

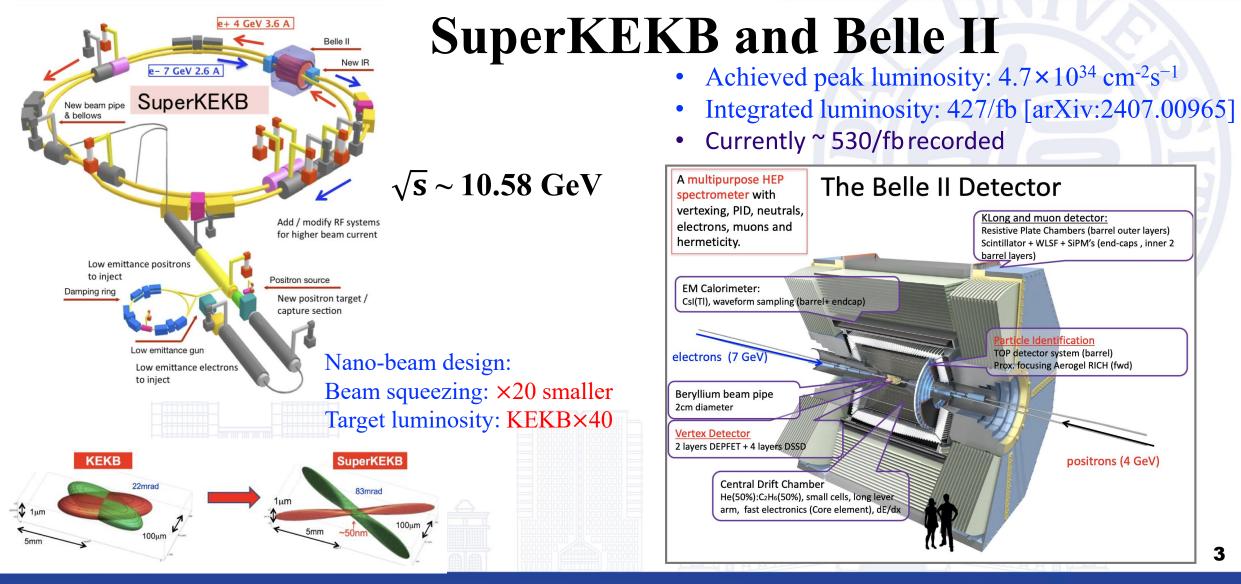
博學而篤志 切問而近思

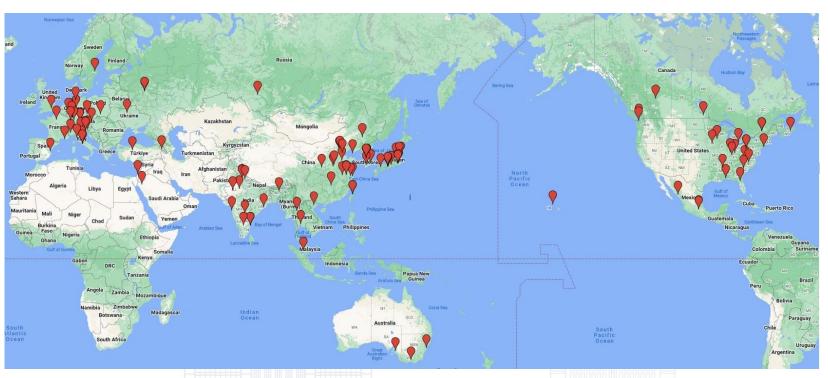
Review of recent results at Belle and Belle II

Chengping Shen Fudan University shencp@fudan.edu.cn

23rd International Conference on Few-Body Problems in Physics, Sep. 22-27, 2024, Beijing

KEKB and Belle


Peak luminosity: $2.11 \times 10^{34} \text{ cm}^{-1} \text{s}^{-1}$ Integrated luminosity (~980 fb⁻¹ in total): $\Upsilon(5S)$: 121 fb⁻¹, $\Upsilon(4S)$: 711 fb⁻¹, $\Upsilon(3S)$: 3 fb⁻¹, $\Upsilon(2S)$: 25 fb⁻¹, $\Upsilon(1S)$: 6 fb⁻¹, continuum: 90 fb⁻¹

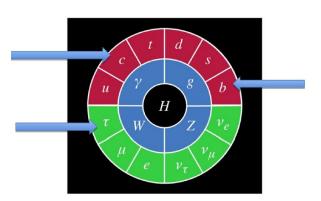


核科学与技术系

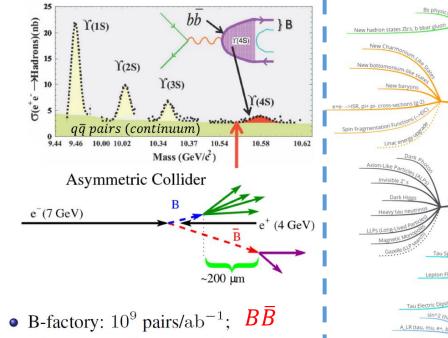
International Belle II collaboration

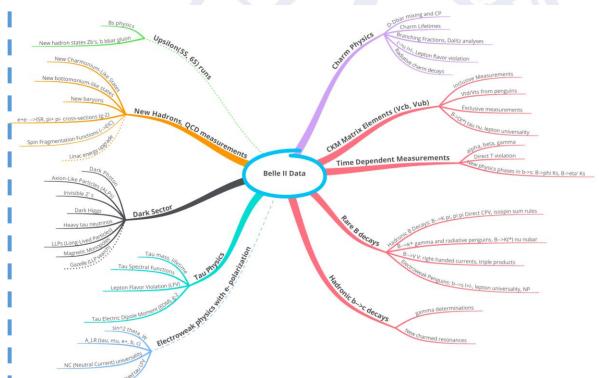
Belle II now has grown to ~1100 researchers (~600 authors) from 28 countries/regions

CHINA


- Beihang: Beihang Univ.(BUAA)
- Fudan: Fudan Univ.
- HNU: Henan Normal University
- HUNNU: Hunan Normal University
- IHEP-China: Institute of High Energy Physics(IHEP)
- JLU: Jilin University
- LNNU: LiaoNing Normal University(LNNU)
- NNU: Nanjing Normal University
- Nankai: Nankai University
- **SEU:** Southeast University
- Shandong: Shandong University
- Soochow: Soochow University
- JSTC: Univ. of Science and Technology of China(USTC)

- XJTU: Xi'an Jiaotong University
- ZZU: Zhengzhou University




Productions in Belle/Belle II

Physics process	Cross section [nb]
$\Upsilon(4S)$	1.110 ± 0.008
$uar{u}(\gamma)$	1.61
$dar{d}(\gamma)$	0.40
$sar{s}(\gamma)$	0.38
$car{c}(\gamma)$	1.30

- $\tau^+\tau^-$, $c\bar{c}$: 10⁹ pairs/ab⁻¹.
- Expected Belle II data sample: $50 70 \text{ ab}^{-1}$.
- Meanwhile, Belle II is considering the upgrade: $\mathcal{L} \times 5$

Belle/Belle II Physics

Wealth of new physics possibilities in different domains of HEP (weak, strong, electroweak interactions). Many opportunities for *initiatives* by young scientists.

Keywords:

(Partial) definition: an $e^+e^- B$ factory operates at the intensity frontier to collect samples of *B* mesons for precision measurements and searches for rare/forbidden decays, i.e., indirect searches for beyond-the-standard-model (BSM) physics with high luminosity

An important note: program is mostly complementary to that of LHCb and other hadron experiments

The $\Omega(2012)^-$ baryon

The $\Omega(2012)$ was first observed by Belle in $\Xi \overline{K}$ final states in $\Upsilon(1S, 2S, 3S)$ decays [PRL 121, 052003 (2018)].

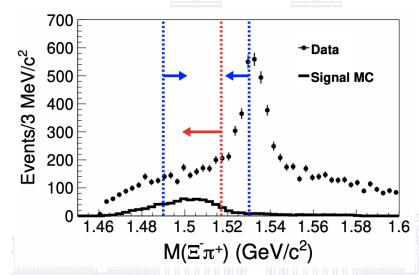
Combinations/2.5 MeV/c ²	160 140 120 100 80 60 40							
0	20							
Combinations/2.5 MeV/c ²	350 300 250 200 150	$\frac{1}{\Xi^{+}} \frac{1}{\Xi^{+}} \frac{1}$						
Combina	100 50	U				BELLE		Mea
	٩ <u>ٿ</u> .	1.95	2	2.05 M(Ξ K) GeV/c ²	2.1	2.15	2.2	$\Omega(2)$

The $\Omega(2012)^-$ was interpreted as a standard baryon or a $\Xi(1530)\overline{K}$ molecule.

Model	Comments	References		
Standard baryon	The $\Omega(2012)^-$ decays dominantly to $\Xi \overline{K}$.	PRD 98, 034004 (2018), EPJC 78, 894 (2018), PRD 98, 114023 (2018), PRD 101, 016002 (2020), PRD 105, 094006 (2022), PRC 103, 025202 (2021), PRD 98, 014031 (2018), PRD 107, 034015 (2023), PRD 98, 014031 (2018), CPC 47, 063104 (2023), PRD 107, 014025 (2023)		
Ξ(1530) K molecule	The $\Omega(2012)^-$ decays equally to $\Xi\overline{K}$ and $\Xi(1530)\overline{K}$. Or the $\Xi(1530)\overline{K}$ decay mode is dominant.	PRD 98, 054009 (2018), EPJC 78, 857 (2018), PRD 98, 076012 (2018), JPG 48, 025001 (2021), PRD 98, 056013 (2018), PRD 101, 094016 (2020), EPJC 80, 361 (2020), PRD 102, 074025 (2020), PRD 106, 034022 (2022), Few Body Syst. 64, 55 (2023).		
Aleasurement of the branching fraction for $L(2012)^- \rightarrow \Xi(1530)\overline{K}$ is crucial to istinguish the nature of the $\Omega(2012)$!				

