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Determining S-matrix elements: the place where lattice meets few-body physics

The finite-volume formalism
An example: inclusion of the long-range forces
Modified effective range expansion and modified Liischer equation

Conclusion, outlook
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QCD on the lattice

@ In QCD, the structure of hadrons and their interactions at low energies cannot be
studied in perturbation theory — QCD on the lattice
Ux, 1
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@ The covariant derivative and the plaquette:
V() = (Ul n(x + af) — U()
Pu(x) = U(x,m)U(x+ af, v)U(x + aD, p) T U(x,v) 7}
r(Pu()) = Ne— 3 a*tr(Guu(x)Guul(x)) + O()
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Evaluation of the spectrum

@ The Euclidean path integral

QU Dpe > 0(t,x)01(0,0)

D(t)=> (0| TO(t,x)0'(0,0)|0) =

x !/@U@¢@&€$
o If t = o0, then : :
2.5~ b
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S. Diirr et al., Science 322 (2008) 1224
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The no-go theorem (Maiani & Testa, 1990)

@ The scattering S-matrix elements cannot be directly extracted from the
amplitudes calculated on the lattice

o Example: the timelike form factor of the pion, t',t — 0o and t/ >> t:
Ro.—p(t', t) = (0| T (t', p)dr(t. —P)Au(0)[0)
~ e P E ) 0]6, (0, p)|P) (pléw (0, —P) ) (n] A, (0)]0) + -

@ The energy collapses towards threshold:

The state with the minimum energy: E, — 2M, < 2w(p) = 2,/ M2 + p?
— (n|A,(0)]0) is not related to the form factor
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“Scattering” in a finite volume

Impose (periodic) boundary conditions

The spatial size of the box, L, is finite

Assume the temporal size L; > L, Ly — o0

i
Tn, ne7’

Discrete energy levels: E, .1 — E, = O(L_z)

Three-momenta are quantized p =

In a finite volume, the three-momentum is quantized

— states lying above threshold can be reached
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There is no free lunch. ..

@ The structure of spectrum is different in a finite and infinite volume:

[E [E

infinite L: cut

1

— ‘
L2 ‘

@ No asymptotic scattering states in the infinite volume

@ No regular infinite-volume limit at fixed energy for the calculated matrix elements

How does one extract the scattering observables:
phase shifts, cross sections, resonance poles,. ..
from the measured quantities on the lattice?
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The place where lattice meets NREFT and few-body physics

Scale separation: use EFT to describe the large-distance behavior of hadrons:

e When R < L, well-separated hadrons can be formed, Wi, o, are close to
asymptotic states

o Justifying the use of the non-relativistic EFT: since p ~ 1/L and R ~ 1/m, then
pKLm
Polarization effects, caused by creation/annihilation of the particles, are
exponentially small and can be neglected
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Non-relativistic EFT: essentials

@ Propagator:

1 1 1
= — + .
m? —p?  2w(p)(w(p) — p° —ic) ~ 2w(p)(w(p) + p° — ic)
particle anti-particle

@ The vertices in the Lagrangian conserve particle number:

C D
£ = oH(ioe — w)w)o + " 616760 + 2 616161606 + -

@ Only bubble diagrams: : T : = X + ><>< I

K-matrix
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Relation to the potential scattering theory

@ Non-relativistic EFT is the potential scattering theory for the short-range
potential:

o NREFT couplings ~ potentials expanded in Taylor series.

e Regularization is used to render all integrals ultraviolet-convergent.

e In a given order, all couplings are matched to the physical observables (scattering
length, effective radius,. . .).
Two-body T matrix obeys Lippmann-Schwinger equation.
Three-body T-matrix obeys Faddeev equations and so on. ..
Particle number is conserved. The sectors with different number of particles do not
talk to each other.

o Finite volume, R < L: the energy spectrum can be calculated by using the same
EFT in a finite volume (decoupling theorem)
e Couplings remain the same, only three-momenta are discretized.
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A loop in a finite volume

@ The energy spectrum is given by the poles of the T-matrix in a finite volume

@ Loop diagram in a finite volume >O<

d3k 27 3
/ L3Z k,,:Tn,HGZ

Z/ dk® 1
S(P) =15 27 2w(k)(w(k) — kO — ic)2w(P — k)(w(P — k) — PO 4+ k0 — j¢)
2 pL P2 po
P ZP 1: 2 2 - - _ 2 —
Ji(P) o 7\/EL7 (L g0) s do = o’ 90 2 m-, Tﬁ

(irregular function, poles at free two-particle energies)
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The Luscher equation (Liischer, 1991)

@ The Liischer equation (in the absence of partial-wave mixing):
1 - 1
x -
peotd(p) —ip  peotd(p) — - Zio(1i43)

2 P(q. 2
— pcotd(p) = —— Zy(1; g
() = o ZaLa)
short-range geometry of a box

—> measuring energy levels, one extracts phase shift at the same energy
@ Relativistic-invariant: can be used in moving frames P # 0
@ Resonances: analytic continuation into the complex plane

NREFT serves as a bridge between finite and infinite volume
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Further milestones

@ Three-particle quantization condition

e Polejaeva, Hammer, Pang & AR (2012-2017)
e Hansen & Sharpe (2014)
o Mai & Déring (2017)

@ Two-particle decays:
o Lellouch & Liischer (2001)
@ Three-particle decays:

o Miiller & AR (2020)
o Hansen, Romero-Lopez & Sharpe (2021)

@ Explicitly Lorentz-invariant formulation of the three-particle problem in a finite
volume

o Bubna, Hammer, Miiller, Pang, AR & Wu (2021-2023)

@ and many more. ..
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What it the force is long-ranged?

