幸南印冠大學

The three-hadron DD^*K system on the **lattice EFT**

Zhenyu Zhang South China Normal University

The 23rd International Conference on Few-Body Problems in Physics Beijing, September 22-27, 2024

Zhenyu Zhang, Xin-Yue Hu, Guangzhao He, Jun Liu, Jia-Ai Shi, Bing-Nan Lu, and Qian Wang, arXiv: 2409.01325.

Table of Contents

01 Introduction to Lattice Effective Field Theory (LEFT)

02 Study the DD^*K three-hadron system using LEFT

03 Summary

01 Introduction **Introduction**

Introduction to LEFT

Lattice EFT = Chiral EFT+ Lattice + Monte Carlo

(1) EFT description of hadron interactions (contact terms + pion exchange potential)

(2) The degrees of freedom on the lattice are hadrons

(3) Lattice spacing a ≈ 1 fm \sim chiral symmetry breaking scale)

Solving low-energy many-body problems!

[1] Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009). [2] Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019).

Applications of LEFT

Applications in Nuclear Physics

(1) Neutron-proton scattering [Li et al., Phys. Rev.C, 98, 044002(2018)]

• Phase shifts are more accurate at N³LO interaction

(2) Nuclear binding [Elhatisari et al., Phys. Rev. Lett., 117, 132501(2016)]

• The quantum phase transition of alpha particles depend on nuclear binding

(3) Alpha–alpha scattering [Elhatisari et al., Nature, 528, 111(2015)]

(4) Nuclear thermodynamics [Lu et al., Phys. Rev. Lett., 125, 192502(2020)]

(5) Properties of nuclei [Lu et al., Phys. Lett. B, 797, 134863(2019)]

(6) Hoyle state [Shen et al., Nat. Commun., 14, 2777(2023)]

Applications in Exotic Hadron ???

 K

Heavy-flavor three-body system $ND\bar{D}$ $T_{cc}p, D Dp + \pi(\gamma), \Xi_{cc} + \pi(\gamma),$ [838] DD^*N $\frac{1}{2}(\frac{1}{2}^+, \frac{3}{2}^+)$ $BS \sim 4773.2, 4790.7$ (GEM) [838] charmed baryon + charmed meson $rac{3}{2}(-)$ DD^*N difficult to form bound states (GEM) [838] (1) Gaussian expansion method (GEM) $_{DKR}$ $_{DKK}$ $_{\frac{1}{2}(0^{-})}$ D-like state ~ 2040.5 (FCA) [821], $\pi\pi D$ [821] I^{\prime} -like state ~ 2900 (QCDSR, χ F) [839] $\frac{1}{2}(\hat{\mathbf{u}})$ DKK μ bound state (FCA) $\left[621\right]$ $1(\frac{1}{2}^+)$ $\bar{D}\bar{K}\Sigma_c$ $BS \sim 4738.6$ (GEM) [840] $D\Xi', D_s\Sigma_c$ [840] (2) QCD sum rule (QCDSR) $D^{(*)}\text{ multi } \rho$ several $D_I^{(*)}$ states (FCA) [841, 842] \dddotsc $0(?)$, $1(?)$ BS \sim 4241 - 10*i*, [4320 - 13*i*, 4256 - 14*i*] (FCA) [843] BS ~ 4162 (GEM) [273], 4140 (χ F) [819], DDK $\frac{1}{2}(0^{-})$ $DD_{s}^{*}, D^{*}D_{s}$ [826] 4160 (FV) [820] (3) Born-Oppenheimer approximation (BO) \mathbb{R} $\frac{1}{2}(0^{-})$ BS ~ 4181.2 (GEM) [822], 4191 (FCA) [825] $D_s\bar{D}^*, J/\psi K$ [822] DD^*K $\frac{1}{2}(1^{-})$ $BS \sim 4317.9$ (BO) [823] $BS \sim 4294.1$ (GEM) [8221 4317.9 (BO) [823]. $D_s^{(*)}\bar{D}^{(*)}$, $J/\psi K^*$ [823, 844] $D\bar{D}^*K$ $\frac{1}{2}(1^-)$ 4307 (FCA) [824] (4) Fixed center approximation (FCA) $D^*D^*\bar{K}^*$. $\frac{4}{1040} - 40i$. $D^*D^*\bar K^*$ $\frac{1}{2}(0^-, 1^-, 2^-)$ $BS \sim [4850 - 46i, 4754 - 50i], (FCA)$ [845] $D^*D^{(*)}\bar{K}^*.$ $[845]$ $[4840 - 43i, 4755 - 50i]$ $[D^*D^*\bar{K}^*, D^*D^{(*)}\bar{K}^*]$ $1(\frac{1}{2}^+, \frac{3}{2}^+)$ $\bar{D}\bar{D}^*\Sigma_c$ $J/\psi p\bar{D}^{(*)}, \bar{T}_{cc}\Lambda_c \pi$ [829] (5) Faddeev equation (F) et al. $BS \sim 6292.3, 6301.5$ (GEM) [829] $J/\psi K\bar K$ $0(1^-)$ $Y(4260) \sim 4150 - 45i$ (xF) [481] $rac{1}{2}(1^{-})$ DDD^* $BS \sim 5742.2$ (GEM) [833] $DDD\pi(\gamma)$ [833] $\frac{1}{2}(0^-, 1^-, 2^-)$ DD^*D^* several loosely bound states (GEM) [834] charmed mesons $+ \dots [834]$ $\frac{1}{2}(0^-, 1^-, 2^-, 3^-)$ several loosely bound states (GEM)[834] charmed mesons $+ \dots [834]$ **Three-body Quasi-two-body** $BS \sim 5790.9 - 49.8i, 5990.2, 5989.4$ (FCA) [835] **problem system solving** $\frac{1}{D^*D^*D}$ $\frac{1}{2}(2^{-})$ $BS \sim 5879$ (F) $[846]$ $D^*D^*\bar{D}^*$ $\frac{1}{2}(3^{-})$ $BS \sim 6019$ (F) [845] $?(\frac{3}{2}^+)$ $\Omega_{ccc}\Omega_{ccc}\Omega_{ccc}$ no bound state (GEM) [847] 6/17

