Highlights of hadron physics@ ₩SI

Beijiang Liu (on behalf of BESIII)

Institute of High Energy Physics, Chinese Academy of Sciences

THE 23rd INTERNATIONAL CONFERENCE O FEW-BODY PROBLEMS IN PHYSICS (FB23) Sept 22-27, 2024 Beiling, China

A hattake of high longer (Highs Chinese Auditing of Sciences - Kennung für Audit and Audit (Laing Audit and Audit))
 Official Chinese And Audit (Science Audit and Technology - Tec

Hadrons

- Dominant part of visible matter in the universe
- To fully understand the strong interaction
 - Understanding the rich and complex features of its bound states, hadrons
 - How are hadrons formed from quarks and gluons?What is the origin of confinement?
 - ≻How is the mass of hadron generated in QCD?
 - >What is the dynamics of effective DoF in hadrons?

BESIII@BECPII

Beijing Electron Positron Collider(BEPCII)

Double-ring, symmetry, multi-bunch e⁺ e⁻ collider E_{cm} = 1.84 to 4.95 GeV Energy spread: $\Delta E \approx 5 \times 10^{-4}$ Peak luminosity in continuously operation @ E_{cm} = 3.77 GeV: 1.1 × 10³³ cm⁻²s⁻¹

Beijing Spectrometer(BESIII)

BESIII collaboration: ~600members from 17countries, 89 institutions

World's largest τ – charm data sets in e⁺e⁻ annihilation

- Data sets collected so far include
- $> 10 \times 10^9 J/\psi$ events
- $> 2.7 \times 10^9 \psi(2S)$ events
- **> 20 fb**⁻¹ ψ(3770)
- Scan data [1.84, 3.08] GeV; [3.735, 4.600]GeV, 143 energy points, ~2.0 fb⁻¹
- \succ Large data sets for XYZ study ~22 fb⁻¹
- Entangled hadron pair-productions near thresholds

Rich physics program:

Spectroscopy & decays of light hadrons and charmonium, charm physics, precision measurements of QCD parameters, tests of fundamental symmetry,

Electromagnetic Form Factors (EMFFs)

Hadron structure with **BESIII**

$$e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c}^-$$

BESIII PRL 131, 191901 (2023)

Energy scans from 4.61 to 4.95 GeV

- Sharp rise in cross section near threshold
- Disagreement with Belle data near 4.6 GeV
- In contrast to the case for the proton and neutron, No discernible oscillations of the effective form factors G_{eff}

With the polar-angle distribution of Λ_c^+

- $|G_E|$ and $|G_M|$ are extracted
- Energy dependence of R = $|\frac{G_E}{G_M}|$: \rightarrow Damped oscillations with frequency

~3.5 times larger than for the proton

Complete decomposition of Σ^+ EMFFs

• Using a fully differential angular description of the final state particles $e^+e^- \rightarrow \Sigma^+ (\rightarrow p\pi^0)\overline{\Sigma}^- (\rightarrow \overline{p}\pi^0)$, the relative magnitude and phase of Σ^+ EMFFs can be extracted:

$\mathcal{W}(\xi) \propto \mathcal{F}_0(\xi) + \alpha \mathcal{F}_5(\xi)$ Unpolarized part

- + $\alpha_1 \alpha_2 (\mathcal{F}_1(\xi) + \sqrt{1 \alpha^2} \cos(\Delta \Phi) \mathcal{F}_2(\xi) + \alpha \mathcal{F}_6(\xi))$ Correlated part
- + $\sqrt{1 \alpha^2} \sin(\Delta \Phi)(-\alpha_1 \mathcal{F}_3(\xi) + \alpha_2 \mathcal{F}_4(\xi))$, Polarized part

$\mathcal{F}_0(\xi) = 1$

 $\mathcal{F}_1(\xi) = \sin^2 \theta \sin \theta_1 \sin \theta_2 \cos \phi_1 \cos \phi_2 - \cos^2 \theta \cos \theta_1 \cos \theta_2$

 $\mathcal{F}_2(\xi) = \sin\theta\cos\theta(\sin\theta_1\cos\theta_2\cos\phi_1 - \cos\theta_1\sin\theta_2\cos\phi_2)$

