Prediction for Neutrino Interaction Cross Sections: From Low to High Energies

Yu-Feng Li (李玉峰) Institute of High Energy Physics & University of Chinese Academy of Sciences, Beijing The 23rd International Conference on Few-Body Problems in Physics,

Beijing, 27th Sep. 2024

Neutrino interactions from low to high energies

resonant production

inverse muon (tau) elastic electron scattering

decay

nucleon scattering

n

 \mathbf{u} hadrons

> Deep inelastic scattering and jet production

V۱

➢ **Neutrino-lepton interactions:**

$$
\overset{\scriptscriptstyle(-)}{\nu_\alpha}+e^-\to \overset{\scriptscriptstyle(-)}{\nu_\alpha}+e^-\,.
$$

➢ **Neutrino-nucleon interactions**

$$
\begin{array}{c}\n \nu_{\ell} + n \rightarrow p + \ell^{-} \\
\bar{\nu}_{\ell} + p \rightarrow n + \ell^{+}\n\end{array}
$$

➢ **Neutrino-nucleus interactions**

Neutrino-lepton interactions

➢ **Neutrino-lepton interactions:**

Pure leptonic process and easy to calculate (at tree level) See radiative corrections in Bacall et al., PRD 51 (1995) 6146-6158

Accelerator νμ:Observation of NC (Gargamelle, 1973) Measurement of weak mixing angle (CHARM-II, 1994)

Solar neutrinos: Super-Kamiokande, Borexino, JUNO etc. Dark Matter Direct Detection experiments

New physics: neutrino magnetic moment GEMMA: 2.9x10-11 μB [Rev.Mod.Phys. 87 (2015) 531]

XENON-nT: 6.4x10-12 μB (2207.11330)

Neutrino-nucleon interactions

$$
\nu_{\ell} + n \rightarrow p + \ell^{-} \mid n \rightarrow p + e^{-} + \bar{\nu}_{e}
$$

$$
\bar{\nu}_{\ell} + p \rightarrow n + \ell^{+}
$$

- ➢ **Famous inverse beta decay on free proton (in Hydrogen rich detectors)**
- ➢ **Hadron weak current: induced currents**

 $\overline{u_u}(p_u) \gamma^{\rho} (1 - \gamma^5) u_d(p_d) \rightarrow \langle p(p_p) | h_W^{\rho}(0) | n(p_n) \rangle$

➢ **Isospin symmetry**

➢ **Correlated with free neutron decay**

$$
\langle p(p_p)|v_W^{\rho}(0)|n(p_n)\rangle = \overline{u_p}(p_p) \left[\gamma^{\rho} F_1(Q^2) + \frac{i \sigma^{\rho \eta} q_\eta}{2m_N} F_2(Q^2) + \frac{q^{\rho}}{m_N} F_3(Q^2) \right] u_n(p_n)
$$

$$
\langle p(p_p)|a_W^{\rho}(0)|n(p_n)\rangle = \overline{u_p}(p_p) \left[\gamma^{\rho} \gamma^5 G_A(Q^2) + \frac{q^{\rho}}{m_N} \gamma^5 G_P(Q^2) + \frac{p_p^{\rho} + p_n^{\rho}}{m_N} \gamma^5 G_3(Q^2) \right] u_n(p_n).
$$

Prompt signal

$$
\overrightarrow{v_e} + p \rightarrow e^+ + n
$$

Capture on H or Gd, Delayed signal, 2.2, 8 MeV

Dedicated calculations in : Vogel & Beacom, 1999 Strumia & Vissani, 2003 Ricciardi, Vignaroli, Vissani, 2022

Radiative correction: Kurylov, Ramsey-Musolf, Vogel, 2003

Uncertainty as small as ~0.2%

May affect the reactor antineutrino anomaly Giunti, YFL, Ternes, Xin PLB (2022)

Neutrino-nucleus interactions

➢ **Nuclear response at different energy transfer regions is crucial to make the predictions.**

A: low energy NC: CEνNS

Coherent Elastic Neutrino-Nucleus Scattering

- \triangleright CE_VNS: pronounced "sevens"
- ▶ Weak Neutral-Current (NC) interaction:

 $\nu_{\alpha} + \mathcal{N}(A, Z) \rightarrow \nu_{\alpha} + \mathcal{N}(A, Z)$

The nucleus $\mathcal{N}(A, Z)$ recoils as a whole!

