Prediction for Neutrino Interaction Cross Sections: From Low to High Energies

Yu-Feng Li (李玉峰) Institute of High Energy Physics & University of Chinese Academy of Sciences, Beijing The 23rd International Conference on Few-Body Problems in Physics, Beijing, 27th Sep. 2024

Neutrino interactions from low to high energies

inverse muon (tau)

decay

elastic electron (quas

(quasi) - elastic nucleon scattering nuclear excitation and resonant production

·π⁰

Deep inelastic scattering and jet production

hadrons

Neutrino-lepton interactions:

scattering

$${}^{(-)}_{\nu_{\alpha}} + e^{-} \rightarrow {}^{(-)}_{\nu_{\alpha}} + e^{-}.$$

Neutrino-nucleon interactions

$$\nu_{\ell} + n \to p + \ell^{-}$$
 $\bar{\nu}_{\ell} + p \to n + \ell^{+}$

Neutrino-nucleus interactions

Neutrino-lepton interactions

> Neutrino-lepton interactions:

Pure leptonic process and easy to calculate (at tree level) See radiative corrections in Bacall et al., PRD 51 (1995) 6146-6158

Accelerator νμ: Observation of NC (Gargamelle, 1973) Measurement of weak mixing angle (CHARM-II, 1994)

Solar neutrinos: Super-Kamiokande, Borexino, JUNO etc. Dark Matter Direct Detection experiments

New physics: neutrino magnetic moment GEMMA: 2.9x10⁻¹¹ μB [Rev.Mod.Phys. 87 (2015) 531]

XENON-nT: 6.4x10⁻¹² μB (2207.11330)

Neutrino-nucleon interactions

$$\nu_{\ell} + n \to p + \ell^{-} \qquad n \to p + e^{-} + \bar{\nu}_{e}$$
$$\bar{\nu}_{\ell} + p \to n + \ell^{+}$$

- Famous inverse beta decay on free proton (in Hydrogen rich detectors)
- Hadron weak current: induced currents

 $\overline{u_u}(p_u) \gamma^{\rho} \left(1 - \gamma^5\right) u_d(p_d) \to \langle p(p_p) | h_W^{\rho}(0) | n(p_n) \rangle$

Isospin symmetry

Correlated with free neutron decay

$$\begin{split} \langle p(p_p) | v_W^{\rho}(0) | n(p_n) \rangle &= \overline{u_p}(p_p) \left[\gamma^{\rho} F_1(Q^2) + \frac{i \sigma^{\rho \eta} q_{\eta}}{2 m_N} F_2(Q^2) + \frac{q^{\rho}}{m_N} F_3(Q^2) \right] u_n(p_n) \\ \\ \langle p(p_p) | a_W^{\rho}(0) | n(p_n) \rangle &= \overline{u_p}(p_p) \left[\gamma^{\rho} \gamma^5 G_A(Q^2) + \frac{q^{\rho}}{m_N} \gamma^5 G_P(Q^2) \right. \\ &+ \frac{p_p^{\rho} + p_n^{\rho}}{m_N} \gamma^5 G_3(Q^2) \right] u_n(p_n) \,. \end{split}$$

Prompt signal

$$\overrightarrow{e} + p \rightarrow \overrightarrow{e}^{+} + n$$

Capture on H or Gd, Delayed signal, 2.2, 8 MeV

Dedicated calculations in : Vogel & Beacom, 1999 Strumia & Vissani, 2003 Ricciardi, Vignaroli, Vissani, 2022

Radiative correction: Kurylov, Ramsey-Musolf, Vogel, 2003

Uncertainty as small as ~0.2%

May affect the reactor antineutrino anomaly Giunti, YFL, Ternes, Xin PLB (2022)

Neutrino-nucleus interactions

Nuclear response at different energy transfer regions is crucial to make the predictions.

A: low energy NC: CEvNS

Coherent Elastic Neutrino-Nucleus Scattering

- **CE** ν **NS**: pronounced "sevens"
- Weak Neutral-Current (NC) interaction:

 $\nu_{\alpha} + \mathcal{N}(A, Z) \rightarrow \nu_{\alpha} + \mathcal{N}(A, Z)$

The nucleus $\mathcal{N}(A, Z)$ recoils as a whole!