Preliminary results

博學而篤志 切問而近思



8

Revisit $\Omega(2012)^- \rightarrow \Xi(1530)\overline{K} \rightarrow \Xi\pi\overline{K}$

The comparisons between the previous analysis [PRD 100, 032006 (2019)] and this work.

Analysis strategy	The previous analysis [40]	This work
The requirement of $M(\Xi \pi)$	$1.49 < M(\Xi \pi) < 1.53 \text{ GeV}/c^2$	$M(\Xi \pi) < 1.517 { m GeV}/c^2$
The signal shape of $\Omega(2012)^{-}$	A Breit-Wigner function	A Flatté-like function [41]
ϕ -induced backgrounds	No requirement	$ M(K^-K^+) - m_{\phi} > 10 \text{ MeV}/c^2$

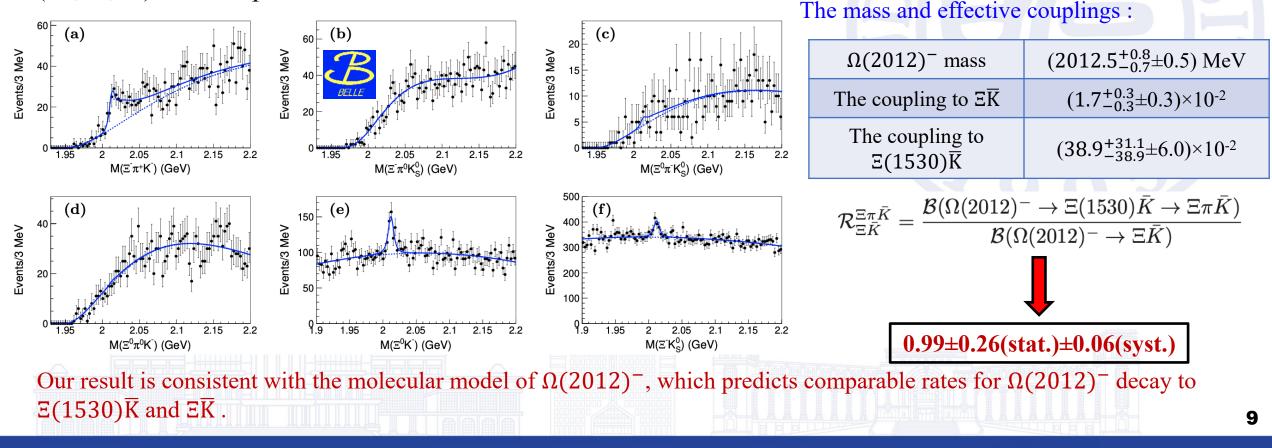
The Flatté-like function [PRD 81, 094028 (2010)]

$$T_n(M) = \frac{g_n k_n(M_n)}{|M_n - m_{\Omega(2012)} + \frac{1}{2} \sum_{j=2,3} g_j [\kappa_j(M_j) + ik_j(M_j)]|^2}$$

• g_n is the effective coupling of to the *n*-body final state.

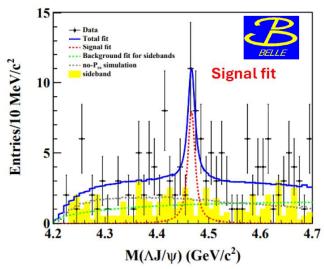
 k_n and κ_n parameterize the real and imaginary parts of the $\Omega(2012)^-$ self-energy.

Above 2.02 GeV, the phase space k_3 increases sharply to cover more signal candidates.


The red arrow for this updated work; The blue arrow for the previous analysis.

Revisit $\Omega(2012)^- \rightarrow \Xi(1530)\overline{K} \rightarrow \Xi\pi\overline{K}$ Preliminary results

We fit simultaneously to the binned $\Xi^-\pi^+K^-$, $\Xi^-\pi^0K^0_S$, $\Xi^0\pi^-K^0_S$, $\Xi^0\pi^0K^-$, Ξ^0K^- and $\Xi^-K^0_S$ mass distributions from $\Upsilon(1S, 2S, 3S)$ data samples.



Evidence of Pcs(4459) at Belle

preliminary

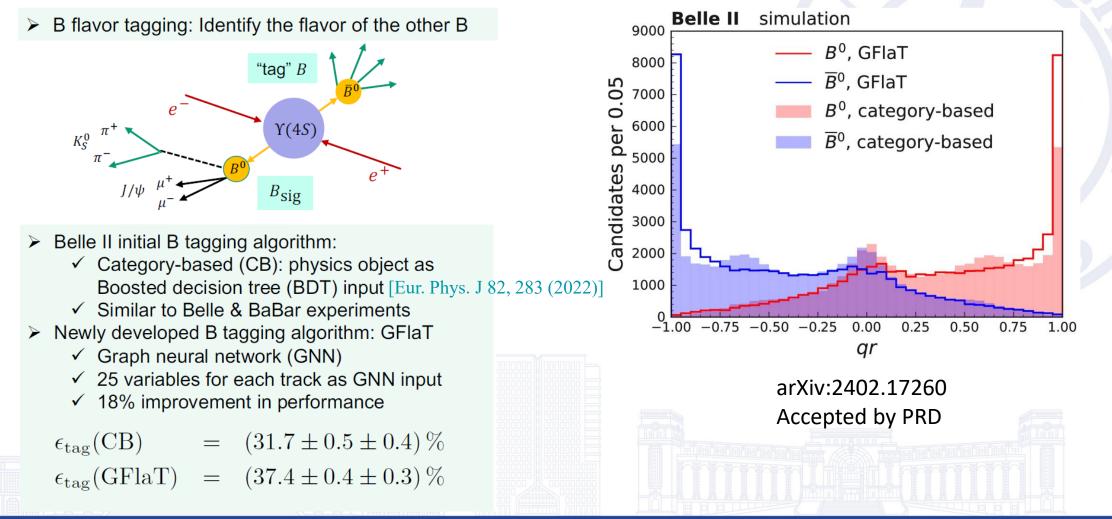
博學而篤志 切問而近思

- OZI suppressed decays of Y(1S) and Y(2S) rich in gluons
 - enhanced baryon production
 - pentaquarks?
- Select inclusive $Y(1S,2S) \rightarrow J/\psi \Lambda + X$ decays, then search $m(J/\psi \Lambda)$ for pentaquark signal
 - Background from sideband and off resonance
- Use LHCb mass and width for their observation in $\Xi_{\rm b}$ decay (Sci. Bulletin 66, 1278 (2021)
 - 3.3 standard deviation significance observation
 - free mass and width 4 standard deviation local significance

Local significance is 4.0σ .

 $M = 4469.5 \pm 4.1 \pm 4.1 \, MeV$ $\Gamma = 14.3 \pm 9.2 \pm 6.3 \, MeV$

c.f. $P_{cs}(4459)$ LHCb, SB 66, 1278 (2021) 4458.8 $\pm 2.9 \stackrel{+4.7}{_{-1.1}} MeV$ 17.3 $\pm 6.5 \stackrel{+8.0}{_{-5.7}} MeV$


Add Gaussian constraint on M and Γ \Rightarrow significance is 3.3 σ including systematics.

1958

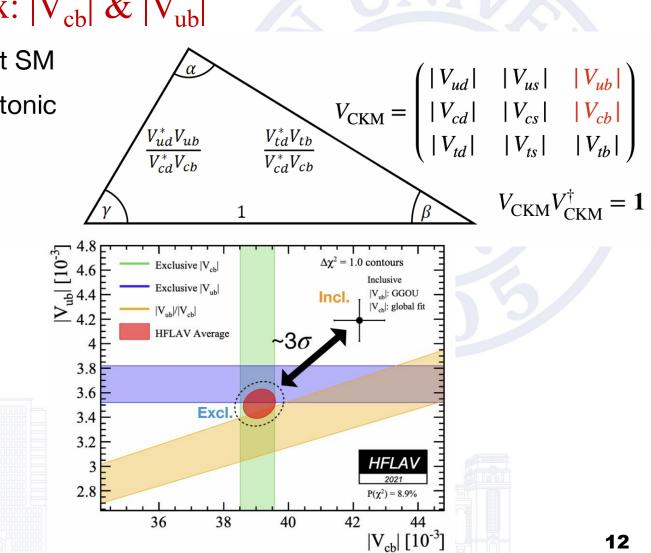
B Flavor tagging at Belle II

11

CKM matrix: $|V_{cb}| \& |V_{ub}|$

- Important to constrain CKM unitarity triangle & test SM
- Determinations via inclusive or exclusive semileptonic B decays
- Long-standing "Vxb-puzzle": discrepancy btw. inclusive and exclusive determinations

