
Two-body scattering on the lattice in the presence of a
long-range force

Akaki Rusetsky, University of Bonn
in coll with: R. Bubna, H.-W. Hammer, B.-L. Hoid, F. Müller, J.-Y. Pang & J.-J. Wu

FB23, Beijing, 24 September 2024

NRW-FAIR
Netzwerk

1 / 25



Plan

Determining S-matrix elements: the place where lattice meets few-body physics

The finite-volume formalism

An example: inclusion of the long-range forces

Modified effective range expansion and modified Lüscher equation
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QCD on the lattice

In QCD, the structure of hadrons and their interactions at low energies cannot be
studied in perturbation theory → QCD on the lattice
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Evaluation of the spectrum

The Euclidean path integral

D(t) =
∑
x
⟨0|TO(t, x)O†(0, 0)|0⟩ =
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∑
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If t → ∞, then

D(t) → |⟨0|O(0, 0)|n⟩|2e−Ent + · · ·
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→ aEn + · · ·
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The no-go theorem (Maiani & Testa, 1990)

The scattering S-matrix elements cannot be directly extracted from the
amplitudes calculated on the lattice

Example: the timelike form factor of the pion, t ′, t → ∞ and t ′ ≫ t:

Rp,−p(t
′, t) = ⟨0|Tϕπ(t ′,p)ϕπ(t,−p)Aµ(0)|0⟩

∼
∑
n

e−w(p)t′−(En−w(p))t⟨0|ϕπ(0,p)|p⟩⟨p|ϕπ(0,−p)|n⟩⟨n|Aµ(0)|0⟩+ · · ·

The energy collapses towards threshold:

The state with the minimum energy: En → 2Mπ < 2w(p) = 2
√
M2

π + p2

↪→ ⟨n|Aµ(0)|0⟩ is not related to the form factor
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“Scattering” in a finite volume

a

a

L

a

Impose (periodic) boundary conditions

The spatial size of the box, L, is finite

Assume the temporal size Lt ≫ L, Lt → ∞
Three-momenta are quantized p =

2π

L
n , n ∈ Z3

Discrete energy levels: En+1 − En = O(L−2)

In a finite volume, the three-momentum is quantized

↪→ states lying above threshold can be reached
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There is no free lunch. . .

The structure of spectrum is different in a finite and infinite volume:

2
L

1

E E

infinite L: cut

No asymptotic scattering states in the infinite volume

No regular infinite-volume limit at fixed energy for the calculated matrix elements

How does one extract the scattering observables:
phase shifts, cross sections, resonance poles,. . .
from the measured quantities on the lattice?
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The place where lattice meets NREFT and few-body physics

Ψ
in

Ψ
out

R

L

Scale separation: use EFT to describe the large-distance behavior of hadrons:

When R ≪ L, well-separated hadrons can be formed, Ψin/out are close to
asymptotic states

Justifying the use of the non-relativistic EFT: since p ∼ 1/L and R ∼ 1/m, then
p ≪ m

Polarization effects, caused by creation/annihilation of the particles, are
exponentially small and can be neglected
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Non-relativistic EFT: essentials

Propagator:

1

m2 − p2
=

1

2w(p)(w(p)− p0 − iε)︸ ︷︷ ︸
particle

+
1

2w(p)(w(p) + p0 − iε)︸ ︷︷ ︸
anti-particle

The vertices in the Lagrangian conserve particle number:

L = ϕ†(i∂t − w)(2w)ϕ+
C0

4
ϕ†ϕ†ϕϕ+

D0

36
ϕ†ϕ†ϕ†ϕϕϕ+ · · ·

Only bubble diagrams: T = + + · · ·

K-matrix
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Relation to the potential scattering theory

Non-relativistic EFT is the potential scattering theory for the short-range
potential:

NREFT couplings ∼ potentials expanded in Taylor series.
Regularization is used to render all integrals ultraviolet-convergent.
In a given order, all couplings are matched to the physical observables (scattering
length, effective radius,. . . ).
Two-body T matrix obeys Lippmann-Schwinger equation.
Three-body T -matrix obeys Faddeev equations and so on. . .
Particle number is conserved. The sectors with different number of particles do not
talk to each other.

