The 23rd International Conference on Few-Body Problems in Physics

' KK * and DD *resonance
- “states in the Non-Hermitian
) Quantum Mechanics

T

Bao-Xi Sun
Beijing University of Technology

% 2024.09.25



Content

|+ 1. The Schrodinger equation in a

/ectangu ar potential well.

—~2. The Schrodinger equation in a
-~ Yukawa potential.

« 3. The KK interaction: f1(1285) and f1
(1420) .

4. The DD interaction: X(3872) and Zc
/L (3900) and X(3940)

— 5. Summary




1. Rectanglar potential—-well

The rectanglar potential-well is defined by

|
0 xe(0,L)
PR My

~with the depth of the well ¥, >0.

The Schrodinger equation can be written as: ©
N

o' +kp=0,  k=2ME/n  xe(0,L)
v k=0, k=\2M(E+V,)/n xe(0,

Moiseyev, Non-Hermitian Quantum Mechanics, 20l



1. Rectanglar potential—-well

The general solution is

|

Q= Cek°x+C’ o (x<0),

*/ @ = Ae™* + Be™ (0<x<L),

— k ¢:Deik°x+D'e_ik°x (x>L),
~Incoming wave condition: ('=D =()

N

Outgoing wave condition: (" _ ' —

The transcendental equation is
47 2 2
L reotkar, = H +hs)
e kk,

Positive(negative) sign represents the
outgoing(incoming) wave.



1. Rectanglar potential—-well

The mechanism of transition from a bound

|
;?tér%e to a resonance state becomes evident

when two variables are introduced.
.

y E 2MV.I?
o= /1+—, = |

Bound states:
va=(n-1)r+2cos'a, n=12,.

)Zirtual states:

— 7/05=(n—1)7r+2c:os_1 Ji-a*, n=12,.4
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2. One-Pion Exchange potential

The one-pion-exchange potential 1s:

; V _ 26—7}’””
/ (x)=-g p

e —

= where the distance in the denominator has been
replaced with the range of force, d=1/m.

Supposing the radial wave function R(r):@, the
r

radial Schrodinger equation becomes

2 2
B ) )
Sun et al., CTP, 76, 105301, 2024




2. One-Pion Exchange potential

With the variable substitution:

/ u(r)=J(x) With a=2¢2ud, p=t. p*=sauE.

The Schrodinger equation becomes the Bessel eq.
2 2
. dJ(X) ldJ(x)-I-(l—p—jJ(X):O,

~ +
dx> x dx x
r—0, u(r)—0, Jp(x)zJp(a)zO,
If only one bound state exists, and the binding

ergy is given, the value of 5> =_g4?yE can be

aZ

—determined, and the coupling ¢ -

1S obtaine 1th

the first zero piont of J (a)



2. One-Pion Exchange potential

The Hankel functions are also solutions of the Bessel
~ function.In a scattering process, the general solution
ﬁe Bessel equation is  u(r)=DHY(x)+ D'HY(x),
~Incoming wave condition: r—0, u(r)—0, HY(x)= H(a)=0,

Outgoing wave condition:»—0, u(r)—>0, H(x)=H(a)=0,

With the same zero point(coupling constant),the \.
order of HY(«)is determined, which is related to th

/énergy of the resonance state,

_— r ,0’2
E = (M_MThreshod)_ZEZ_gdzlu *




3.

£f1.(1285) or f1(1420)7

1. I}Qca, Oset, Singh, PRD, 72, 014002, 2005

4 / . —
4 (1285) is a KK bound state.
2./Wan, Zhao, Sun, 1808.08358[hep-ph]

"
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f1(1420) is a KK resonance state, no other pole
Is detected.

3.Debastiani, Aceti, Liang, Oset, PRD, 95, 034015,
2017

f1(1420) is related to a K'KK triangle
singularity.
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3. KK* “Interaction

I\n the unitary coupled-channel approach, the vector
~ meson transfer 1s dominant, while the pion exchange
/(sfjeoglected.
~ Wan, Zhao, Sun, 1808.08358[hep-ph]
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}—ctually, the OPEP 1s critical in the generation o

-——resonance states.
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3. KK*"interaction
'J[“he f}(1285) particle is treated as a KK bound state

;(v{—h a binding energy of 105MeV, and the coupling
onstant is determined as g=1.682.

Gl ey | Neme | | Mass | Width

3 1417-i18  £1(1420) 0*(1**) 14263+0.9 545+2.6
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4. DD* "interaction

I\n the unitary coupled-channel approach, the vector

:?#mn transfer 1s dominant, while the pion exchange
1s. neglected.

~ Sun,Wan, Zhao CPC 42, 053105 (2018)
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}—ctually, the OPEP 1s crltlcal in the generation O

-——resonance states.



4. DD* "interaction
The X(3872) particle 1s assumed to be a pp* bound

JZ(‘% with a zero binding energy since it lies at the

'p*° threshold. Therefore, the coupling constant is

~ determined as g=0.323 according to the first zero
point a=2.405 of J,(x)

0.8 |
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4. DD* “Interaction

2

‘If the X(3872) particle 1s

Z,é’ﬁ* bound state, Zc(3900)
would be a pD* resonance &' ;
05 38851 “ ;3

~ state. All states are 1sospin

degenerate.
ImE(MeV)

DE* IG(JPC)
% 1 3885-i1 Zc(3900) 17(17") 38871
2 4029-1108 X(3940) 2°(?") 3942
3 4328-i191 x,,(4274) o) 4286

4 4772-267 X(4685) o+ (1++) 4684
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4. DD*Vinteraction

| Th7resonance state at 4029-1108MeV might
:’gﬁmspond to the X(3940) particle, which is
redicted as a partnenr state of X(3872) with J™ =1"".
~ Y. S. Kalashnikova, PRD, 72, 034010, 2005
WP G. Ortega, PRD, 81, 054023, 2010 \
Zhou and Xiao, PRD, 96, 054031, 2017
Q¢Deng et al., 2312.10296[hep-ph].
£ ct al., 2402.14541 heplat].

—F. Gi1acosa et al., [IMPA, 34, 1950173, 2019
G. J. Wang et al., 2306.12406[hep-ph]. &



4. DD* interaCtiOn

I\f the X(3872) particle 1s a p*p*~/p D™ bound state,
f1ndmg energy 1s about 8.11MeV, then the
oupling constant g =0.6520. Two resonance states are

~ detected.
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5. Summary
\B. Xe@Siin et al., Commun. Theor. Phys., 76, 105301,

20

/l/ffhe interactions of hadrons are studied in the non-

~Hermitian quantum mechanics. By solving the
Schrodinger equation, some resonance states are
obtained when the outgoing wave condition 1s
considered.

/ivOPEP is critical in the formation of KK~ and p

—bound and resonancd states.