 $\Xi_{cc}\Xi_{cc}\bar{K}$

 $rac{1}{2}(0^{-})$

[1] Ming-Zhu Liu et al., arXiv:2404.06399 (2024).

TABLE XXXIX. Summary for heavy-flavor three-body states. Energies are in units of MeV.

 $BS \sim 7641.8$ (GEM) [848]

The necessity of three-body force

(1) **Direct three-body interactions**

-
- In three-quark systems In nucleus systems

LQCD calculate gluon flux-tube^[1,2] LEFT calculate the binding energy^[3] The results with 3NF close to Exp. • LQCD calculate gluon flux-tube^[1,2] • LEFT
-

(2) **Study of many-body systems**

- In nucleus systems
- LEFT calculate the binding energy^[3]
- The structure is "Y" type **•** The results with 3NF close to Exp.

[1] H. Ichie et al., Nucl. Phys.A 721,C899-C902(2003). [2] F. Bissey et al., Phys.Rev.D 76,114512(2007). [3] Bao-Ge Deng et al., Sci. Sin-Phys. Mech. Astron., 54,292009(2024).

02 hadron system using LEFT **Study the DD^{*}K threehadron system using LEFT**

T_{cc}^{\top} , $D_{s0}^{\infty}(2317)$, $D_{s1}($ L^+ , $D_{\rm so}^*(2317)$, $D_{\rm so}(2460)$ i , $D_{s0}^*(2317)$, $D_{s1}(2460)$ in experimental (Why study DD*K system

Why study DD^*K system?

- Discovery of the $T_{cc}^{+}[1]$ on LHCb \bullet Discovery of
- A threshold very close to DD^*
- T_{cc}^{+} as DD^* hadronic molecule $\begin{array}{c} \bullet \quad L_{S0}(\angle 51) \\ \bullet \quad L_{C}(\triangle 64) \end{array}$

- Discovery of $D_{s0}^*(2317)$, $D_{s1}(2460)^{[2]}$ on Belle
- Their mass difference is very close to the D, D^* ∗
	- $D_{s0}^*(2317)$, $D_{s1}(2460)$ as **DK**, **D*****K** hadronic molecule
	- LQCD calculation^[3] supports this scenario

[1] R. Aaij et al. (LHCb), Nature Phys. 18, 751(2022). [2] P. Krokovny et al. (Belle), Phys. Rev. Lett. 91, 262002 (2003). [3] L. Liu et al., Phys. Rev. D 87, 014508 (2013).

Two-body interaction in DD^*K system $*K$ system $\left\{\n\begin{array}{c}\n\text{By chiral effective field theory}\n\end{array}\n\right\}$

By chiral effective field theory |

Deng et al., Phys. Rev. D 105, 054015(2022) Ke et al., Phys. Rev. D 105, 114019(2022)

Du et al., Phys. Rev. D 105, 014024(2022)

Shi et al., Phys. Rev. D 106, 096012(2022) Chen et al., Phys. Lett. B 833, 137391(2022) Liu et al., Phys. Rev. D 107, 054041(2023) Wang et al., Phys. Rev. D 107, 094002(2023) **… …**

Liu et al., Phys. Rev. D 79, 094026(2009) Huang et al.[,](https://inspirehep.net/authors/1507743) Eur. Phys. J. C 83, 76(2023) Geng et al.[,](https://inspirehep.net/authors/1279168) Phys. Rev. D 82, 054022(2010) **Guo et al., Eur. Phys. J. A 40, 171-179(2009)** Yao et al., J. High Energy Phys. 11, 058(2015) Zhong et al., Phys. Rev. D 78, 014029(2008) Wang, Phys. Rev. D 75, 034013(2007)**… …**