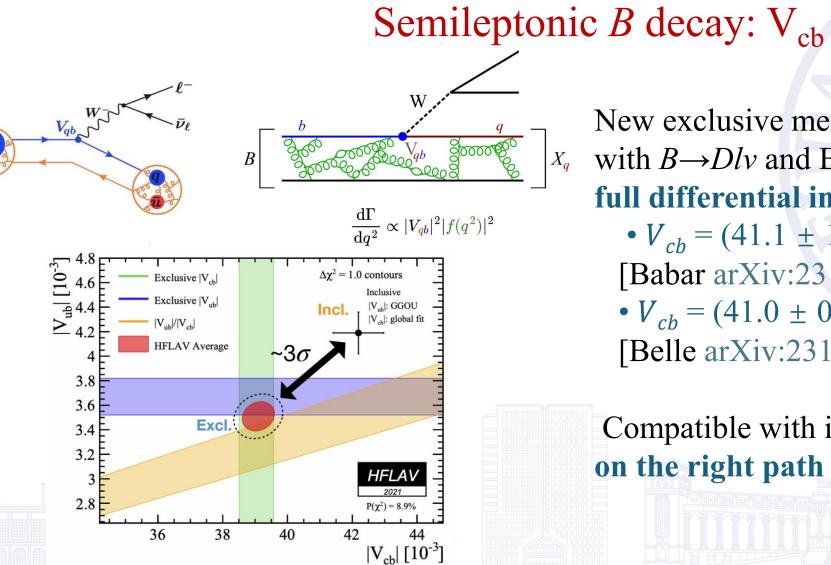
Exclusive


$$B \to \pi \ell \nu, B \to \rho \ell \nu, B \to D^{(*)} \ell \nu, \Lambda_b \to p \ell \nu, \text{ etc.}$$

 $\mathscr{B} \propto \left| V_{xb} \right|^2 f^2$ Form factor f (LCSR, LQCE

Form factor f (LCSR, LQCD)

Inclusive

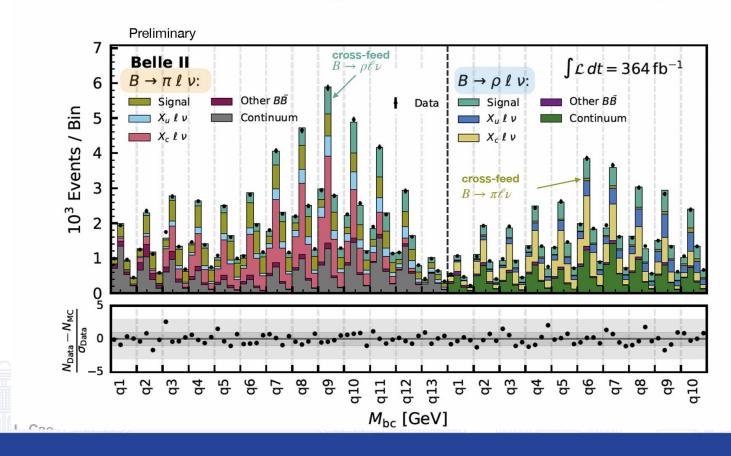

$$B \to X_u \ell \nu, \ B \to X_c \ell \nu$$

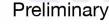
$$\mathscr{B} \propto \left| V_{xb} \right|^2 \left[1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_h^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_h^3} + O\left(m_b^4\right) \right] \qquad \left| V_{xb} \right|^2$$

New exclusive measurements from BaBar with $B \rightarrow Dlv$ and Belle with $B \rightarrow D^*lv$ using **full differential information** for the first time • $V_{cb} = (41.1 \pm 1.2) \times 10^{-3}$ [Babar arXiv:2311.15071] • $V_{cb} = (41.0 \pm 0.7) \times 10^{-3}$ [Belle arXiv:2310.20286, to appear in PRL]

Compatible with inclusive – perhaps we are on the right path to resolve these tensions?

13





Simultaneous measurements of $B^0 \rightarrow \pi^- \ell^+ \nu$ and $B^+ \rightarrow \rho^0 \ell^+ \nu$

- Full Run1 data of 364 fb⁻¹ with untagged analysis strategy
- Novel method to simultaneously extract signals in 2D grid of beam-constrained mass M_{bc} and energy difference ΔE for each bin of q^2 : 13 bins for π mode, 10 bins for ρ mode

而篤志 切問而近思

arXiv:2407.17403

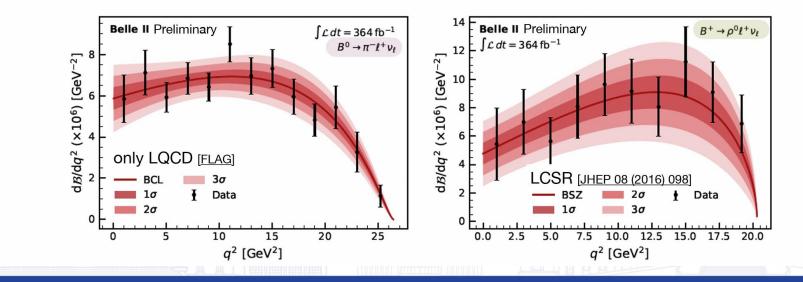
- Cross-feed signals are linked in two modes
- Dominant backgrounds are from $B \rightarrow X_c \ell' \nu$ decays and continuum ($e^+e^- \rightarrow q\bar{q}$)

核科学与技术系

Preliminary

NEW!!

博學而篤志 切問而近思

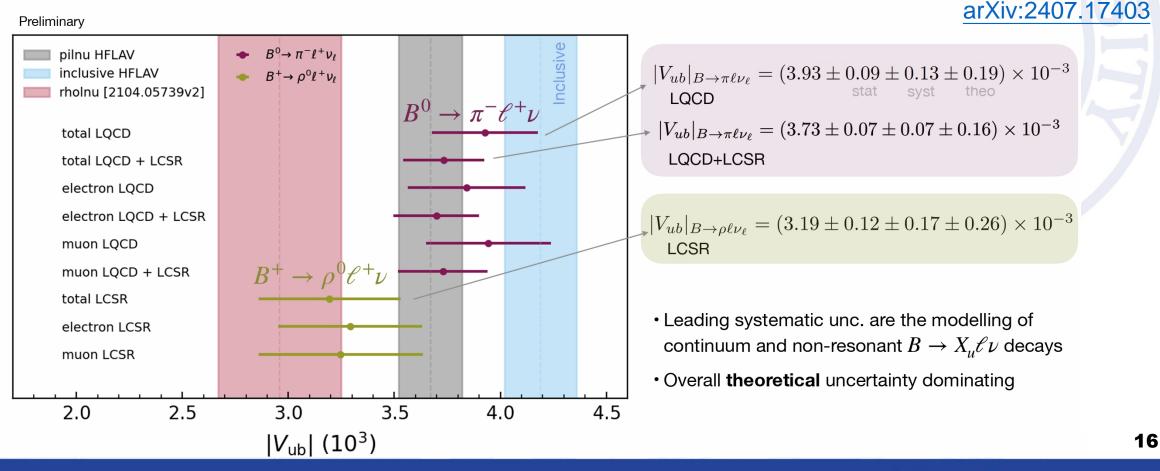


Simultaneous measurements of $B^0 \rightarrow \pi^- \ell^+ \nu$ and $B^+ \rightarrow \rho^0 \ell^+ \nu$

- Partial branching factions in each q² bin obtained with fitted yields and efficiency corrections
- Total BR is a sum of partial bins

$$\begin{split} \mathcal{B}(B^{0} \rightarrow \pi^{-}\ell^{+}\nu_{\ell}) &= (1.516 \pm 0.042 \pm 0.059) \times 10^{-4} \\ \mathcal{B}(B^{+} \rightarrow \rho^{0}\ell^{+}\nu_{\ell}) &= (1.625 \pm 0.079 \pm 0.180) \times 10^{-4} \\ \text{stat} \qquad \text{syst} \end{split} \ \begin{array}{l} \text{Consistent with world averages} \\ \text{Compatible precision as Belle/BaBar} \\ \text{Compatible precision as Belle/BaBar} \\ \text{arXiv:2407.17403} \\ \end{array} \end{split}$$

- Extracted $|V_{ub}|$ with lattice QCD and/or light-cone sum rules (LCSR) constraints of form factors

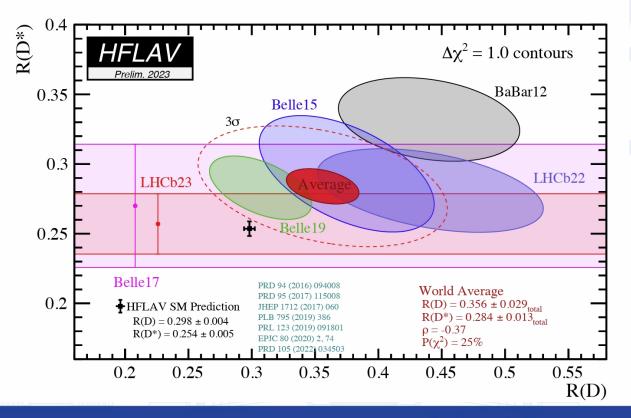


NEW!!