 $\mathcal{F}_3(\xi) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$

 $\mathcal{F}_4(\xi) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$

$$\mathcal{F}_5(\xi) = \cos^2 \theta$$

 $\mathcal{F}_6(\xi) = \sin^2 \theta \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2 - \cos \theta_1 \cos \theta_2.$

• A nonzero relative phase leads to polarization P_{y} of the out going baryons:

Σ-

$$P_{y} = \frac{\sqrt{1 - \alpha^{2}} \sin\theta \cos\theta}{1 + \alpha \cos^{2} \theta} \sin(\Delta \Phi)$$

 e^+

Complete decomposition of Σ^+ EMFFs

BESIII PRL 132, 081904 (2024)

- Polarization is observed at √s=2.396,
 2.644 and 2.90 GeV with a significance of
 2.2σ, 3.6σ and 4.1σ
- Relative phase is determined for the first time in a wide q² range
 - $|G_E/G_M|$ and $\Delta \Phi$ line-shape is compared with $\overline{Y}Y$ model [PRD 103, 014028 (2021)], different tendency in $\Delta \Phi$
 - ΔΦ evolution is an important input for understanding its asymptotic behavior and the dynamics of baryons

* $\Delta \Phi$ / 180° – $\Delta \Phi$ ambiguity

Precision test of CP symmetry in hyperon decays

- Polarized and entangled hyperon pairs
- Sequential hyperon decays

separation of strong and weak phases \rightarrow More sensitive CP tests

BESIII PRL 130, 251902 (2023) BESIII PRC 109, L052201 (2024) BESIII PRL 132, 231902 (2024)

Hadron (YN) interactions with BESIII

- Crucial component to predict hypernuclei properties
- Key to understand the hyperon puzzle of neutron stars

First study of antihyperon-nucleon scattering

BESIII PRL 132, 231902 (2024)

Beam: $\Lambda/\overline{\Lambda}$ from $J/\psi \rightarrow \Lambda\overline{\Lambda}$, using 10B J/ψ $p_{\Lambda} = 1.074 \pm 0.017 \text{ GeV/c}^2$, $\left|\cos\theta_{\Lambda(\overline{\Lambda})}\right| < 0.9$

Target: proton, the hydrogen nuclei in the cooling oil of the beam pipe

 $\sigma(\Lambda p \to \Lambda p) = (12.2 \pm 1.6(\text{stat.}) \pm 1.1(\text{syst.})) \text{ mb}$ $\sigma(\overline{\Lambda}p \to \overline{\Lambda}p) = (17.5 \pm 2.1(\text{stat.}) \pm 1.6(\text{syst.})) \text{ mb}$

- Slight tendency of forward scattering for $\Lambda p \to \Lambda p$
- Strong forward peak for $\overline{\Lambda}p o \overline{\Lambda}p$

Atomic Spectrum: Bohr model → QED

Hadron spectrum: Quark model → QCD

Hadron spectroscopy with BESIII

QCD exotics

Hadron spectroscopy

- How does QCD give rise to hadrons?
 - Quark model seems to work really well. Why?
- Key to access the effective degree of freedom of QCD
 - Strong evidences for multi-quark in heavy quark sector SATLAS CONTRACTOR OF A CONTRAC
 - Evidence for gluonic excitations remains sparse

Physical meson

A linear superposition of all allowed color-singlet configurations

Identification of exotics is challenging

Phys.Rept. 873 (2020) 1

Manifestly exotic: with forbidden QN Flavor exotic: $Z_c, T_{cc}, T_{\psi\psi}$ Spin exotic: $\mathbf{J}^{\mathbf{PC}} = \mathbf{0}^{--}, \mathbf{even}^{+-}, \mathbf{odd}^{-+}$ Crypto exotic: with QN as $q\bar{q}$ Supernumerary states - -> glueball Abnormal properties + Kinematic effects 15

Charmonium-like states

- Conventional cc meson fit well with potential model
- Abundance of new states with various probes
 - *b*-hadron decays
 - hadron/heavy-ion collisions
 - γγ processes
 - e^+e^- collisions
 - BESIII: dominant for vectors and states produced from vector decays

New insight on X(3872): line shape @BESIII $e^+e^- \rightarrow \gamma X(3872), X(3872) \rightarrow D^0 \overline{D}^0 \pi^0$ and $\pi^+\pi^- J/\psi$ BESIII PRL 132, 151903 (2024)