Finite volume, R ≪ L: the energy spectrum can be calculated by using the same
EFT in a finite volume (decoupling theorem)

Couplings remain the same, only three-momenta are discretized.
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A loop in a finite volume

The energy spectrum is given by the poles of the T -matrix in a finite volume

Loop diagram in a finite volume

∫
d3k
(2π)3

→ 1

L3

∑
k

, kn =
2π

L
n, n ∈ Z3

JL(P) =
1

L3

∑
k

∫
dk0

2πi

1

2w(k)(w(k)− k0 − iε)2w(P − k)(w(P − k)− P0 + k0 − iε)

JL(P) ∝
2√
πLγ

ZP
00(1; q

2
0) , q0 =

pL

2π
, q20 =

P2

4
−m2 , γ =

P0

√
P2

(irregular function, poles at free two-particle energies)
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The Lüscher equation (Lüscher, 1991)

The Lüscher equation (in the absence of partial-wave mixing):

T ∝ 1

p cot δ(p)− ip
→ 1

p cot δ(p)− 2√
πLγ

ZP
00(1; q

2
0)

↪→ p cot δ(p)︸ ︷︷ ︸
short-range

=
2√
πLγ

ZP
00(1; q

2
0)︸ ︷︷ ︸

geometry of a box

↪→ measuring energy levels, one extracts phase shift at the same energy

Relativistic-invariant: can be used in moving frames P ̸= 0

Resonances: analytic continuation into the complex plane

NREFT serves as a bridge between finite and infinite volume
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Further milestones

Three-particle quantization condition

Polejaeva, Hammer, Pang & AR (2012-2017)
Hansen & Sharpe (2014)
Mai & Döring (2017)

Two-particle decays:

Lellouch & Lüscher (2001)

Three-particle decays:

Müller & AR (2020)
Hansen, Romero-Lopez & Sharpe (2021)

Explicitly Lorentz-invariant formulation of the three-particle problem in a finite
volume

Bubna, Hammer, Müller, Pang, AR & Wu (2021-2023)

and many more. . .
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What it the force is long-ranged?

π

N

N

NN scattering

π

D∗

D D∗

D

T+
cc (3875)

Left hand cut close to threshold: the energy levels below the left-hand branch
point cannot be used

Slowly converging partial-wave expansion: expecting strong admixture of higher
partial waves in the quantization condition (Meng & Epelbaum, 2021)

Exponentially suppressed corrections still sizable
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Left-hand cut: case of NN scattering
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V =
1

2

∫ 1

−1
d cos θ

g2

M2
π + (p − q)2

Left-hand cut: −∞ < s ≤ (2mN)
2 −M2

π︸ ︷︷ ︸
=(1875MeV)2

; right-hand cut: (2mN)
2︸ ︷︷ ︸

=(1880MeV)2

≤ s < +∞

Phase shift real below the left-hand branch point?
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Quantization condition in the presence of a long-range force

Describe the system in terms of the parameters of the effective Lagrangian which,
by definition, encode only faraway singularities (Meng & Epelbaum, 2021)

V (p,q) = −
(

gA
2Fπ

)2 (σ1 · k)(σ2 · k)
M2

π + k2
+ CS +

C1

4
(p + q)2 + C2k2 + · · ·

k = p − q

Work in the plane wave basis; do not resort to the partial-wave expansion
Alternative approaches

Splitting long- and short-range forces: Hansen & Raposo (2023)
Embedding two-body problem in the three-body framework in case of DD∗

scattering: Hansen, Romero-Lopez & Sharpe (2024)
HAL QCD approach: Lyu et al. (2023)
Modified effective range expansion: Bubna, Hammer, Müller, Pang, AR & Wu
(2024)
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Modified effective range expansion (van Haeringen & Kok, 1982)

Lüscher equation is based on the assumption R ∼ M−1 ≪ L
. . . violated by a long-range force with a small M!