The CEvNS kinematics

$|\vec{q}| \, R \lesssim 1$

- Heavy target nucleus N(A, Z):
 A ~ 100 M ~ 100 GeV
 R ≈ 1.2 A^{1/3} fm ≈ 5 fm
 CEνNS for |q| ≤ 40 MeV
 New Deletivistic medace receil.
 - Non-Relativistic nuclear recoil:
 - $|\vec{q}| \simeq \sqrt{2 M T}$

Outgoing neutrino

Observable nuclear recoil kinetic energy:

$$T \simeq \frac{|\vec{q}|^2}{2M} \lesssim 10 \, \text{keV} \quad \leftarrow \quad \text{Very Small!}$$

 $q^0 = T \leftarrow \text{Kinetic Energy}$

The CEvNS Cross Section

9

Neutron Form Factor

Partial coherency is described by the nuclear neutron form factor $F_N(|\vec{q}|)$

Fourier transform of the neutron distribution in the nucleus $\rho_N(r)$: $F_N(|\vec{q}|) = \int e^{-i\vec{q}\cdot\vec{r}} \rho_N(r) d^3r$

• Measurable parameter: the radius R_n of the nuclear neutron distribution

Neutron Form Factor: nuclear inputs

Weak form-factor of 4ºAr

- Ab initio method (coupled-cluster theory)
- various nuclear potentials

C. Payne at al. *Phys.Rev.C* 100 (2019) 6, 061304

Shell model calculations

 Generalisation for beyond SM – new nuclear responses

5

Neutron Form Factor: neutron radius

Helm form factor: $F_N^{\text{Helm}}(|\vec{q}|^2) = 3 \frac{j_1(|\vec{q}|R_0)}{|\vec{q}|R_0} e^{-|\vec{q}|^2 s^2/2}$ Spherical Bessel function of order one: $j_1(x) = \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x}$ Obtained from the convolution of a sphere with constant density with radius R_0 and a gaussian density with standard deviation s Rms radius: $R^2 = \langle r^2 \rangle = \frac{3}{5} R_0^2 + 3s^2$ Surface thickness: $s \simeq 0.9 \, \text{fm}$ 0.0012 2 s = 0.9 fm 0.0010 R = 4 fm0.8 R = 5 fmR = 6 fm0.0008 0.6 $F^2(q^2)$ 0.0006 0.4 R_0 0.0004 0.2 0.0002 R = 5 fms = 0.9 fm0.0000 0.0 R 0 20 60 80 100 40 2 6 8 4 10 [MeV] a [fm]

Neutron Distributions of Cs & I

• Fit of the 2017 COHERENT CsI data to get $R_n(^{133}Cs) \simeq R_n(^{127}I)$:

First determination of R_n with neutrino-nucleus scattering:

$$R_n(CsI) = 5.5^{+0.9}_{-1.1} \, \text{fm}$$

[Cadeddu, Giunti, Li, Zhang, arXiv:1710.02730]

With new 2020 COHERENT Csl data:

[Pershey @ Magnificent CEvNS 2020]

 $R_n(CsI) = 5.55 \pm 0.44 \,\mathrm{fm}$

[Cadeddu et al, arXiv:2102.06153]

BSM Neutrino Interactions in CEvNS

B: low energy CC: QE on the Target Nuclei

(Quasi-)elastic v-nucleus CC/NC interactions

JUNO, Prog.Part.Nucl.Phys. 123 (2022) 103927

Experiment	Nuclear Target	Reaction	σ_{o} [10 ⁻⁴⁶ cm ²]	∆E _{nucl} [MeV] (no det. Thres.)
GALLEX/GNO SAGE	⁷¹ Ga ₃₃	$v_e + {}^{71}Ga \rightarrow e^- + {}^{71}Ge$	8.611 ± 0.4% (GT)	0.2327
HOMESTAKE	³⁷ Cl ₁₇	$v_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar$	1.725 (F)	0.814
SNO	² H ₁	$v_e + {}^2H \rightarrow e^- + p + p$	(GT)	1.442
DUNE, ICARUS, etc.	⁴⁰ Ar ₁₈	$v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^*$	148.58 (F) 44.367 (GT ₂) 41.567 (GT ₆)	1.505 +

From Kevin McFarland

Important for solar & supernova neutrino detection

Channels		Threshold	Signal	Event numbers	
		[MeV]		$[200 \text{ kt} \times \text{yrs}]$	after cuts
CC	$\nu_e + {}^{13}\text{C} \to e^- + {}^{13}\text{N}(\frac{1}{2}; \text{gnd})$	$2.2 { m MeV}$	$e^- + {}^{13}$ N decay	3929	647
NC	$\nu_x + {}^{13}\text{C} \to \nu_x + {}^{13}\text{C}(\frac{3}{2}; 3.685 \text{ MeV})$	$3.685 { m MeV}$	γ	3032	738
\mathbf{ES}	$\nu_x + e \rightarrow \nu_x + e$	0	e^-	3.0×10^5	6.0×10^{4}