Two sheets with respect to $D^{*0}\overline{D}^{0}$ branch cut

- Sheet I: $E E_X g\sqrt{-2\mu(E E_R + i\Gamma/2)}$
- Sheet II: $E E_X + g\sqrt{-2\mu(E E_R + i\Gamma/2)}$

 $E_{\rm I} = (7.04 \pm 0.15^{+0.07}_{-0.08}) + (-0.19 \pm 0.08^{+0.14}_{-0.19})i \text{ MeV}$ $E_{\rm II} = (0.26 \pm 5.74^{+5.14}_{-38.32}) + (-1.71 \pm 0.90^{+0.60}_{-1.96})i \text{ MeV}$

		LHCb	Belle	BESIII
	g	$0.108 \pm 0.003^{+0.005}_{-0.006}$	$0.29^{+2.69}_{-0.15}$	$0.16 \pm 0.10^{+1.12}_{-0.11}$
	$Re[E_I]$ [MeV]	7.10	7.12	$7.04 \pm 0.15 \substack{+0.07 \\ -0.08}$
	$Im[E_I]$ [MeV]	-0.13	-0.12	$-0.19\pm0.08^{+0.14}_{-0.19}$
	$Re[k^+]$ [MeV]	-13.9	-15.3	$-12.6\pm5.5^{+6.6}_{-6.2}$
	$Im[k^+]$ [MeV]	8.8	7.7	$12.3 \pm 6.8^{+6.0}_{-6.4}$
r	<i>a</i> (fm)	-27.1	-31.2	$-16.5^{+7.0}_{-27.6}{}^{+5.6}_{-27.7}$
eV	r_e (fm)	-5.3	$-3.0^{+1.3}_{-1.5}$	$-4.1^{+0.9}_{-3.3}{}^{+2.8}_{-4.4}$
	\bar{Z}_A	0.15 (0.33)	$0.08^{+0.04}_{-0.03}$	$0.18^{+0.06}_{-0.17} {}^{+0.19}_{-0.16}$

Weinberg's compositeness: Z=1: pure elementary state; Z=0: pure bound (composite) state

Observations of new vectors: Y(4500), Y(4710) and Y(4790)

$[csc\bar{s}]$ states?

How many vectors in charmonium energy region?

Y(4230), Y(4320), Y(4500) Y(4660), Y(4710), Y(4360), Y(4390) Y(4790)

Besides $c\overline{c}$ states, we also expect $gc\overline{c}$ hybrids, and $c\overline{c}q\overline{q}$ tetraquark states. Have they already been observed? \rightarrow More theoretical/experimental efforts necessary

Glueball hunting for over 40 years

- Glueballs: the most direct prediction of QCD
 - Gluon self-interactions
 - Can massless gluons form massive, exotic matter?
- Theoretical predictions from LQCD and QCDinspired models mostly consistent
- Supernumerary states that do not fit into $q \overline{q}$ multiplets
- Production: Strongly produced in gluon-rich processes
- Decay: gluon is flavor-blind
 - No rigorous predictions
 - Could be analogy to OZI suppressed decays of charmonium, as they all decay via gluons [PLB 380 189(1996), Commu. Theor. Phys. 24.373(1995)]

Light Yang-Mills glueballs on lattice (quenched and unquenched results)

Where is the 0⁻⁺ glueball

- Pseudoscalar sector, a promising window
 - Only $\eta,\,\eta'$ (& radial excitations) from quark model
- Mass
 - LQCD: 0⁻⁺ glueball (2.3~2.6 GeV)
 - The first glueball candidate: $\iota(1440)$ (Split into $\eta(1405)$ and $\eta(1475))$
 - Mass incompatible with LQCD
 - Little experimental information above 2 GeV
- Production
 - LQCD: $\Gamma(J/\psi \rightarrow \gamma G_{0-})/\Gamma_{total} = 2.31(80) \times 10^{-4}$, at the same level as 0⁻⁺ mesons [PRD.100.054511(2019)]
- Decays
 - Possible guidance: OZI suppressed decays of η_c
 - 3 pseudoscalar final state is a good place to look for $(0^{-+} \rightarrow 2P \text{ is forbidden})$

- No dominant decay
- Flavor symmetric

A glueball-like state X(2370)

