辛南印紀大學

The three-hadron DD*K system on the lattice EFT

Zhenyu Zhang South China Normal University

The 23rd International Conference on Few-Body Problems in Physics Beijing, September 22-27, 2024

Zhenyu Zhang, Xin-Yue Hu, Guangzhao He, Jun Liu, Jia-Ai Shi, Bing-Nan Lu, and Qian Wang, arXiv: 2409.01325.

Table of Contents

01 Introduction to Lattice Effective Field Theory (LEFT)

02 Study the *DD*^{*}*K* three-hadron system using LEFT

03 Summary

1933 茅南仰範大導

Introduction

01

Introduction to LEFT

Lattice EFT = Chiral EFT+ Lattice + Monte Carlo

(1) EFT description of hadron interactions(contact terms + pion exchange potential)

(2) The degrees of freedom on the lattice are hadrons

(3) Lattice spacing a ≈ 1fm(~ chiral symmetry breaking scale)

Solving low-energy many-body problems!

[1] Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).[2] Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019).

	LQCD	LEFT	
degree of freedom	quarks & gluons	hadrons	
lattice spacing	~0.1fm	$\sim 1 \text{fm}$	
dispersion relation	relativistic	non-relativistic	
continuum limit	\checkmark	×	
model	Lagrangian	Hamiltonian	
solver	path integral	Schrödinger equation	
		4/17	

Applications of LEFT

Applications in Nuclear Physics

(1) Neutron-proton scattering [Li et al., Phys. Rev. C, 98, 044002(2018)]

• Phase shifts are more accurate at N³LO interaction

(2) Nuclear binding [Elhatisari et al., Phys. Rev. Lett., 117, 132501(2016)]

• The quantum phase transition of alpha particles depend on nuclear binding

(3) Alpha–alpha scattering [Elhatisari et al., Nature, 528, 111(2015)]

(4) Nuclear thermodynamics [Lu et al., Phys. Rev. Lett., 125, 192502(2020)]

(5) Properties of nuclei [Lu et al., Phys. Lett. B, 797, 134863(2019)]

(6) Hoyle state [Shen et al., Nat. Commun., 14, 2777(2023)]

Applications in Exotic Hadron ???

TABLE XXXIX. Summary for heavy-flavor three-body states. Energies are in units of MeV.

[1] Ming-Zhu Liu et al., arXiv:2404.06399 (2024).

The necessity of three-body force

(1) Direct three-body interactions

Λ (MeV)	350	375	400	Exp
$c_{ m E}$	0.561	0.412	0.380	
$E_{2\rm NF}$ (³ H)	-7.64(1)	-7.77(1)	-7.78(1)	-8.482
$E_{2\rm NF+3NF}$ (³ H)	-8.483	-8.483	-8.483	-8.482
$E_{2\rm NF}$ (⁴ He)	-29.8(4)	-29.4(4)	-29.2(4)	-28.34
$E_{2\rm NF+3NF}$ (⁴ He)	-29.0(4)	-28.6(4)	-28.4(4)	-28.34
$E_{2\rm NF} \left({}^{16}\rm O \right)$	-140.6(8)	-141.7(8)	-141.8(9)	-127.6
$E_{2\rm NF+3NF} \left({}^{16}\rm O \right)$	-127.3(8)	-128.1(8)	-128.1(8)	-127.6

- In three-quark systems
- LQCD calculate gluon flux-tube^[1,2]
- The structure is **"Y" type**

(2) Study of many-body systems

- In nucleus systems
- LEFT calculate the binding energy^[3]
- The results with 3NF close to Exp.

[1] H. Ichie et al., Nucl. Phys.A 721,C899-C902(2003).
[2] F. Bissey et al., Phys.Rev.D 76,114512(2007).
[3] Bao-Ge Deng et al., Sci. Sin-Phys. Mech. Astron., 54,292009(2024).

Study the *DD***K* threehadron system using LEFT

02

$T_{cc}^{+}, D_{s0}^{*}(2317), D_{s1}(2460)$ in experimental

Why study DD^*K system?

- Discovery of the $T_{cc}^{+}[1]$ on LHCb
- A threshold very close to DD^*
- T_{cc}^+ as DD^* hadronic molecule

- Discovery of $D_{s0}^{*}(2317)$, $D_{s1}(2460)^{[2]}$ on Belle
- Their mass difference is very close to the D, D^*
- $D_{s0}^{*}(2317)$, $D_{s1}(2460)$ as *DK*, *D***^{*}***K* hadronic molecule
- LQCD calculation^[3] supports this scenario

[1] R. Aaij et al. (LHCb), Nature Phys. 18, 751(2022).
[2] P. Krokovny et al. (Belle), Phys. Rev. Lett. 91, 262002 (2003).
[3] L. Liu et al., Phys. Rev. D 87, 014508 (2013).

Two-body interaction in DD^*K system

By chiral effective field theory

Deng et al., Phys. Rev. D 105, 054015(2022) Ke et al., Phys. Rev. D 105, 114019(2022)

Du et al., Phys. Rev. D 105, 014024(2022)

Shi et al., Phys. Rev. D 106, 096012(2022)
Chen et al., Phys. Lett. B 833, 137391(2022)
Liu et al., Phys. Rev. D 107, 054041(2023)
Wang et al., Phys. Rev. D 107, 094002(2023)

Liu et al., Phys. Rev. D 79, 094026(2009) Huang et al., Eur. Phys. J. C 83, 76(2023) Geng et al., Phys. Rev. D 82, 054022(2010)

Guo et al., Eur. Phys. J. A 40, 171-179(2009)

Yao et al., J. High Energy Phys. 11, 058(2015) Zhong et al., Phys. Rev. D 78, 014029(2008) Wang, Phys. Rev. D 75, 034013(2007)