The CEνNS kinematics

$|\vec{q}| R \lesssim 1$

- Heavy target nucleus $\mathcal{N}(A, Z)$: $A \sim 100$ $M \sim 100$ GeV $R \approx 1.2 A^{1/3}$ fm ≈ 5 fm ► CE ν NS for $|\vec{q}| \lesssim 40$ MeV
	- Non-Relativistic nuclear recoil:
		- $|\vec{q}| \simeq \sqrt{2MT}$

Outgoing neutrino

Observable nuclear recoil kinetic energy:

$$
\mathcal{T} \simeq \frac{|\vec{q}|^2}{2 M} \lesssim 10 \,\text{keV} \quad \leftarrow \quad \text{Very Small!}
$$

The CEνNS Cross Section

Neutron Form Factor

▶ Partial coherency is described by the nuclear neutron form factor $F_N(|\vec{q}|)$

► Fourier transform of the neutron distribution in the nucleus $\rho_N(r)$: $F_N(|\vec{q}|) = \int e^{-i\vec{q}\cdot\vec{r}} \rho_N(r) d^3r$

Measurable parameter: the radius R_n of the nuclear neutron distribution

Neutron Form Factor: nuclear inputs

Weak form-factor of ⁴⁰Ar

- Ab initio method (coupled-cluster theory)
- various nuclear potentials

C. Payne at al. Phys.Rev.C 100 (2019) 6, 061304

Shell model calculations

• Generalisation for beyond SM – new nuclear responses

5

Neutron Form Factor: neutron radius

Helm form factor: $F_N^{\text{Helm}}(|\vec{q}|^2) = 3 \frac{j_1(|\vec{q}|R_0)}{|\vec{q}|R_0} e^{-|\vec{q}|^2 s^2/2}$ Spherical Bessel function of order one: $j_1(x) = \sin(x)/x^2 - \cos(x)/x$ Obtained from the convolution of a sphere with constant density with radius R_0 and a gaussian density with standard deviation s Rms radius: $R^2 = \langle r^2 \rangle = \frac{3}{5} R_0^2 + 3s^2$ Surface thickness: $s \simeq 0.9$ fm 0.0012 ಼ $s = 0.9$ fm $R = 4$ fm 0.0010 $\frac{8}{2}$ $R = 5$ fm $R = 6$ fm 0.0008 $\frac{6}{5}$ $F^2(q^2)$ 0.0006 उँ R_0 0.0004 0.0002 ွိ $R = 5$ fm $s = 0.9$ fm 0.0000 8 R 20 0 40 60 80 100 2 4 6 8 10 [MeV] q $[fm]$ r 12

Neutron Distributions of Cs & I

Fit of the 2017 COHERENT Csl data to get $R_n({}^{133}Cs) \simeq R_n({}^{127}I)$:

First determination of R_n with neutrino-nucleus scattering:

$$
R_n(\text{CsI}) = 5.5^{+0.9}_{-1.1} \text{ fm}
$$

[Cadeddu, Giunti, Li, Zhang, arXiv:1710.02730]

With new 2020 COHERENT Csl data:

[Pershey @ Magnificent CE_VNS 2020]

 $R_n(\text{CsI}) = 5.55 \pm 0.44 \text{ fm}$

[Cadeddu et al, arXiv:2102.06153]