Simultaneous measurements of $B^0 \rightarrow \pi^- \ell^+ \nu$ and $B^+ \rightarrow \rho^0 \ell^+ \nu$

- Further split into e and μ modes to provide cross check
- Additional stability tests done by removing higher/lower q² bins

Lepton-Flavor Universality


- In SM, the W boson couples equally to $\tau, \mu, e \Rightarrow$ Lepton-Flavor Universality (LFU)
- Semileptonic B decays are sensitive to new physics beyond SM
- Ratio measurements provide stringent LFU tests: branching fractions, angular asymmetry, etc.
 - Normalization (|V_{xb}|) cancels
 - Part of theoretical, experimental uncertainties cancels

$$R(H_{\tau/\ell}) = \frac{\mathscr{B}(B \to H\tau\nu)}{\mathscr{B}(B \to H\ell\nu)}$$

$$H = D, D^*, X, \pi, \text{etc}$$
. $\ell = e, \mu$

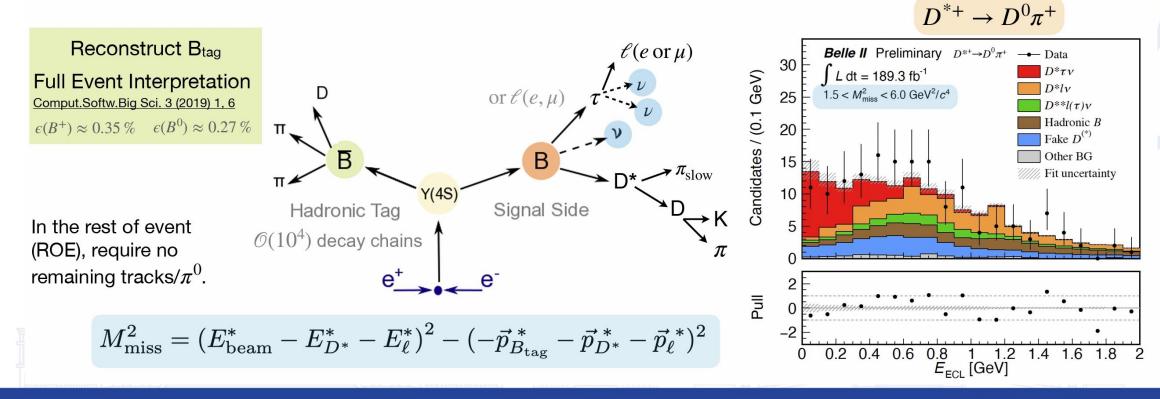
final state can involve different hadrons

Tension of R(D(*)) with SM ~3 σ

博學而篤志 切問而近思

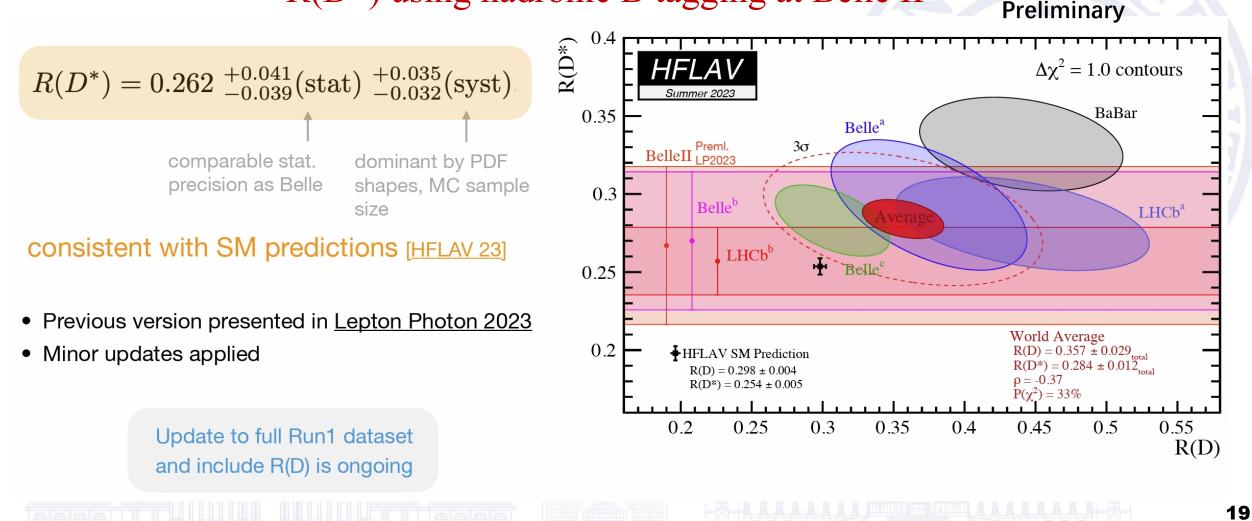
17

arXiv:2401.02840


Preliminary

18

- Use 189 fb⁻¹ dataset with hadronic tagging strategy
- Signal decays: $B \to D^*(\tau, \ell)\nu, D^{*+} \to D^0\pi^+, D^+\pi^-$ and $D^{*0} \to D^0\pi^0$, and leptonic τ decays
- Data-driven validation of modelling in sideband regions
- Extract R(D*) using 2D fit on $M^2_{
 m miss}$ and residual energy in the calorimeter $E_{
 m ECL}$

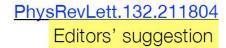


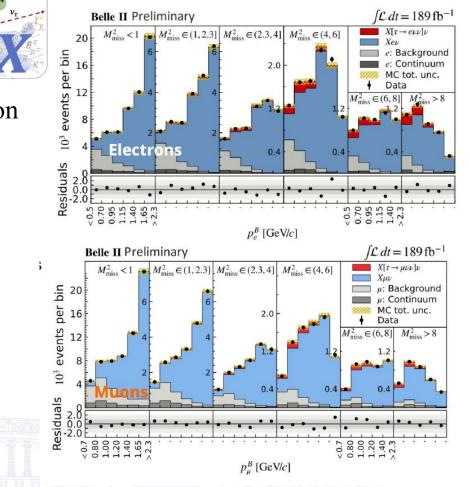
arXiv:2401.02840

博學而篤志 切問而近思

R(D*) using hadronic B tagging at Belle II

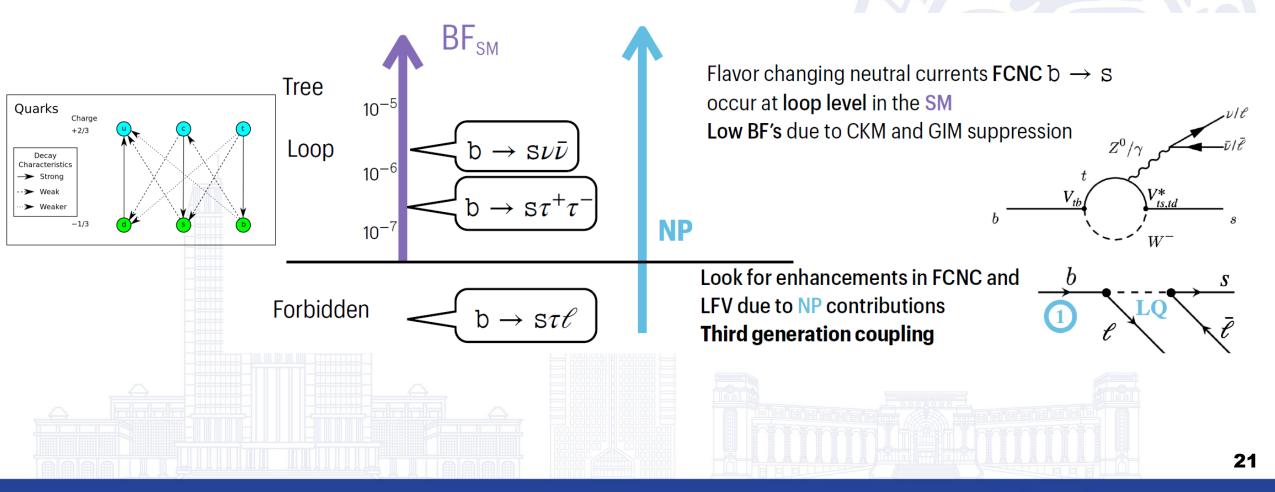
20



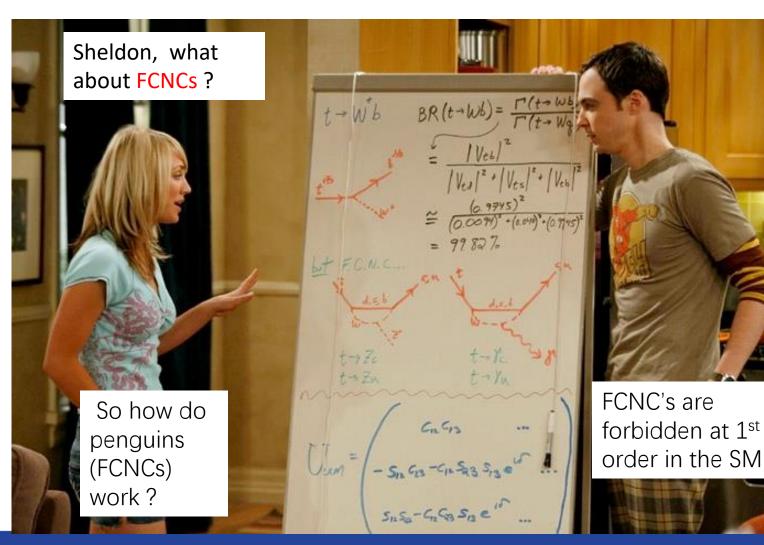


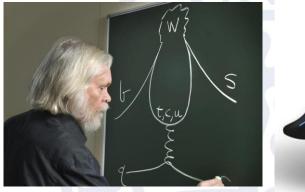
- ► Inclusive ratio $R(X) = B(B \rightarrow X\tau v)/B(B \rightarrow X\ell v)$ with τ leptonic decays
- \blacktriangleright Hadronic-tagging method with 189 fb⁻¹ Hadronic tag pioneered by BaBar [PRL 92, 071802]; MVA version at Belle II [Comput. Softw. Big Sci. 3 (2019) 1, 6]
- Use missing-mass squared and B candidate momentum to extract signal
- Result agrees with SM prediction: $R(X)_{SM} = 0.223 \pm 0.005$
 - 2D binned maximum likelihood fit to extract the signal and normalisation yields for the electron and muon modes simultaneously
 - In bins of p_l^B and $M_{missing}^2$

-e channel: $R(X_{\tau/e}) = 0.232 \pm 0.020(\text{stat}) \pm 0.037(\text{syst})$ - μ channel: $R(X_{\tau/\mu}) = 0.222 \pm 0.027(\text{stat}) \pm 0.050(\text{syst})$ $R(X_{\tau/l}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$



Electroweak Penguin and LFV @ Belle (II) experiment





Big Bang Theory Episode (FCNCs)

John Ellis, the CERN theorist who coined the name "Penguin" (a type of FCNC).