JUNO, Astrophys.J. 965 (2024) 2, 122

16

(Quasi-)elastic v-nucleus CC/NC interactions

Gallium Anomaly

Cross section calculation

A deficit could be due to an overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$

First calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

• $\sigma_{G.S.}$ from $T_{1/2}(^{71}\text{Ge}) = 11.43 \pm 0.03 \text{ days}$

[Hampel, Remsberg, PRC 31 (1985) 666]

 $\sigma_{\rm G.S.}({}^{51}{\rm Cr}) = (5.54 \pm 0.02) \times 10^{-45} \, {\rm cm}^2$

•
$$\sigma(^{51}Cr) = \sigma_{G.S.}(^{51}Cr)\left(1 + 0.669 \frac{BGT_{175}}{BGT_{G.S.}} + 0.220 \frac{BGT_{500}}{BGT_{G.S.}}\right)$$

The contribution of excited states is only ~ 5%!

[Bahcall, hep-ph/9710491]

 $u_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^- \text{ cross sections in units of } 10^{-45} \, \text{cm}^2$:

		⁵¹ Cr		³⁷ Ar			
		$\sigma_{\sf tot}$	δ_{exc}	$\sigma_{\sf tot}$	δ_{exc}	\overline{R}	GA
Ground State [Phys.Atom.Nucl. 83 (2020) 1549]	$T_{1/2}(^{71}{ m Ge})$	5.539 ± 0.019	_	6.625 ± 0.023	_	0.844 ± 0.031	5.0 <i>o</i>
Bahcall [hep-ph/9710491]	$^{71}{ m Ga}(p,n)^{71}{ m Ge}$	5.81 ± 0.16	4.7%	7.00 ± 0.21	5.4%	0.802 ± 0.037	5.4σ
Kostensalo et al. [arXiv:1906.10980]	Shell Model	5.67 ± 0.06	2.3%	6.80 ± 0.08	2.6%	0.824 ± 0.031	5.6 σ
Semenov [Phys.Atom.Nucl. 83 (2020) 1549]	71 Ga(3 He, 3 H) 71 Ge	5.938 ± 0.116	6.7%	7.169 ± 0.147	7.6%	$\textbf{0.786} \pm \textbf{0.033}$	6.6σ

Giunti, YFL, Ternes, Xin, arXiv: 2212.09722

Cross section calculation: ground state

$$\begin{split} T^{\rm BGZZ}_{1/2}(^{71}{\rm Ge}) &= 12.5 \pm 0.1 \, {\rm d} \quad ({\rm Bisi, \ Germagnoli, \ Zappa, \ and \ Zimmer, \ 1955}) \ [39], \\ T^{\rm R}_{1/2}(^{71}{\rm Ge}) &= 10.5 \pm 0.4 \, {\rm d} \quad ({\rm Rudstam, \ 1956}) \ [40], \quad \textit{Giunti, \ YFL, Ternes, \ Xin, \ arXiv: \ 2212.09722} \\ T^{\rm GRPF}_{1/2}(^{71}{\rm Ge}) &= 11.15 \pm 0.15 \, {\rm d} \quad ({\rm Genz, \ Renier, \ Pengra, \ and \ Fink, \ 1971}) \ [41], \\ T^{\rm HR}_{1/2}(^{71}{\rm Ge}) &= 11.43 \pm 0.03 \, {\rm d} \quad ({\rm Hampel \ and \ Remsberg, \ 1985}) \ [42]. \end{split}$$

- An enlarged life-time will reduce or eliminate the anomaly.
- Triggered an active campaign of re-measurement !

11.43±0.03 days (2307.05353)

11.468 ± 0.008 days (2401.15286)

The Gallium anomaly remains and deserves further theoretical and experimental investigations.