N D* D
N\
) T 4 N
(- A e
N : D \\ D
1 \ N
y ’
NN scattering T.5(3875)

@ Left hand cut close to threshold: the energy levels below the left-hand branch
point cannot be used

@ Slowly converging partial-wave expansion: expecting strong admixture of higher
partial waves in the quantization condition (Meng & Epelbaum, 2021)

@ Exponentially suppressed corrections still sizable
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Left-hand cut: case of NN scattering
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JR. Green et al., PRL 127(24) (2021) 242003

o Left-hand cut: —oco < s < (2my)? — M?; right-hand cut:  (2my)? < s < 400
—_—— ——
=(1875 MeV)2 =(1880 MeV)?
@ Phase shift real below the left-hand branch point?
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Quantization condition in the presence of a long-range force

@ Describe the system in terms of the parameters of the effective Lagrangian which,
by definition, encode only faraway singularities (Meng & Epelbaum, 2021)

2
gA o1-k)(o2-k G
Vo) = (52 ) Tl e Frar R
k = p-q

@ Work in the plane wave basis; do not resort to the partial-wave expansion
o Alternative approaches
e Splitting long- and short-range forces: Hansen & Raposo (2023)
e Embedding two-body problem in the three-body framework in case of DD*
scattering: Hansen, Romero-Lopez & Sharpe (2024)
o HAL QCD approach: Lyu et al. (2023)

e Modified effective range expansion: Bubna, Hammer, Miiller, Pang, AR & Wu
(2024)
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Modified effective range expansion (van Haeringen & Kok, 1982)

o Liischer equation is based on the assumption R ~ M1 < L
.. violated by a long-range force with a small M!
@ Splitting of the potential

known, local unknown

o Effective-range expansion: very small radius of convergence
1 1
q* L cotdy(q) = —— + = rng®* + 0(g*)
dy 2
@ Define modified effective-range function:
20+1

Zroan (cot(de(q) — oulq)) — 1)
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Jost functions and all that

@ Jost function for the long-range interaction:

qfefifﬂ'/2(2£ + 1)

fila) = i

lim r’fy(q,r)
r—0
@ The function My(q):

Mi(q)

r30 dr2tl fo(q)

1 < iq>£. d?+1 fy(q,r)

o\ 2

@ Larger radius of convergence for the modified effective-range function:

1 1.
KM(q?) = -5 *3 7q* + 0(q*)

o Relation between KM(g?) and the full phase d,(q) is algebraic
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Requirements on the potential

@ The long-range potential V,(r) is local

@ The long-range potential must be superregular

lim r=2V,(r)| < o0
r—0

For example, sharp cutoff for the Yukawa potential:

ge—Mﬂ-r

Vi(r)=0(r —n) p
@ The short-range potential is a low-energy polynomial:

(p|Vslg) = CG&° +3C°pa + G°(P° + @°) + -

19/25



Scattering on two potentials: the EFT framework

T = Ti+(Q+T.Gy)Ts(1+ GoTy)
Ts = Vs+ VsG Ts

@ The Green function with the long-range potential only: G; = Gy + Gy V| G,

1 1 1
+ l + o +oo
L L L
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The loop with infinite number of long-range insertions

(rGL(ag)Ir') = 4m D Him(r)GL(r. 1" @) Zn(r') . (GL(a3)) = lim Gi(r,r";q5)

Im

@ Relation to the Jost functions:

(GU@BY) = i3

ar((2¢ + 1)N)2 Mq(qo) + real low-energy polynomial in g3

renormalization prescription
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Modified effective range expansion: EFT framework

o Lowest order: (p|Vs|q) = C{°

qo

4r/Cg° = Mo(qo) + A (cot(do(qo) — a0(qo)) — 1)

=KM(q?) at lowest order

@ Higher orders:

o The quantity K} (q2) is a low-energy polynomial in g2, expressed in terms of
couplings C°, C0, C3°, ...

o In the proof, the locality of V,(r) plays crucial role. The proof is not valid for a
general, non-local potential
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Modified Lischer equation

det %m,f’m’ = 0: e5Z{€m,€’m’ = 5€Z’6mm’ KZM(qg) - Hém,ﬁ’m’(qo)
@ Modified Liischer zeta-function, finite volume:

Liischer zeta-function

Hfmﬁ’m’ qO Z%m |GL qo)‘q>g/€’m’( )

@ Taking into account the renormalization prescription:

1
Hym,erm(90) = (Hem,erm (90) — Him g (90)) + yy= 8000 mm Me(qo)
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Modified Luscher function (S-waves only, preliminary)

Hog,o0 and Zg, oo for M,L =3
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Conclusions, outlook

@ A novel quantization condition in the presence of the long-range forces has been
proposed
e Solves the left-hand cut problem
o Reduces partial-wave mixing
o Relates the energy level to the scattering phase(s) at the same energy
@ Three-body — two-body description for stable dimers
@ Long-range force in the three-body quantization condition: e.g., NN in NNN
@ Long-range three-body force?
o Electromagnetic interactions: is the non-perturbative resummation of the

Coulomb photon exchanges needed/possible?
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