Examine the following $b \rightarrow s \gamma$ decay modes in the Belle II Phase 3 dataset.

 $B^0 \to K^{*0} \mathcal{G} \to K^+ \mathcal{P}^- \mathcal{G}$

 $B^{+} \to K^{*+}g \to K^{+}\rho^{0}g$ $B^{+} \to K^{*+}g \to K^{0}_{S}\rho^{+}g$

22

博學而篤志 切問而近思

Radiative penguin: $B \rightarrow \gamma K^*$

- Flavour changing neutral current decays sensitive to new physics
- CP (A_{CP}) and isospin (Δ₊₀) asymmetries are theoretically clean thanks to form factor cancellations
- Latest Belle measurement found evidence of isospin asymmetry at 3.1σ [Phys. Rev. Lett. 119, 191802 (2017)]

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{K^*}\gamma) - \Gamma(B \to K^*\gamma)}{\Gamma(\overline{B} \to \overline{K^*}\gamma) + \Gamma(B \to K^*\gamma)}$$
$$A_{+0} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

Goal

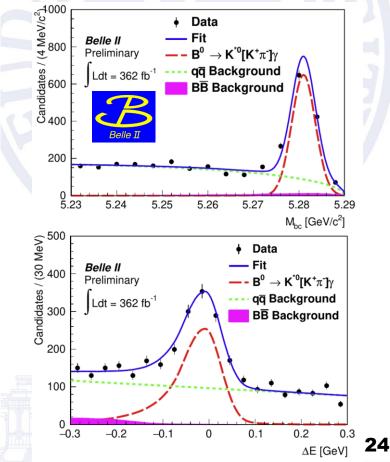
Using the 362 fb⁻¹ Belle II run 1 dataset

- Measure $\mathcal{B}(B^{\pm,0} \to K^{*\pm,0}\gamma)$ with $K^* \to K^+\pi^-$, $K_s^0\pi^0$, $K^+\pi^0$ and $K_s^0\pi^+$
- Measure Δ_{+0} and A_{CP} for all modes except $B^0 \to K^{*0} (\to K_s^0 \pi^0) \gamma$

Radiative penguin: $B \rightarrow \gamma K^*$

preliminary

- Consistent with World average and SM
- Similar sensitivity as Belle despite smaller sample (thanks mainly to improved ΔE resolution, K_s^0 efficiency and continuum suppression)
- Asymmetries statistically limited

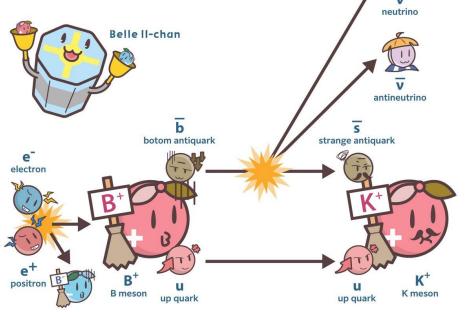

$$\mathcal{B}[B^0 \to K^{*0}\gamma] = (4.16 \pm 0.10 \pm 0.11) \times 10^{-5}$$

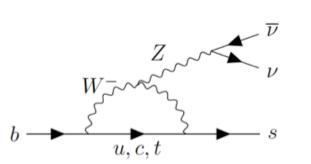
$$\mathcal{B}[B^+ \to K^{*+}\gamma] = (4.04 \pm 0.13 \pm 0.13) \times 10^{-5},$$
$$\mathcal{A}_{CP}[B^0 \to K^{*0}\gamma] = (-3.2 \pm 2.4 \pm 0.4)\%,$$
$$\mathcal{A}_{CP}[B^+ \to K^{*+}\gamma] = (-1.0 \pm 3.0 \pm 0.6)\%,$$

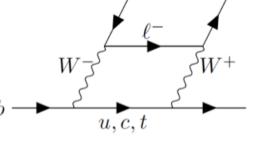
$$\Delta \mathcal{A}_{CP} = (2.2 \pm 3.8 \pm 0.7)\%$$
, and

$$\Delta_{0+} = (5.1 \pm 2.0 \pm 1.5)\%,$$

2D M_{bc} - ΔE fit to extract Simultaneously yields of B and anti-B for self-tagged modes for A_{CP} and B




$B \rightarrow K \nu \bar{\nu}$: BSM without hadronic uncertainties

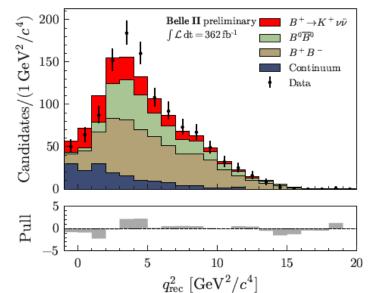

Belle II is measuring the rare decay of a B meson, created by SuperKEKB, into a K meson and two neutrinos.

The high-precision calculability of the probability of this decay makes it easy to validate the Standard Model.

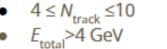
A b quark has charge -1/3, an s quark has charge -1/3 so this decay is a flavor changing neutral current (FCNC).

(a) Penguin diagram (b) Box diagram The $B \rightarrow K^{(*)} \nu \overline{\nu}$ missing energy modes are accessible to Belle II (and Belle), but might be difficult at a hadron experiment.

G. Carie


25

核科学与技术系



• Signal candidate:

• an identified charged kaon that gives the minimal mass of the neutrino pair q_{rec}^2 (computed as K^{\dagger} recoil)

Event (pre-selection):

 $17^{\circ} < \vartheta_{\rm miss} < 160^{\circ}$

BDT₁ (first filter):
 12 event-shape based

kinematic variables

BDT₂ (final selection):

PRD 109, 112006 (2024)

 35 input variables: using signal, event, and their correlations

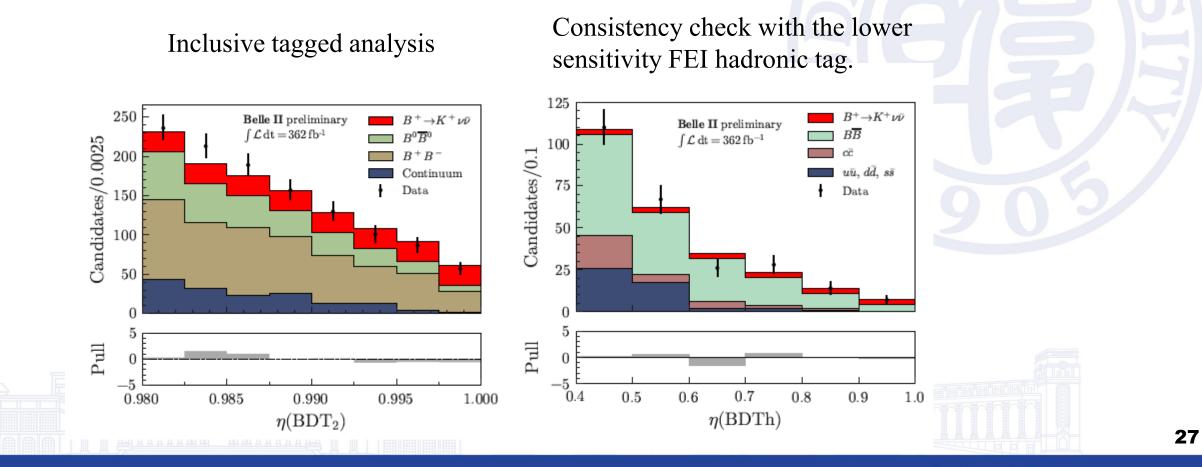
Distributions for the signalenhanced region in the ITA (Inclusive tagged analysis)

Fits in bins of BDT2 and q^2

New Techniquefrom Belle IIwith inclusive ROE(Rest of the Event) tagging.(X 10-20 ε compared to FEI,but large bkgs).

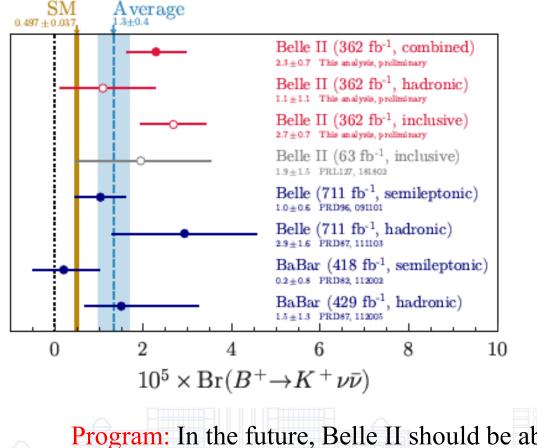
a 3.5 σ excess or "evidence" signal: B \rightarrow K v $\bar{\nu}$

Now add on some ML/AI (boosted decision trees or BDTs) to help us tame the large backgrounds.



