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Neutrino interactions from low to high energies

➢ Neutrino-lepton interactions: 

➢ Neutrino-nucleon interactions

➢ Neutrino-nucleus interactions
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Neutrino-lepton interactions 

Accelerator νμ：Observation of NC (Gargamelle, 1973)
Measurement of weak mixing angle (CHARM-II, 1994) 

Solar neutrinos: Super-Kamiokande, Borexino, JUNO etc.
Dark Matter Direct Detection experiments    

New physics: neutrino magnetic moment
GEMMA: 2.9x10-11 μB [Rev.Mod.Phys. 87 (2015) 531]

XENON-nT: 6.4x10-12 μB (2207.11330)

➢ Neutrino-lepton interactions: 

Pure leptonic process and easy to calculate (at 
tree level)
See radiative corrections in Bacall et al., 
PRD 51 (1995) 6146-6158
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Neutrino-nucleon interactions 

e nep ++ → +

2e e + −+ →

Capture on H or Gd,

Delayed signal, 2.2, 8 MeV

Prompt signal

➢ Famous inverse beta decay on free 
proton (in Hydrogen rich detectors)

➢ Hadron weak current: induced currents

➢ Isospin symmetry

➢ Correlated with free neutron decay

Dedicated calculations in :
Vogel & Beacom, 1999
Strumia & Vissani, 2003
Ricciardi, Vignaroli, Vissani, 2022

Radiative correction:
Kurylov, Ramsey-Musolf, Vogel, 
2003

Uncertainty as small as ~0.2%

May affect the reactor 
antineutrino anomaly 
Giunti, YFL, Ternes, Xin PLB (2022)
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Neutrino-nucleus interactions 

➢ Nuclear response at different energy transfer regions is crucial to make 
the predictions. 
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A: low energy NC: CEνNS 
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Coherent Elastic Neutrino-Nucleus Scattering
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The CEνNS kinematics 
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The CEνNS Cross Section

See the radiative correction in 2011.05960
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Neutron Form Factor
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Neutron Form Factor: nuclear inputs
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Neutron Form Factor: neutron radius



13

Neutron Distributions of Cs & I 
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BSM Neutrino Interactions in CEvNS
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B: low energy CC: 

QE on the Target Nuclei
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(Quasi-)elastic ν-nucleus CC/NC interactions

JUNO, Prog.Part.Nucl.Phys. 123 (2022) 103927

JUNO, Astrophys.J. 965 (2024) 2, 122

From Kevin McFarland

➢ Important for solar & supernova 
neutrino detection
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(Quasi-)elastic ν-nucleus CC/NC interactions

Nuclear structure effects:
➢ beta (M1) decay calibration
➢ ν-energy ~ nuclear excitation 

energy: shell model 
➢ giant resonance: CRPA or shell 

model
➢ >100 MeV, fermi Gas models 

or spectral function method
➢ DIS region: Parton  
From Vogel, NPA 777 (2006) 340-355
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Gallium Anomaly



19

Cross section calculation 
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Cross section calculation: excited states 

Giunti, YFL,Ternes, Xin, arXiv: 2212.09722
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Cross section calculation: ground state

Giunti, YFL,Ternes, Xin, arXiv: 2212.09722

➢ An enlarged life-time will reduce 
or eliminate the anomaly.

➢ Triggered an active campaign of 
re-measurement !

11.43±0.03 days (2307.05353)

11.468 ± 0.008 days (2401.15286)

➢ The Gallium anomaly remains and 
deserves further theoretical and 
experimental investigations.    
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C: GeV range CC/NC: 

accelerator and atmospheric neutrinos
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GeV neutrino interactions

Fermi motion, binding 

energy, MA, 2p2h, … …
Hardon production, FSI

Parton Model, FSI



24

2024/9/27 24程捷，NCEPU

Ulrich Mosel and Kai Gallmeister @ NUINT24

Jan T. Sobczyk @ NUINT24

Marco Roda @ NUINT24

Patrick Stowell @ NUINT24

GeV neutrino interaction generators
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More detailed in 

Xianguo, Deliang, 

Qiyu’s talks

General components in generators
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New Methodology: adding deexcitation 

Take NC interactions as example

Cheng et al, Phys. Rev. D 103. 05001 (2021)

Cheng et al, arXiv 2404.07429

More detailed in Wanlei, Abe, Jie’s talks
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TALYS-based Deexcitation of Residual Nucleus

1. Simple shell model →

Status of the residual nuclei 

Assume each neutron or proton has same possibility(1/6) 

to leave the shell. 