BSM Neutrino Interactions in CEvNS

B: low energy CC: QE on the Target Nuclei

(Quasi-)elastic ν-nucleus CC/NC interactions

JUNO, Prog.Part.Nucl.Phys. **123 (2022) 103927**

Experiment	Nuclear Target	Reaction	σ_{o} $[10^{-46}$ cm ²]	ΔE_{nucl} [MeV] (no det. Thres.)
GALLEX/GNO SAGE	$71Ga_{33}$	$v_e + {}^{71}Ga \rightarrow e^- + {}^{71}Ge$	$8.611 \pm 0.4\%$ (GT)	0.2327
HOMESTAKE	${}^{37}Cl_{17}$	$v_{e} + {}^{37}Cl \rightarrow e^{-} + {}^{37}Ar$	1.725 (F)	0.814
SNO	$2H_1$	$v_e + H \rightarrow e^- + p + p$	(GT)	1.442
DUNE, ICARUS, etc.	$40_{Ar_{18}}$	$v_{e} + {}^{40}Ar \rightarrow e^{-} + {}^{40}K^{*}$	148.58 (F) 44.367 (GT ₂) 41.567 ($GT6$)	$1.505 +$

From Kevin McFarland

➢ *Important for solar & supernova neutrino detection*

JUNO, Astrophys.J. 965 (2024) 2, 122

16

(Quasi-)elastic ν-nucleus CC/NC interactions

Gallium Anomaly

Cross section calculation

A deficit could be due to an overestimate of $\sigma(\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-)$

First calculation: Bahcall, PRC 56 (1997) 3391, hep-ph/9710491

• $\sigma_{\text{G.S.}}$ from $T_{1/2}({}^{71}\text{Ge}) = 11.43 \pm 0.03$ days

[Hampel, Remsberg, PRC 31 (1985) 666]

 $\sigma_{\rm G,S}$ (⁵¹Cr) = (5.54 ± 0.02) × 10⁻⁴⁵ cm²

$$
\blacktriangleright \ \sigma(^{51}\text{Cr}) = \sigma_{G.S.} (^{51}\text{Cr}) \left(1+0.669\,\frac{\text{BGT}_{175}}{\text{BGT}_{G.S.}}+0.220\,\frac{\text{BGT}_{500}}{\text{BGT}_{G.S.}}\right)
$$

The contribution of excited states is only \sim 5%!

[Bahcall, hep-ph/9710491]

 $\nu_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$ cross sections in units of 10^{-45} cm²:

Giunti, YFL,Ternes, Xin, arXiv: 2212.09722

Cross section calculation: ground state

 $T_{1/2}^{\text{BGZZ}}({}^{71}\text{Ge}) = 12.5 \pm 0.1 \text{ d}$ (Bisi, Germagnoli, Zappa, and Zimmer, 1955) [39], $T_{1/2}^{R}(^{71}Ge) = 10.5 \pm 0.4 d$ (Rudstam, 1956) [40], **Giunti, YFL, Ternes, Xin, arXiv: 2212.09722** $T_{1/2}^{\text{GRPF}}(^{71}\text{Ge}) = 11.15 \pm 0.15 \,\text{d}$ (Genz, Renier, Pengra, and Fink, 1971) [41], $T_{1/2}^{\text{HR}}(^{71}\text{Ge}) = 11.43 \pm 0.03 \text{ d}$ (Hampel and Remsberg, 1985) [42].

- ➢ **An enlarged life-time will reduce or eliminate the anomaly.**
- ➢ **Triggered an active campaign of re-measurement !**

11.43±0.03 days (2307.05353)

11.468 ± 0.008 days (2401.15286)

➢ **The Gallium anomaly remains and deserves further theoretical and experimental investigations.**

C: GeV range CC/NC: accelerator and atmospheric neutrinos

GeV neutrino interactions

GeV neutrino interaction generators

General components in generators

Brief summary of GeV neutrino interaction models

New Methodology: adding deexcitation

TALYS-based Deexcitation of Residual Nucleus

- **1. Simple shell model** → **Status of the residual nuclei**
	- \blacksquare All residual nuclei with A>5 have been considered
	- Taking ¹¹C^{*}, ¹¹B^{*}, ¹⁰C^{*}, ¹⁰Be^{*} and 10B* for example

Assume each neutron or proton has same possibility(1/6) to leave the shell.