1958

a 3.5 σ excess or "evidence" signal: B \rightarrow K v $\bar{\nu}$


PRD 109, 112006 (2024)

Combination and comparison with other measurements

B(B⁺ → K⁺ $\nu\bar{\nu}$) = (2.3 ± 0.5(stat)^{+0.5}_{-0.4} (syst)) × 10⁻⁵

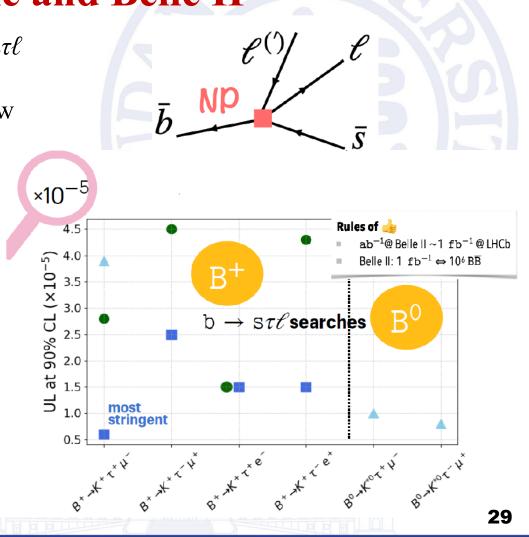
Significance of signal excess is 3.5 standard deviations. The signal is 2.7σ above the SM expectation.

Maybe third generation couplings $b \rightarrow s \tau^+ \tau^-$ *are enhanced*

Program: In the future, Belle II should be able to measure $B \rightarrow K$ nu nubar, K* nu nubar, q² spectra and K* polarization.

Search for $\mathbb{B}^0 \to K_s^0 \tau^{\pm} \ell^{\mp}$ at Belle and Belle II

- ➤ The BSM extensions predict that the decay rates for LFV $b \rightarrow s\tau \ell$ decays are close to current experimental sensitivity
- > Third-generation couplings + τ lepton mass \rightarrow sensitivity to new
 - **BaBar** (428 fb⁻¹) $B^+ \to K^+ \tau^{\pm} \ell^{\mp}$ [PRD86, 012004, 2012]
 - Belle (711 fb⁻¹) $B^+ \to K^+ \tau^\pm \ell^\mp$ [PRL130, 261802, 2023]
 - LHCb (9 fb⁻¹) B⁺ \rightarrow K⁺ $\tau^+\mu^-$, B⁰ \rightarrow K^{*0} $\tau^\pm\mu^\mp$ [JHEP06,129,2020] [JHEP06,143,2023]

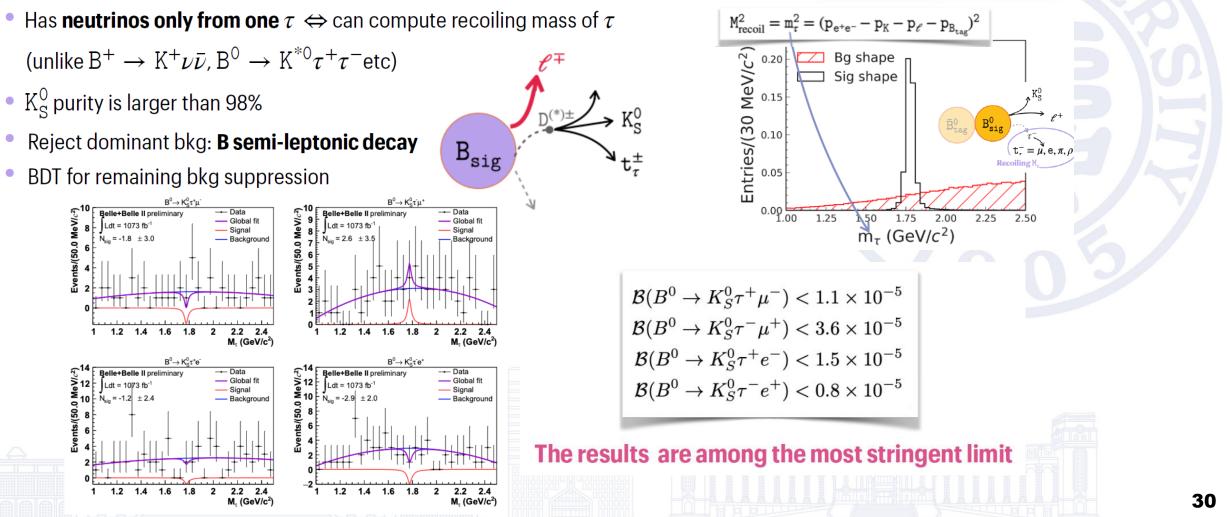

Today: first search in ${\rm B^{0}} \rightarrow {\rm K_{s}^{0}} \tau^{\pm} {\mathscr C}^{\mp}$

```
BELLE+Belle II (711+362 fb<sup>-1</sup>) + hadronic B-tagging

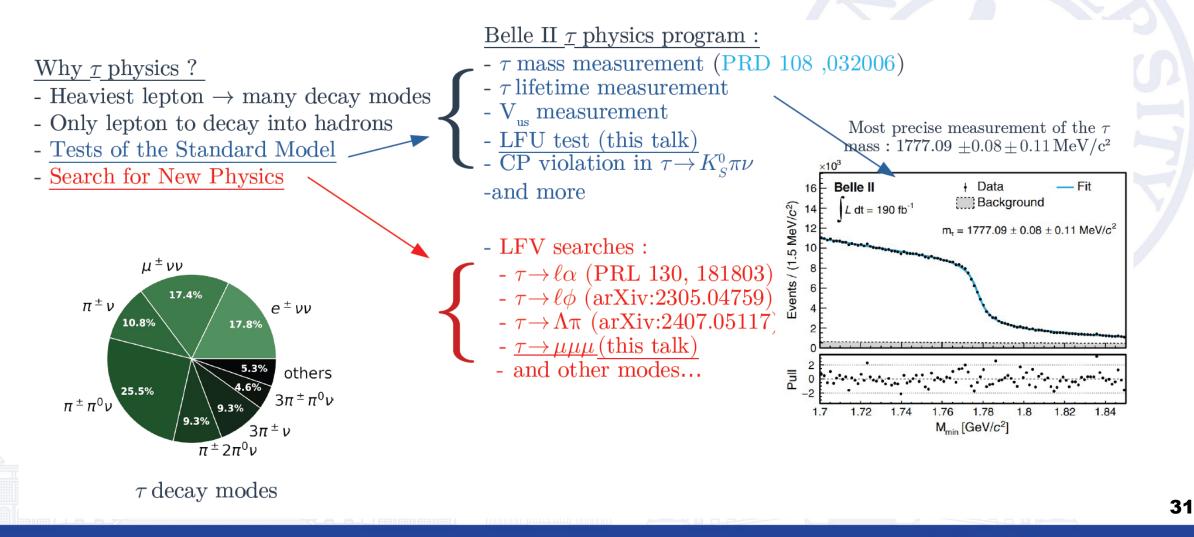
\overline{B_{tag}^{0}} \overline{B_{sig}^{0}} \ell^{+}

\overline{t_{\tau}^{-}} = \mu, e, \pi, \rho

Recoiling M<sub>t</sub>
```

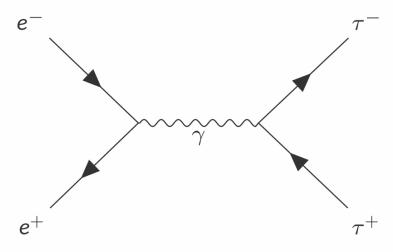


Search for $\mathbb{B}^0 \to K_s^0 \tau^{\pm} \ell^{\mp}$ at Belle and Belle II



博學而篤志 切問而近思

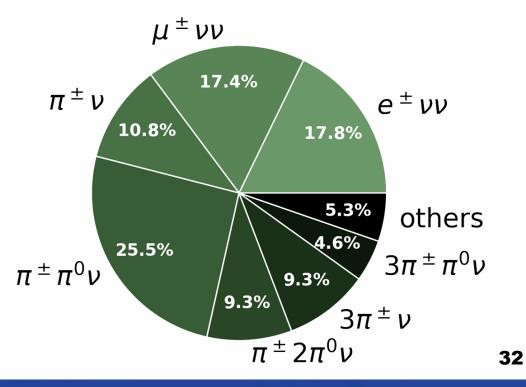
Belle II τ physics program



Lepton Flavour Universality measurement in τ decays

SuperKEKB as a au factory:

• e^+e^- collider produce au leptons pairs at high rate


$$\sigma(e^+e^-
ightarrow au^+ au^-) = 0.92 \, nb$$

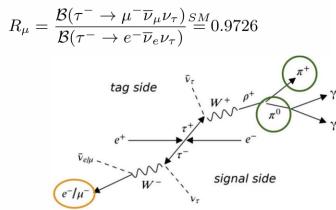
 $\sigma(e^+e^-
ightarrow Bar{B}) = 1.05 \, nb$

• cross section equivalent to $B\overline{B}$ process

au decays:

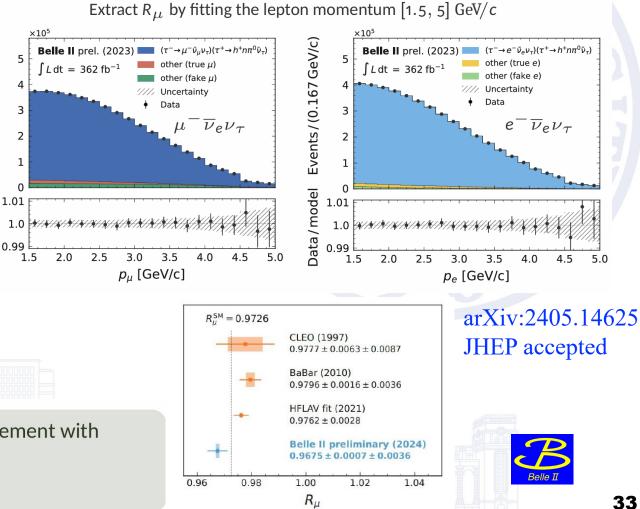
arXiv:2405.14625

- Massive enough to decay into lighter lepton & hadrons
- Mostly one or three charged particles in final states
- Challenging reconstruction with neutrinos in the final state


Lepton Flavour Universality measurement in τ decays

Events / (0.167 GeV/c)

Data/model


Measurement of coupling of light leptons to EW gauge bosons:

$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau} = \sqrt{\frac{\mathcal{B}(\tau^{-} \to \mu^{-} \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \overline{\nu}_{e} \nu_{\tau})}} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \stackrel{SM}{=} 1$$

- Event selection is performed with rectangular cuts and neural network
- 94% purity with 9.6% signal efficiency for the combined sample
- Mains systematics coming from PID (0.32%) and trigger (0.1%)
- Most precise e/μ universality from τ^- decays in a single measurement with 362 fb⁻¹

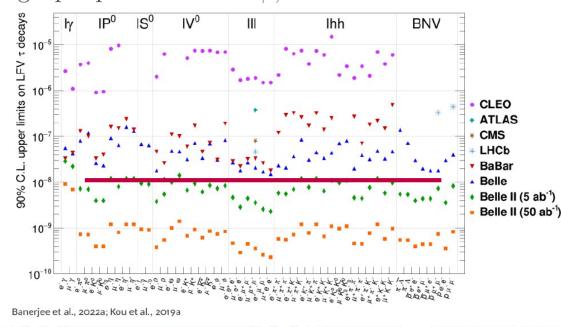
 $R_{\mu} = 0.9675 \pm 0.0007(stat) \pm 0.0036(sys)$

博學而篤志 切問而近思

 Z^0

 $\tilde{\nu}_{\mu}$

Ýτ


Lepton Flavour Violation (LFV) searches in τ decays

- Charged Lepton Flavour Violation (cLFV) in the Standard Model through weak charged current and neutrino oscillations @ rates $\sim 10^{-55}$

 \rightarrow Clear prediction : <u>no LFV in current experiments</u> !

- Various BSM models predict LFV at observable rates $\sim 10^{-8}-10^{-10}$

(e.g leptoquarks for $\tau \rightarrow \ell \phi$, related to anomalies in $b \rightarrow c \tau \nu$)

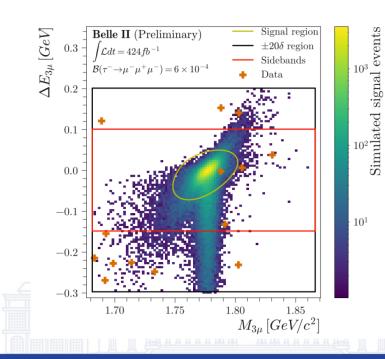
SM contribution

Physics Models	$\mathcal{B}(\tau \to \mu \mu \mu)$
SM	$10^{-53} \sim 10^{-55}$
SM + seesaw	10 ⁻¹⁰
SUSY + Higgs	10 ⁻⁸
SUSY + SO(10)	10 ⁻¹⁰
Non-universal Z'	10 ⁻⁸

A lot of interest in LFV decays at $e^+e^$ colliders, with ~ 50 modes : $\tau \rightarrow \ell \gamma, \tau \rightarrow \ell \phi, \tau \rightarrow \ell \ell \ell$, etc.

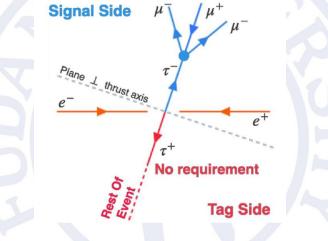
These are rare decays : it's all about **maximizing** the number of events !

34



LFV : search for $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$

 $au^{\pm}
ightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$:


- Almost free from SM background
- Very good resolution on the energy and momentum
- Can also be probed by LHC experiments

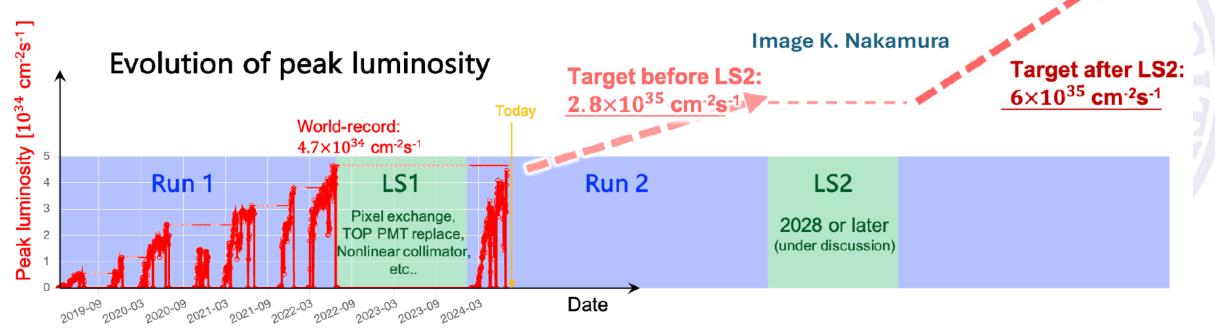
Existing measurements : 2.1×10^{-8} by Belle (Phys.Lett.B687) 2.9×10^{-8} by CMS (Phys.Lett.B853)

- Signal yield is extract with a poisson counting experiment - Signal region defined as an ellipse in the 2D plane $(M_{3\mu}, \Delta E_{3\mu})$ $(\Delta E_{3\mu} = E_{beam}/2 - E_{3\mu})$ $\mathcal{B}(\tau \rightarrow \mu\mu\mu) = \frac{N_{obs} - N_{exp}}{2\sigma_{\tau\bar{\tau}} \cdot \mathcal{L} \cdot \epsilon_{3\mu}}$ Number of expected background $N_{exp} = 0.7^{+0.6}_{-0.5} \pm 0.01$ obtained by rescaling the yields from the sidebands data in the signal region

Observed 1 event in the signal region

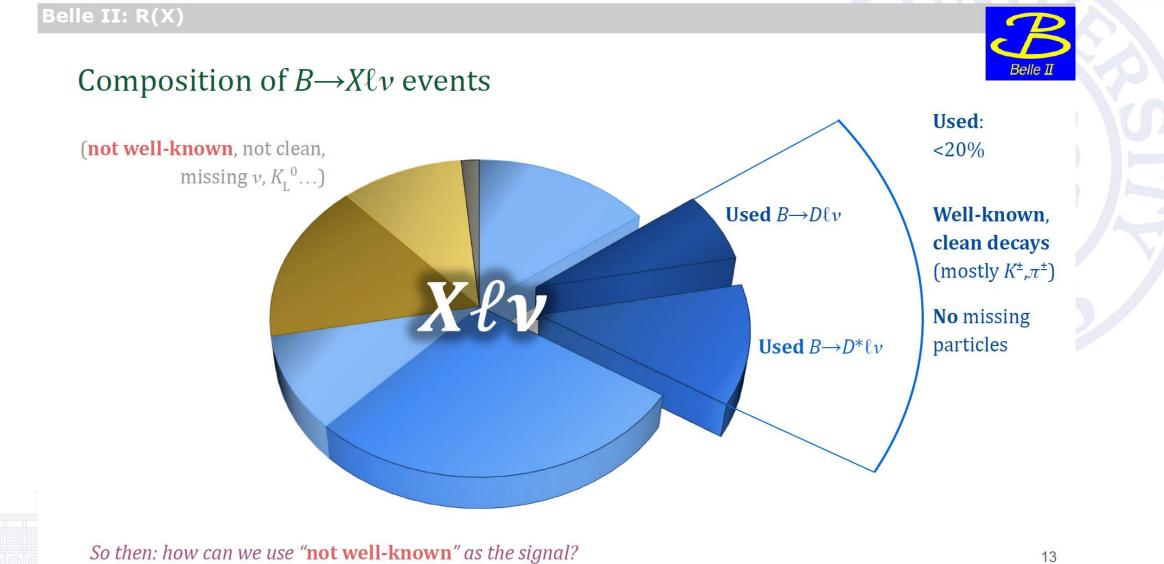
 ${\cal B}$ ($au
ightarrow \mu \mu \mu$) $< \! 1.9 \! imes 10^{-8}$

World's best limit!