Two-body interaction in DD^*K system

By chiral effective field theory

Hamiltonian:

$$H_{T_{cc}^{+}} = M_{D} + M_{D^{*}} + K_{DD^{*}} + f_{2B}(\boldsymbol{p}_{i}, \boldsymbol{p}_{i}')V_{DD^{*}}^{\text{Con}} + V_{DD^{*}}^{\text{OPE}},$$

$$H_{D_{s0}^{*}} = M_{D} + M_{K} + K_{DK} + f_{2B}(\boldsymbol{p}_{i}, \boldsymbol{p}_{i}')V_{DK},$$

$$H_{D_{s1}} = M_{D^{*}} + M_{K} + K_{D^{*}K} + f_{2B}(\boldsymbol{p}_{i}, \boldsymbol{p}_{i}')V_{D^{*}K},$$

EFT is applicable to physical processes where the $Q \ll \Lambda$

[1] M.-L. Du et al., Phys. Rev. D 105, 014024 (2022). [2] F.-K. Guo et al., Eur. Phys. J. A 40, 171 (2009). [3] B.-N. Lu et al., arXiv:2308.14559.

Single-particle regulator^[3] (equal to directly cutoff on lattice) $f_{2B}(\boldsymbol{p}_i, \boldsymbol{p}'_i) = \prod_{i=1}^2 g_{\Lambda}(\boldsymbol{p}_i) g_{\Lambda}(\boldsymbol{p}'_i)$ $g_{\Lambda}(\boldsymbol{p}) = \exp(-\boldsymbol{p}^6/2\Lambda^6)$

• Better **renormalization group** invariance

- Use binding energy of T_{cc}^+ , D_{s0}^* (2317), D_{s1} (2460) to extract parameters v_0 , h_3 , h_3^*
- Calculate on box size $L=5^3 \sim 19^3$ cubic lattice with N=2 bosons
- Set cutoff Λ =300, 350, 400 MeV, and lattice spacing a=1/200 MeV⁻¹ ≈0.99 fm.
- Long-range OPE makes convergence slower

DD^{*}*K* three-body bound state

 $DD^*K \text{ three-body lagrangian} \qquad \mathcal{L} = c_3 \langle H\mathcal{D}_{\mu} H^{\dagger} H\mathcal{D}^{\mu} H^{\dagger} \rangle + c'_3 \langle H\mathcal{A}_{\mu} H^{\dagger} H\mathcal{A}^{\mu} H^{\dagger} \rangle \qquad \bullet \text{ The contribution of first term is leading} \\ DD^*K \text{ three-body forces} \qquad V_{DD^*K}(p_i) = \frac{c_3}{4f_{\pi}^2} (p_1 \cdot p_3 + p_1 \cdot p'_3 + p_2 \cdot p_3 + p_2 \cdot p'_3 + p'_1 \cdot p_3 + p'_1 \cdot p'_3 + p'_2 \cdot p_3 + p'_2 \cdot p'_3) \epsilon \cdot \epsilon^*$

- Calculate DD^*K binding energy on box size L=10³~14³ cubic lattice with N=3 bosons
- Compare binding energy by sliding the strength of three-body force (c_3)
- A clear three-body bound state with bingding energy larger than 44 MeV
- Expand three-boson system in S-wave to infinite volume^[1]

$$\frac{\Delta E}{E_T} = -\left(\kappa L\right)^{-3/2} \sum_{i=1}^3 C_i \exp(-\mu_i \kappa L)$$

[1]Y. Meng, et al., Phys. Rev. D 98, 014508(2018). [2] Li Ma et al., Chin. Phys. C 43, 014102(2019).

• **Consistent results** compared to other research

 $4317.92^{+3.66}_{-4.32}(53.52^{+3.66}_{-4.32})$

First excited state of DD^*K system

The values of the parameter c_3 on lattice with $\Lambda = 400, 350, 300 \text{ MeV}$									
Λ (MeV)	Parameter -						State		
		9	10	11	12	13	14		
400		0.100	0.100	0.100	0.100	0.100	0.100	Input	
350	$c_3 \; ({\rm MeV}^{-5})$	0.170	0.162	0.164	0.164	0.163	0.163	Fitted	
300		0.328	0.305	0.281	0.278	0.281	0.280	Fitted	

Renormalization group invariance Same ground energy

> Different momentum cutoffs Different parameters

Obtain the same excited states?

DD^{*}*K* excited states (**S-wave**)

- The three-body binding energy of the ground and the first excited state with the different cutoffs
- The first excited states with different cutoffs **coincide with each other** when the box size goes large
- Two close excited states correspond to the rho-type and lambdatype excitation in the quark model
- The quantum number is 1⁻: Use the standard angular momentum and parity projection technique^[1]

$$\Psi_A \rangle = \frac{d_n}{24} \sum_{i=1}^{24} \chi_n(\Omega_i) R(\Omega_i) |\Psi_0\rangle$$

[1]B.-N. Lu et al., Phys. Rev. D 90, 034507 (2014).

1933 茅南仰孔大学

Summary

Summary

(1) We applied the lattice EFT to study exotic hadron.

- DD^*K three-body system has a clear **bound state** with quantum number $J^P = 1^-$
- Binding energy is within the range of (-84, -44) MeV

(2) To check the renormalization group invariance of our framework

- The first excited states with different cutoffs **coincide with each other** when the box size goes large
- Splitting of the first excited state due to radial excitation between different constitents, like the ρ , λ excitations when calculating the baryon excitation in the quark model.

(3) Lattice EFT, as an Ab initio calculation for many-body problem, is promising for the study of exotic hadrons.