More complicated shell information can be included.

◼ All residual nuclei with A>5 
have been considered

◼ Taking 11C*, 11B*, 10C*, 10Be* 
and 10B* for example
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Before deexcitation

After deexcitation

Impact on exclusive cross sections

➢
11C, 11B, 10B reduced, and 
lighter nuclei increased; 
neutron multiplicity 
redistributed.

➢ Exclusive final-state 
information, such as the 
neutron multiplicity, the 
charge pion multiplicity, 
the unstable nuclei, is 
important for 

(a) energy reconstruction

(b) tagging and reducing 
the backgrounds
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Energy reconstruction in DUNE

Ankowski, Coloma, Huber, 

Mariani, Vagnoni, 1507.08561

➢ The energy is reconstructed with calorimetric method. 
➢ Missing neutrons (pions) may bias the energy and then result in 

wrong oscillation parameters.  
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Rare searches in JUNO

➢ Diffuse Supernova Neutrino Background via IBD process: 2-4 events in JUNO 
per year

➢ Dominant backgrounds are from atmospheric neutrino NC interactions (20 
times larger than the signal.

➢ A precise exclusive NC cross section is crucial (with neutron, 11C)  !
➢ Also pion and kaon production is important for proton decay search.

JUNO, 2205.08830
JCAP 10 (2022) 033
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Neutrino-nuclear connection beyond cross sections

Giunti, et al., arXiv: 2110.06820

Daya Bay: arXiv:2106.12251  

➢ Solution to Reactor antineutrino 
anomaly requires precise energy 
spectrum of (forbidden) β decays!

➢ Search for neutrinoless double beta 
decay needs to better control of the 
nuclear matrix element 

Yao et al., arXiv: 2111.15543
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Conclusion

Neutrino interaction cross sections are important prerequisite to 
study neutrino properties and new physics. 

Neutrino-lepton and neutrino (free-)nucleon interactions are 
relatively simple and widely used in low energy neutrino detection.

Electron scattering, & IBD of free protons

Neutrino-nucleus interactions:

From low to high energies, depend on different aspects of hardon 
and nuclear physics. (Shell structure, Binding energy, Fermi Motion, 
Final state interactions, Deexcitation, Parton properties, etc.)

Thank you !
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Backup
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Why Coherent ?
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The COHERENT experiment

➢ 14.6 kg CsI scintillating crystal and 24 kg LAr
detector.

➢ Prompt monochromatic 𝜈𝜇 from stopped pion decays:

𝜋+ → 𝜇+ + 𝜈𝜇
➢ Delayed ҧ𝜈𝜇 and 𝜈𝑒 from the subsequent muon decays:

𝜇+ → 𝑒+ + ҧ𝜈𝜇 + 𝜈𝑒
➢ The COHERENT energy and time information allow us 

to distinguish the interactions of 𝜈𝑒, 𝜈𝜇 and ҧ𝜈𝜇

[COHERENT, arXiv:1803.09183] 
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First observation of CEvNS at CsI (2017)
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Test of Coherency

(1) Full coherence → F(proton) = F(neutron) =1.

(2) COHERENT data show 3.7 sigma evidence of the nuclear structure 
suppression of the full coherence

Cadeddu, Giunti, YFL, Zhang, 

PRL 120 (2018) 072501

and 1908.06045
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3+1 mixing ? 

➢ No 3+1 neutrino mixing and oscillation solution 
➢ No CPT violation solution

→ Source problem?

Giunti, YFL,Ternes, Xin, arXiv: 2209.00916