Splitting of the potential

V (r) = VL(r)︸ ︷︷ ︸
known, local

+ VS(r)︸ ︷︷ ︸
unknown

Effective-range expansion: very small radius of convergence

q2ℓ+1 cot δℓ(q) = − 1

aℓ
+

1

2
rℓq

2 + O(q4)

Define modified effective-range function:

KM
ℓ (q2) = Mℓ(q) +

q2ℓ+1

|fℓ(q)|2
(cot(δℓ(q)− σℓ(q))− i)
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Jost functions and all that

Jost function for the long-range interaction:

fℓ(q) =
qℓe−iℓπ/2(2ℓ+ 1)

(2ℓ+ 1)!!
lim
r→0

r ℓfℓ(q, r)

The function Mℓ(q):

Mℓ(q) =
1

ℓ!

(
− iq

2

)ℓ

lim
r→0

d2ℓ+1

dr2ℓ+1

fℓ(q, r)

fℓ(q)

Larger radius of convergence for the modified effective-range function:

KM
ℓ (q2) = − 1

ãℓ
+

1

2
r̃ℓq

2 + O(q4)

Relation between KM
ℓ (q2) and the full phase δℓ(q) is algebraic
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Requirements on the potential

The long-range potential VL(r) is local

The long-range potential must be superregular∣∣∣ lim
r→0

r−2ℓVL(r)
∣∣∣ <∞

For example, sharp cutoff for the Yukawa potential:

VL(r) = θ(r − r0)
ge−Mπr

r

The short-range potential is a low-energy polynomial:

⟨p|VS |q⟩ = C 00
0 + 3C 00

1 pq + C 10
0 (p2 + q2) + · · ·
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Scattering on two potentials: the EFT framework

T = TL + (1 + TLG0)TS(1 + G0TL)

TS = VS + VSGLTS

The Green function with the long-range potential only: GL = G0 + G0VLGL

GL = + + + · · ·
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The loop with infinite number of long-range insertions

〈GL〉 = + + + · · ·

⟨r |GL(q
2
0)|r ′⟩ = 4π

∑
ℓm

Yℓm(r)G̃ ℓ
L(r , r

′; q20)Y
∗
ℓm(r

′) , ⟨G ℓ
L(q

2
0)⟩ = lim

r ,r ′→0
G ℓ
L(r , r

′; q20)

Relation to the Jost functions:

⟨G ℓ
L(q

2
0)⟩ =

1

4π((2ℓ+ 1)!!)2
Mℓ(q0) + real low-energy polynomial in q20︸ ︷︷ ︸

renormalization prescription
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Modified effective range expansion: EFT framework

Lowest order: ⟨p|VS |q⟩ = C 00
0

4π/C 00
0︸ ︷︷ ︸

=KM
0 (q20) at lowest order

= M0(q0) +
q0

|f0(q0)|2
(cot(δ0(q0)− σ0(q0))− i)

Higher orders:

The quantity KM
0 (q20) is a low-energy polynomial in q20 , expressed in terms of

couplings C 00
0 ,C 00

1 ,C 10
0 , . . .

In the proof, the locality of VL(r) plays crucial role. The proof is not valid for a
general, non-local potential
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Modified Lüscher equation

det Aℓm,ℓ′m′ = 0 , Aℓm,ℓ′m′ = δℓℓ′δmm′KM
ℓ (q20)− Hℓm,ℓ′m′(q0)

Modified Lüscher zeta-function, finite volume:

H = + + + · · ·

Lüscher zeta-function

Hℓm,ℓ′m′(q0) =
4π

L6

∑
p,q

Y ∗
ℓm(p)⟨p|GL(q

2
0)|q⟩Yℓ′m′(q)

Taking into account the renormalization prescription:

Hℓm,ℓ′m′(q0) = (Hℓm,ℓ′m′(q0)− H∞
ℓm,ℓ′m′(q0)) +

1

4π
δℓℓ′δmm′Mℓ(q0)
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Modified Lüscher function (S-waves only, preliminary)
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Conclusions, outlook

A novel quantization condition in the presence of the long-range forces has been
proposed

Solves the left-hand cut problem
Reduces partial-wave mixing
Relates the energy level to the scattering phase(s) at the same energy

Three-body → two-body description for stable dimers

Long-range force in the three-body quantization condition: e.g., NN in NNN

Long-range three-body force?

Electromagnetic interactions: is the non-perturbative resummation of the
Coulomb photon exchanges needed/possible?
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