C: GeV range CC/NC: accelerator and atmospheric neutrinos

GeV neutrino interactions

23

GeV neutrino interaction generators

General components in generators

Brief summary of GeV neutrino interaction models

New Methodology: adding deexcitation

TALYS-based Deexcitation of Residual Nucleus

- Simple shell model →
 Status of the residual nuclei
 - All residual nuclei with A>5 have been considered
 - Taking ¹¹C*, ¹¹B*, ¹⁰C*, ¹⁰Be* and ¹⁰B* for example

Daughter Nuclei	Shell Hole	Configuration Probability	Excitation Energy
$^{11}C^*$ or $^{11}B^*$	$s_{1/2}$	1/3	$E^* = 23 \text{ MeV}$
	$p_{3/2}$	2/3	$E^* = 0 \ {\rm MeV}$
${}^{10}C^*$ or ${}^{10}Be^*$	$s_{1/2}$	1/15	$E^* = 46 \text{ MeV}$
	$p_{3/2}$	6/15	$E^* = 0 \mathrm{MeV}$
	$s_{1/2} \ \& \ p_{3/2}$	8/15	$E^* = 23 \text{ MeV}$
${}^{10}\mathrm{B}^{*}$	$s_{1/2}$	1/9	$E^* = 46 \text{ MeV}$
	$p_{3/2}$	4/9	$E^* = 0 \mathrm{MeV}$
	$s_{1/2} \ \& \ p_{3/2}$	4/9	$E^* = 23 { m MeV}$

Assume each neutron or proton has same possibility(1/6) to leave the shell.

More complicated shell information can be included.

Impact on exclusive cross sections

Before deexcitation

28

- ¹¹C, ¹¹B, ¹⁰B reduced, and lighter nuclei increased; neutron multiplicity redistributed.
- Exclusive final-state information, such as the neutron multiplicity, the charge pion multiplicity, the unstable nuclei, is important for
- (a) energy reconstruction
- (b) tagging and reducing the backgrounds

Energy reconstruction in DUNE

- The energy is reconstructed with calorimetric method.
- Missing neutrons (pions) may bias the energy and then result in wrong oscillation parameters.

Rare searches in JUNO

- Diffuse Supernova Neutrino Background via IBD process: 2-4 events in JUNO per year
- Dominant backgrounds are from atmospheric neutrino NC interactions (20 times larger than the signal.
- > A precise exclusive NC cross section is crucial (with neutron, ¹¹C) !
- > Also pion and kaon production is important for proton decay search.

Neutrino-nuclear connection beyond cross sections

Conclusion

Neutrino interaction cross sections are important prerequisite to study neutrino properties and new physics.

Neutrino-lepton and neutrino (free-)nucleon interactions are relatively simple and widely used in low energy neutrino detection. **Electron scattering**, & IBD of free protons

Neutrino-nucleus interactions:

From low to high energies, depend on different aspects of hardon and nuclear physics. (Shell structure, Binding energy, Fermi Motion, Final state interactions, Deexcitation, Parton properties, etc.)

Thank you!

Backup

Why Coherent?

Inelastic Incoherent $\lambda_Z \ll R$

Elastic Incoherent $\lambda_Z \lesssim R$

Elastic Coherent $\lambda_Z \gtrsim 2R$

$$\lambda_{Z} = 2\pi \frac{\hbar}{|\vec{q}|} \implies \text{CE}\nu\text{NS for } |\vec{q}| R \lesssim \hbar$$
$$|\vec{q}| R \lesssim 1 \qquad \leftarrow \text{Natural Units}$$

The COHERENT experiment

- > 14.6 kg CsI scintillating crystal and 24 kg LAr detector.
- > Prompt monochromatic v_{μ} from stopped pion decays:

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$

> Delayed $\bar{\nu}_{\mu}$ and ν_{e} from the subsequent muon decays:

 $\mu^+ \to e^+ + \bar{\nu}_{\mu} + \nu_e$

> The COHERENT energy and time information allow us to distinguish the interactions of v_e , v_μ and \bar{v}_μ

 $\frac{\nu_{\mu}}{\overline{\nu}_{\mu} + \nu_{e}}$

8

9 10

12

First observation of CEvNS at Csl (2017)

Akimov et al. *Science* Vol 357, Issue 6356 15 September 2017

- Data are beam coincident and anti-coincident residuals during SNS operation, "On", and during SNS shutdown periods, "Off".
- Excess in light yield and timing distributions only for Beam on.

 $^{133}_{55}Cs_{78}$ and $^{127}_{53}I_{74} \leftarrow$ Heavy nuclei well suited for $CE\nu NS$

Test of Coherency

(1) Full coherence \rightarrow F(proton) = F(neutron) = 1.

(2) COHERENT data show 3.7 sigma evidence of the nuclear structure suppression of the full coherence

3+1 mixing?

- No 3+1 neutrino mixing and oscillation solution
- No CPT violation solution

Giunti, YFL, Ternes, Xin, arXiv: 2209.00916

→ Source problem?