More complicated shell information can be included.

Impact on exclusive cross sections

Before deexcitation

28

- ➢ **¹¹C, ¹¹B, ¹⁰B reduced, and lighter nuclei increased; neutron multiplicity redistributed.**
- ➢ **Exclusive final-state information, such as the neutron multiplicity, the charge pion multiplicity, the unstable nuclei, is important for**
- **(a) energy reconstruction**
- **(b) tagging and reducing the backgrounds**

Energy reconstruction in DUNE

- ➢ **The energy is reconstructed with calorimetric method.**
- ➢ **Missing neutrons (pions) may bias the energy and then result in wrong oscillation parameters.**

Rare searches in JUNO

- ➢ **Diffuse Supernova Neutrino Background via IBD process: 2-4 events in JUNO per year**
- ➢ **Dominant backgrounds are from atmospheric neutrino NC interactions (20 times larger than the signal.**
- ➢ **A precise exclusive NC cross section is crucial (with neutron, ¹¹C) !**
- ➢ **Also pion and kaon production is important for proton decay search.**

Neutrino-nuclear connection beyond cross sections

decay needs to better control of the nuclear matrix element

Yao et al., arXiv: 2111.15543

 20

60

40

80

Mass number A

100

120

140

160

 $\overline{}$

Conclusion

Neutrino interaction cross sections are important prerequisite to study neutrino properties and new physics.

Neutrino-lepton and neutrino (free-)nucleon interactions are relatively simple and widely used in low energy neutrino detection. Electron scattering, & IBD of free protons

Neutrino-nucleus interactions:

From low to high energies, depend on different aspects of hardon and nuclear physics. (Shell structure, Binding energy, Fermi Motion, Final state interactions, Deexcitation, Parton properties, etc.)

Thank you !

Backup

Why Coherent ?

Inelastic Incoherent $\lambda_Z \ll R$

Elastic Incoherent $\lambda_Z \lesssim R$

Elastic Coherent $\lambda_Z \gtrsim 2R$

$$
\lambda_Z = 2\pi \frac{\hbar}{|\vec{q}|} \implies \text{CE}\nu\text{NS for } |\vec{q}| \, R \lesssim \hbar
$$
\n
$$
\boxed{|\vec{q}| \, R \lesssim 1} \iff \text{Natural Units}
$$

The COHERENT experiment

- ➢ **14.6 kg CsI scintillating crystal and 24 kg LAr detector.**
- Prompt monochromatic v_μ from stopped pion decays:

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$

 \triangleright Delayed $\bar{\nu}_{\mu}$ and ν_e from the subsequent muon decays:

 $\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu} + \nu_e$

➢ **The COHERENT energy and time information allow us** ${\bf t}$ o distinguish the interactions of ν_e , ν_μ and $\bar\nu_\mu$

First observation of CEvNS at CsI (2017)

Akimov et al. Science Vol 357, Issue 6356 15 September 2017

- Data are beam coincident and anti-coincident residuals during SNS operation, "On", and during SNS shutdown periods, "Off".
- Excess in light yield and timing distributions only for Beam on.

 $^{133}_{55}Cs_{78}$ and $^{127}_{53}I_{74}$ Heavy nuclei well suited for $CE\nu NS$

Test of Coherency

(1) Full coherence \rightarrow F(proton) = F(neutron) = 1.

(2) COHERENT data show 3.7 sigma evidence of the nuclear structure suppression of the full coherence

3+1 mixing ?

- ➢ **No 3+1 neutrino mixing and oscillation solution**
- ➢ **No CPT violation solution**

Giunti, YFL,Ternes, Xin, arXiv: 2209.00916

→ **Source problem?**