- Discovered by BESIII in $J/\psi \to \gamma \eta' \pi \pi$ in 2011
- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi \pi, \gamma \eta' KK$
 - Not seen in $J/\psi \rightarrow \gamma \eta' \eta \eta$ [BESIII PRD 103 012009 (2021)], $J/\psi \rightarrow \gamma \gamma \phi$ [BESIII arXiv: 2401.00918]. Upper limits of BF are well consistent with predictions of 0^{-+} glueball
- Mass consistent with LQCD prediction for 0^{-+} glueball
- Spin-parity determined to be 0⁻⁺ BESIII PRL 132, 181901(2024)

 $J/\psi\to\gamma\eta' K^0_S K^0_S$

$$\begin{split} J^{pc} &= 0^{-+} \text{ with significance } > 9.8\sigma \\ M &= 2395 \pm 11^{+26}\text{-}_{94} \text{ MeV} \\ \Gamma &= 188^{+18}\text{-}_{17}\text{+}^{124}\text{-}_{33} \text{ MeV} \\ B(J/\psi \rightarrow \gamma X(2370))B(X(2370) \rightarrow f_0(980)\eta')B(f_0(980) \rightarrow \text{K}^0\text{s}\text{K}^0\text{s}) \\ &= 1.31 \pm 0.22\text{+}^{2.85}\text{-}_{0.84} \times 10^{-5} \end{split}$$

 $J/\psi \rightarrow \gamma \eta' \pi \pi$

 $a_0^0(980)\pi^0$ observed, in analog to η_c

Consistent with 0^{-+} glueball

* $\eta(2320) \rightarrow \eta\eta\eta, \eta\pi\pi$ [PL B496 145(2000)] could be the current X(2370) at BESIII

Light hadrons with exotic quantum numbers

- Unambiguous signature: exotic quantum numbers forbidden for $q\bar{q}$: $J^{PC} = 0^{--}$, $even^{+-}$, odd^{-+}
- Only 3 candidates over 30 yrs:
- **All 1⁻⁺ isovectors** $\pi_1(1400), \pi_1(1600), \pi_1(2015)$
 - * $\pi_1(1400)$ and $\pi_1(1600)$ can be explained as one resonance with recent coupled channel analyses
- Lightest spin-exotic state in LQCD: 1⁻⁺ hybrid
- Isoscalar 1^{-+} is critical to establish the nonet
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta\eta'$ in P-wave

PRD 83,014021 (2011) PRD 83,014006 (2011) Eur.Phys.J.Plus 135, 945(2020)

Observation of An Exotic 1⁻⁺ Isoscalar State $\eta_1(1855)$

PRL 129 192002(2022), PRD 106 072012(2022)

• An isoscalar 1^{-+} , $\eta_1(1855)$, has been observed in $J/\psi \rightarrow \gamma \eta \eta'$ (>19 σ)

$$\begin{split} \mathsf{M} &= (1855 \pm 9^{+6}_{-1}) \ \mathsf{MeV/c^2}, \ \mathsf{\Gamma} &= (188 \pm 18^{+3}_{-8}) \ \mathsf{MeV/c^2} \\ \mathsf{B}(\mathsf{J/\psi} \to \gamma \eta_1(1855) \to \gamma \eta \eta') &= \left(2.70 \pm 0.41^{+0.16}_{-0.35}\right) \times 10^{-6} \end{split}$$

- Mass consistent with hybrid on LQCD
- Inspired many interpretations: Hybrid/KK₁Molecule/Tetraquark?
- Opens a new direction to completing the picture of spin-exotics

"Here, the result by the BESIII experiment of a possible observation of an $\eta_1(1855)$ *state could be a breakthrough."*

— 50 years of QCD: Exotic mesons [EPJ.C 83 (2023) 1125] 25

Observation of $\pi_1(1600)$ in $\chi_{c_1} \rightarrow \eta' \pi^+ \pi^-$

- Amplitude analysis of $\chi_{c_1} \rightarrow \eta' \pi^+ \pi^-$ is performed
- $\pi_1(1600)$ observed>10 σ
- with a significant BW phase motion
- $J^{PC} = 1^{-+}$, better than other assignments well over 10σ
 - Evidence of $\pi_1 \rightarrow \eta' \pi$ at CLEO-c is confirmed [PR D84 112009 (2011)]