Two-body interaction in $DD*K$ system s_{py} chiral effective field theory

By chiral effective field theory

Hamiltonian:
\n
$$
H_{T_{cc}^{+}} = M_D + M_{D^*} + K_{DD^*} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{DD^*}^{\text{Con}} + V_{DD^*}^{\text{OPE}},
$$
\n
$$
H_{D_{s0}^{*}} = M_D + M_K + K_{DK} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{DK},
$$
\n
$$
H_{D_{s1}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{DK},
$$
\n
$$
H_{D_{s1}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{D^*K},
$$
\n
$$
H_{D_{s1}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{D^*K},
$$
\n
$$
H_{D_{s1}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{D^*K},
$$
\n
$$
H_{D_{s1}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{D^*K},
$$
\n
$$
H_{D_{s1}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{D^*K},
$$
\n
$$
H_{D_{s1}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{D^*K},
$$
\n
$$
H_{D_{s2}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{D^*K},
$$
\n
$$
H_{D_{s2}} = M_{D^*} + M_K + K_{D^*K} + f_{2B}(\mathbf{p}_i, \mathbf{p}_i')V_{D^*K},
$$
\n
$$
H_{D_{s2}} = M_{D^*} + M_K + K_{D^*K} + M_{D^*K} + M_{D^*
$$

EFT is applicable to physical processes where the $\boldsymbol{Q} \ll \boldsymbol{\Lambda}$ **E** Petter renormalization group invariance

Single-particle regulator [3] (equal to directly cutoff on lattice)

11/17

- Use binding energy of T_{cc}^+ , $D_{s0}^*(2317)$, $D_{s1}(2460)$ to extract parameters v_0 , h_3 , h_3^* ∗
- Calculate on box size $L=5^3 \sim 19^3$ cubic lattice with N=2 bosons
- Set cutoff Λ =300, 350, 400 MeV, and lattice spacing a=1/200 MeV⁻¹ \approx 0.99 fm.
- Long-range OPE makes convergence slower

$DD*K$ three-body bound state $\bigcup_{\text{LO contact term}}$

 $DD*K$ three-body forces $V_{DD*K}(p_i)$ $DD*K$ three-body lagrangian $\mathcal{L} = c_3 \langle H \mathcal{D}_\mu H^\dagger H \mathcal{D}^\mu H^\dagger \rangle + c_3^\prime \langle H \mathcal{A}_\mu H^\dagger H \mathcal{A}^\mu H^\dagger \rangle$ • The contribution of first term is leading

- Calculate DD^*K binding energy on box size $L=10^3 \sim 14^3$ cubic lattice with N=3 bosons
- Compare binding energy by sliding the strength of three-body force (c_3)
- **A clear three-body bound state** with bingding energy larger than 44 MeV
- Expand three-boson system in S-wave to infinite volume^[1]

$$
\frac{\Delta E}{E_T} = -(\kappa L)^{-3/2} \sum_{i=1}^{3} C_i \exp(-\mu_i \kappa L)
$$

[1]Y. Meng, et al., Phys. Rev. D 98, 014508(2018). [2] Li Ma et al., Chin. Phys. C 43, 014102(2019).

• **Consistent results** compared to other research

 $4317.92^{+3.66}_{-4.32} (53.52^{+3.66}_{-4.32})$

)

) \vert

First excited state of $DD*K$ system Same ground energy

Same ground energy **Renormalization group invariance**

> Different momentum cutoffs Different parameters

Obtain the same excited states?

[∗] excited states (**S-wave**)

- The three-body binding energy of the ground and the first excited state with the different cutoffs
- The first excited states with different cutoffs **coincide with each other** when the box size goes large
- Two close excited states correspond to the rho-type and lambdatype excitation in the quark model
- The quantum number is 1⁻: Use the standard angular momentum and parity projection technique^[1]

$$
\Psi_A\rangle=\frac{d_n}{24}\sum_{i=1}^{24}\chi_n(\Omega_i)R(\Omega_i)|\Psi_0\rangle
$$

[1]B.-N. Lu et al., Phys. Rev. D 90, 034507 (2014).

Summary

Summary

(1) We applied the lattice EFT to study exotic hadron.

- $DD*K$ three-body system has a clear **bound state** with quantum number $J^P = 1^-$ −
- Binding energy is within the range of (-84, -44) MeV

(2) To check the renormalization group invariance of our framework

- The first excited states with different cutoffs **coincide with each other** when the box size goes large
- Splitting of the first excited state due to radial excitation between different constitents, like the ρ , λ excitations when calculating the baryon excitation in the quark model.

(3) Lattice EFT, as an Ab initio calculation for many-body problem, is promising for the study of exotic hadrons.