Accepted by JHEP (arXiv:2405.07386)

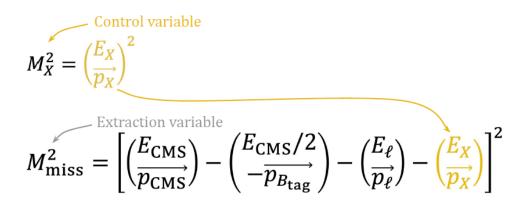
SuperKEKB/Belle II status and plans

- Run 2 is long end 2028 or later
 - Steady accumulation at $\sim 2 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ for several ab $^{-1}$ 2^{nd} generation
 - After Run 2 upgrade proposal for reach design luminosity and tens of ab $^{-1}$



Summary

- Belle II started operation in 2019, and the luminosity has achieved $\sim 0.5 \times 10^{35} cm^{-2} s^{-1}$.
- After 18 months of LS1, SuperKEKB is resuming for the second data taking in Jan. 2024, with a goal of $(1 2) \times 10^{35} cm^{-2} s^{-1}$.
- Belle II is getting more and more productive in publications, based on the excellent performance of the Belle II detector.
- R&D works for Belle II upgrade are on the way, and the CDR is under review by BPAC, going to be released soon.

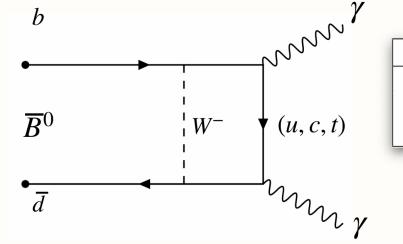


Data-driven corrections

The *invariant mass of the X system* controls the **physics** we know the least about

 $q^{2} = \left[\begin{pmatrix} E_{\text{CMS}}/2 \\ -\overrightarrow{p_{B_{\text{tag}}}} \end{pmatrix} - \begin{pmatrix} E_{X} \\ \overrightarrow{p_{X}} \end{pmatrix} \right]^{2}$

Using M_x to reweight the signal **fixes**^{*} the observed mismodeling



博學而篤志 切問而近思

Study of the rare decay $B^0 \rightarrow \gamma \gamma$ decay at Belle and Belle II

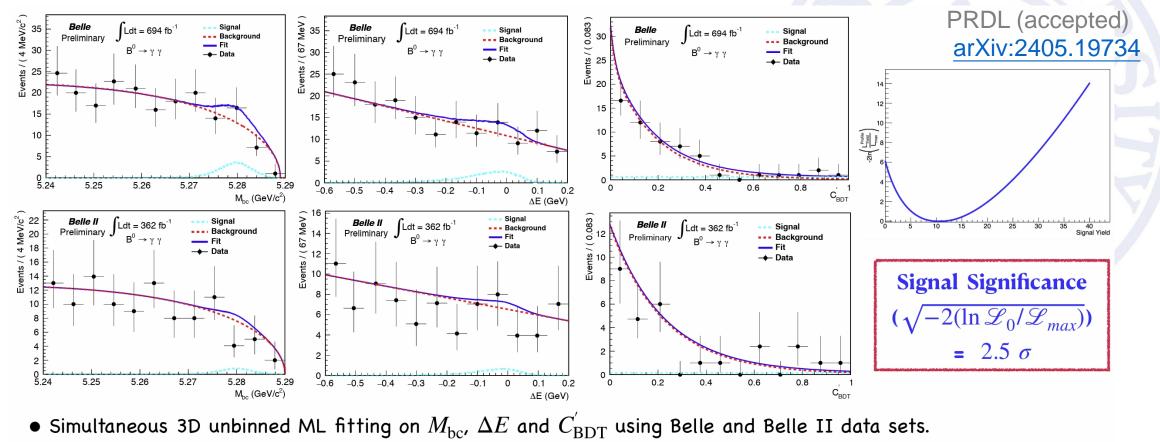
• This mode is sensitive to new physics that could enhance branching fraction due to the possible contribution of non-SM heavy particles.

Previous searches	Measurement at 90 % CL	1
L3 collaboration ($\int \mathcal{L}dt = 73 \text{ pb}^{-1}$)		Phys. Lett. B363 137
Belle collaboration ($\int \mathcal{L}dt = 104 \text{ fb}^{-1}$)	$< 6.2 \times 10^{-7}$	<u>Phys. Rev. D.73.051107</u>
BABAR collaboration ($\int \mathcal{L} dt = 426 \text{ fb}^{-1}$)	$< 3.2 imes 10^{-7}$	Phys. Rev. D.83.032006

Theoretically, the BF of this decay mode is expected to be $1.4^{+1.4}_{-0.8} \times 10^{-8}$.

1 Yue-Long Shen et al. (2020), Journal of High Energy Physics, 169 (2020)

 We perform the first Belle and Belle II measurement using a data set of 694 fb⁻¹ from Belle and the dataset of Belle II (≈ 362 fb⁻¹) from the Run1 period.



核科学与技术系

博學而篤志 切問而近思

Study of the rare decay $B^0 \rightarrow \gamma \gamma$ decay at Belle and Belle II

Signal Yield = $11^{+6.5}_{-5.5}$ 2.5 σ significance wrt the background only hypothesis

Approaching SM sensitivity

Study of the rare decay $B^0 \rightarrow \gamma \gamma$ decay at Belle and Belle II

- No signal evidence -> set UL at 90% CL
- $\mathcal{B}(B^0\to\gamma\gamma)<6.4\times10^{-8}$ at 90% CL.
- Improvement by a factor of five over the previous UL set by the Babar experiment with 426 fb⁻¹ ($< 3.2 \times 10^{-7}$ at 90% CL).

Improvements

PRDL (accepted) arXiv:2405.19734

博學而篤志 切問而近思

Increased Statistics (Belle+Belle II)

Improved analysis techniques.

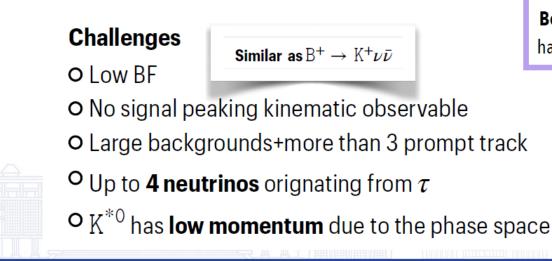
Better Signal Efficiency

Improved Background reduction

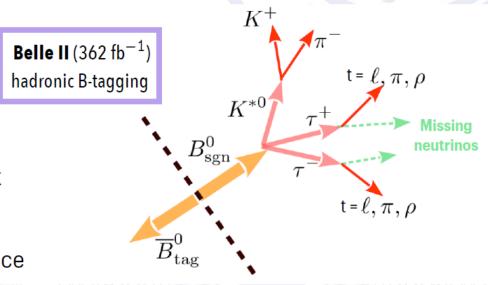
 $\mathscr{B}(B^0 \to \gamma \gamma) = (3.7^{+2.2}_{-1.8}(\text{stat}) \pm 0.7(\text{sys})) \times 10^{-8}$

Upper limit on Branching fraction: $< 6.4 \times 10^{-8}$ at 90% CL

World Best UL (Previous world best $< 3.2 \times 10^{-7}$) [BaBar, <u>PRD.83.032006</u>]



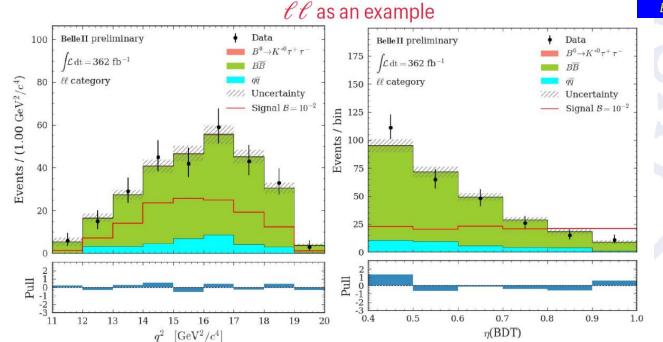
博學而篤志 切問而近思


Search for $B^0 \rightarrow K^{*0} \tau^+ \tau^-$

- FCNC processes are suppressed in SM at tree level.
- NP models that accommodate the $b \rightarrow c\tau \ell$ anomalies predict an enhancement of several orders of magnitude with $\tau \tau$ **pair** in the final state.
- NP couplings are those involving the **third-fermion generation**.

Belle (711 fb⁻¹) $\mathscr{B}^{\text{UL}}(B^0 \to \text{K}^{*0}\tau^+\tau^-)$ <3.1×10⁻³ [PRD 108 L011102 (2023)] BaBar (428 fb⁻¹) $\mathscr{B}^{\text{UL}}(B^+ \to \text{K}^+\tau^+\tau^-)$ <2.3×10⁻³ [PRL 118 032012 (2017)]

 $BF_{SM} = (0.98 \pm 0.10) \times 10^{-7}$ [PRD 53, 4964 (1996)]


43

Search for $B^0 \rightarrow K^{*0} \tau^+ \tau^-$

- Combinations of sub-track from τ lead to 4 categories: $\ell \ell$, $\ell \pi$, $\pi \pi$, ρX
- $\ell\ell$ has the best sensitivity
- BDT is trained using missing energy, extra cluster energy in EM calorimeter, M(K^{*0}t), q², etc.
- BDT output η(BDT) is used to extract the signal yield with simultaneous fit to 4 categories

 $\mathscr{B}^{\mathrm{UL}} = 1.8 \times 10^{-3}$ at 90% confidence level

Twice better with only half sample wrt Belle!

Better tagging + more categories + BDT classifer...

The most stringent limit on the $B^0 \to K^{*0} \tau^+ \tau^-$ decay and in general on $b \to s \tau \tau$ transition!