Observations of π_1 and η_1 in charmonium decays provide a new path to study 1^{-+}

Summary

- BESIII has a rich and fruitful program of hadron physics
- Great potential to be fully explored
 - 50 fb⁻¹ data on disk, including 10×10^9 J/ ψ and $2.7 \times 10^9 \, \psi'$
 - Running until ~2030
 - Upgrade in this summer
 - $\mathcal{L} \times 3 @\sqrt{s} = 4.7 \text{ GeV}$
 - $\sqrt{s} \rightarrow 5.6 \ GeV$, starting from 2028
 - CGEM inner tracker

Thank you for your attention

Scalar glueball candidate

- Supernumerary scalars suggest additional degrees of freedom
 - However, mixing scenarios are controversial
- Measured $B(J/\psi \rightarrow \gamma f_0(1710))$ is **x10 larger** than $f_0(1500)$

BESIII [PRD 87 092009, PRD 92 052003, PRD 98 072003]

- LQCD: $\Gamma(J/\psi \rightarrow \gamma G_{0+})/\Gamma_{total} = 3.8(9) \times 10^{-3}$ [PRL 110, 091601(2013)] > BESIII: $f_0(1710)$ largely overlays with the scalar glueball
- Identification of scalar glueball with coupled-channel analyses based on BESIII data

[PLB 816, 136227 (2021), EPJC 82, 80 (2022), PLB 826, 136906 (2022)]

• Further more, suppression of $f_0(1710) \rightarrow \eta \eta'$ supports $f_0(1710)$ has a large overlap with glueball BESIII [PRD 106 072012(2022)]

Indications of tensor glueball

still desired to study more decay modes

- are all observed in $J/\psi \rightarrow \gamma \phi \phi$ with a strong production of $f_2(2340)$
- Consistent with double-Pomeron exchange • from WA102@CERN

More complicated due to the large number of tensor states

Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$

- η^\prime reconstructed with $\eta\pi^+\pi^-$ and $\gamma\pi^+\pi^-$
- + K^0_S reconstructed with $\pi^+\pi^-$
- Almost background free
 - Negligible mis-combination for K_S^0 (<0.1%)
 - No background from $J/\psi \to \pi^0 \eta' K^0_S K^0_S~~\text{or}~\eta' K^0_S K^0_S$
 - Forbidden by exchange symmetry and CP conservation
 - No peaking background
 - Little Non- η' backgrounds estimated from η' sidebands
 - 1.8% for $\eta^\prime \to \eta \pi^+ \pi^-,$ 6.8% for $\eta^\prime \to \gamma \pi^+ \pi^-$

Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$ BESIII PRL 132 181901(2024)

- A clear connection between the $f_0(980)$ and $X(2370)/\eta_c$
 - + $f_0(980)$ selection with $M(K^0_S K^0_S)\,<1.1 GeV/c^2$
 - Clear signals of the X(2370) and η_c
- Amplitude analysis
 - Quasi two-body decay amplitudes in the sequential decay processes $J/\psi \rightarrow \gamma X, X \rightarrow Y\eta', Y \rightarrow K_S^0 K_S^0$ and $J/\psi \rightarrow \gamma X, X \rightarrow Z K_S^0, Z \rightarrow K_S^0 \eta'$ are constructed using the covariant tensor formalism[Eur. Phys. J. A 16, 537]

Spin-parity Determination of X(2370) in $J/\psi \rightarrow \gamma \eta' K_S^0 K_S^0$

Nominal fit solution

state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0^-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0^-+	$f_0(980)\eta'$	1844	192	22.0σ
X(2800)	0^-+	$f_0(980)\eta'$	2799^{+52}_{-48}	660^{+180}_{-116}	16.4σ
η_c	0-+	$f_0(980)\eta'$	2983.9	32.0	$> 20.0\sigma$
рнер	0-+	$\eta'(K^0_S K^0_S)_{S-wave}$			9.0σ
11151		$\eta'(K_S^0K_S^0)_{D-wave}$			16.3σ

- X(2370)'s $J^{PC} = 0^{-+}$ with 9.8 σ
- Product branching fraction: $B(J/\psi \to \gamma X(2370)B(X(2370) \to \eta' K_S^0 K_S^0)B(f_0(980) \to K_S^0 K_S^0)$ $= (1.31 \pm 0.22^{+2.85}_{-0.84}) \times 10^{-5}$

