}\mathrm{H}$

Potential discrepancy?

arXiv:2311.09877

Simultaneous fit to all heavy-ion data

Scale yields to one common exponential function

Result consistent with other (average) methods

About 3σ smaller than Lambda lifetime

STAR 2018 first $c\tau$ point appears high ALICE 2022 first $c\tau$ point appears low

ct(cm)

05

1000

Hypernuclei

Light nuclei

Particle Mass (GeV/c²)

2

0.0

0

>JAM

0.6

to process all collected data online.

Therefore a trigger on He has been introduced to enhance hypernuclei.

The collected statistics is enough to measure yields, lifetimes and spectra of these hypernuclei

I.VASSILIEV

Entries

Entries

HADRON 2023, GENOVA, 08.06.23

Statistical Hadronization: powerful projections

Search for heavy antimatter and baryon objects

Charge Symmetry Breaking in B=4 hypernuclei

xzb LBL Heavy-Ion Tea Seminar 05/2010

Heavy-flavor states

http://belle.kek.jp/belle/talks/moriondQCD10/pakhlov.ppt

Many (>10) states poorly consistent with quark model

State	M (MeV)	Г (MeV)	J ^{PC}	Decay Modes	Production Modes
<i>Y_s</i> (2175)	2175 ± 8	58 ± 26	1	$\phi f_0(980)$	e^+e^- (ISR) $J/\psi o \eta Y_s(2175)$
X(3872)	$\textbf{3871.4} \pm \textbf{0.6}$	< 2.3	1++	$\pi^+\pi^- J/\psi, \ \gamma J/\psi, D ar{D^*}$	$B \rightarrow KX(3872), p\bar{p}$
X(3915)	3914 ± 4	23 ± 9	$0/2^{++}$	$\omega J/\psi$	$\gamma\gamma ightarrow X$ (3915)
Z(3930)	3929 ± 5	29 ± 10	2++	DD	$\gamma\gamma ightarrow Z$ (3940)
X(3940)	3942 ± 9	37 ± 17	0 ^{?+}	$Dar{D}^*$ (not $Dar{D}$ or $\omega J/\psi)$	$e^+e^- ightarrow J/\psi X(3940)$
Y(3940)	3943 ± 17	87 ± 34	??+	$\omega J/\psi~({ m not}~Dar{D^*})$	$B \rightarrow KY(3940)$
Y(4008)	4008_{-49}^{+82}	226^{+97}_{-80}	1	$\pi^+\pi^- J/\psi$	$e^+e^-(ISR)$
X(4160)	4156 ± 29	139^{+113}_{-65}	0 ^{?+}	$D^* \bar{D^*}$ (not $D \bar{D}$)	$e^+e^- ightarrow J/\psi X(4160)$
Y(4260)	4264 ± 12	83 ± 22	1	$\pi^+\pi^- J/\psi$	$e^+e^-(ISR)$
Y(4350)	4361 ± 13	74 ± 18	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$\Lambda_c^+\Lambda_c^-$	$e^+e^-(ISR)$
Y(4660)	4664 ± 12	48 ± 15	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$
Z(4050)	4051^{+24}_{-23}	82^{+51}_{-29}	?	$\pi^{\pm}\chi_{c1}$	$B \rightarrow KZ^{\pm}(4050)$
Z(4250)	4248^{+185}_{-45}	177_{-72}^{+320}	?	$\pi^{\pm}\chi_{c1}$	$B \rightarrow KZ^{\pm}(4250)$
Z(4430)	4433 ± 5	45^{+35}_{-18}	?	$\pi^{\pm}\psi'$	$B \rightarrow KZ^{\pm}(4430)$
$Y_b(10890)$	$10,890\pm3$	55 ± 9	1	$\pi^+\pi^-\Upsilon(1,2,3S)$	$e^+e^- ightarrow Y_b$

observed last 6 years by B-factories

How about baryon states?

Heavy-flavor hypernuclei

- Predicted to exist (70's)
- Cannot be produced in pp, ep collisions
 - Cannot be detected in fixed target experiment
 - Only solution: EIC

Brookhaven National Laboratory, Upton, New York 11973

- EIC enough energy for charm and bottom hypernuclei
- Vertex detector at Fragmentation region Displace vertex: 3cm

xzb

LBL Heavy-Ion Tea Seminar 05/2010

Heavy-flavor states

http://belle.kek.jp/belle/talks/moriondQCD10/pakhlov.ppt

How about baryon states?

Heavy-flavor hypernuclei

- Predicted to exist (70's)
- Cannot be produced in pp, ep collisions
- Cannot be detected in fixed target experiment
- Only solution: EIC

Brookhaven National Laboratory, Upton, New York 11973

- EIC enough energy for charm and bottom hypernuclei
- Vertex detector at Fragmentation region
 Displace vertex: 3cm

Search for Stable Charmed Mesic Nucleus $_{\rm D-}{}^{\rm 4}{\rm He}$ in Heavy-Ion and EIC

Stable and existence due to Coulomb force

PYTHIA: D⁻/n~=5x10⁻⁴ p+p collisions at AGS and RHIC forward kinematics

_{D-}⁴He yield 10⁻⁸ per collision

STAR@RHIC: Estimate 1x10⁵/year in forward acceptance But without vertex detector

Zhangbu Xu (BNL) Cheng-Wei Lin, Yi Yang (NCKU) DNP (2022), EMMI (2023)

He

CBM@FAIR high baryon, good vertex LHCb@LHC forward with good vertex

EIC ion forward direction: clean environment with good vertex Nuclear cluster

E864@AGS Phys. Rev. C 61, 064908

Search for Stable Charmed Mesic Nucleus _{D-}⁴He with CBM

J. Steinheimer, A. Botvina, M. Bleicher, PRC 95 (2017) 014911

CBM@FAIR high baryon, good vertex LHCb@LHC forward with good vertex

EIC ion forward direction: clean environment with good vertex Zhangbu Xu (BNL) Cheng-Wei Lin, Yi Yang (NCKU) DNP (2022), EMMI (2023)

Charm Quark Oscillation with large mass difference

12

Conclusions

- Discovery of the heaviest antimatter nuclear cluster (hyperhydrogen 4)
- Continue to improve our measurements on hypernuclear lifetime and binding energy (CSB)
- Use nuclear yields to study production mechanism, quantum wavefunction overlap: thermal vs coalescence model
- Use nuclear yield ratios as a sensitive probe of nucleon density fluctuation

- Baryon number is a strictly conserved quantum number, keeps the Universe as is; use baryon transport to study its tracer
- Explore other signatures
- Two and three-nucleon correlations sensitive to scattering length and bound states
- Charmed hypernuclei (EIC, LHC, FAIR)