X(2370) seen in J/ $\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ BESIII PRL 115 091803(2015)

Similar decay patterns of the X(2370) and η_c

clear X(2370) AND η_c signals

34

Scalar glueball candidate: decay properties

Flavor-blindness of glueball decays

$$\frac{1}{P.S.}\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$$

New inputs from $J/\psi \rightarrow \gamma \eta \eta'$ [BESIII PRL 129 192002(2022), PRD 106 072012(2022]

- Significant $f_0(1500)$ $\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$
- Absence of $f_0(1710)$ consistent with PDG $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @90\% \text{ C. L.}$
- > Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball
 - Scalar glueball expected to be suppressed $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

[PR D 92, 121902; PR D 92, 114035]

Bottom line: Predictions on mixing scheme and decay property of glueball are model-dependent

More scalars

++++₊₊₊₊+++++₊₊₊₊+++

2000

1500

1000

500

200

150

100

50 500

400

300

200

100 500

400

300

200

100

4000

 ωK^+K^-

 $\phi\pi^+\pi^-$

 ϕK^+K^-

Evts/25MeV

Evts/25MeV

Evts/30MeV

Evts/30MeV

а $\omega \pi^{\dagger} \pi^{\cdot}$

b

С

d

ωK⁺K⁻

 $\varphi \pi^{+} \pi^{-}$

øK⁺K⁻

	PRL 129, 131801(2022)	PRL 125,052004(2020)	Nature 606,64(2022)	Phys.Rev.D 108 (2023) 3, L031106
Parameters	$\Lambda\overline{\Lambda}$	$\Sigma^+\overline{\Sigma}^-$	Ξ [−] Ξ ⁺	$\Xi^0 \overline{\Xi}^0$
$\alpha_{\Xi^{-}/\Xi^{0}}$	-	-	$-0.376 \pm 0.007 \pm 0.003$	$-0.3750 \pm 0.0034 \pm 0.0016$
$\alpha_{\overline{\Xi}^+/\overline{\Xi}^0}$	-	-	$0.371 \pm 0.007 \pm 0.002$	$0.3790 \pm 0.0034 \pm 0.0021$
ϕ_{Ξ^-/Ξ^0}	-	-	$0.011 \pm 0.019 \pm 0.009$	$0.0051 \pm 0.0096 \pm 0.0018$
$\phi_{\overline{\Xi}^+/\overline{\Xi}^0}$	-	-	$-0.021 \pm 0.019 \pm 0.007$	$-0.0053 \pm 0.0097 \pm 0.0019$
$A_{CP}(\Xi^-/\Xi^0)$	-	-	$0.006 \pm 0.013 \pm 0.006$	$-0.0054 \pm 0.0065 \pm 0.0031$
$\Delta\phi_{CP}(\Xi^-/\Xi^0)$	-	-	$-0.005 \pm 0.014 \pm 0.003$	$-0.0001 \pm 0.0069 \pm 0.0009$
$\alpha_{\Lambda/\Sigma^+}$	$0.7519 \pm 0.0036 \pm 0.0024$	$-0.998 \pm 0.037 \pm 0.009$	$0.757 \pm 0.011 \pm 0.008$	$0.7551 \pm 0.0052 \pm 0.0023$
$lpha_{\overline{\Lambda}/\overline{\Sigma}}$ -	$-0.7559 \pm 0.0036 \pm 0.0030$	$0.990 \pm 0.037 \pm 0.011$	$-0.763 \pm 0.011 \pm 0.007$	$-0.7448 \pm 0.0052 \pm 0.0023$
$A_{CP}(\Lambda/\Sigma^+)$	$-0.0025 \pm 0.0046 \pm 0.0012$	$-0.004 \pm 0.037 \pm 0.010$	$-0.004 \pm 0.012 \pm 0.009$	$0.0069 \pm 0.0058 \pm 0.0018$

BESIII best measurements: $A_{CP}^{\Lambda} = -0.0025 \pm 0.0046 \pm 0.0012$ Systematic uncertainties are well controlled!

- Excellent performance of BESIII detectors.
- Data-driven method to study data-MC inconsistency.