Experimental program for Super Tau-Charm Facility

Xian-Wei Kang (On behalf of STCF working group) Beijing Normal University

FB23, Beijing September 22-27, 2024

Challenges of the SM model

The SM of particle physics is a well-tested theoretical framework However, the SM has a number of unresolved questions that require further investigations:

- Confinement: formation of colorless bound states —— "hadrons"
- Matter-antimatter asymmetry of the Universe; dark matter, numbers of flavors, etc.

Masses			Couplings			
Parameter	Value	Method	Parameter	Value	Method	
m _u	1.9 MeV	Lattice	α	0.0073	non-collider -	+
m_d	4.4 MeV	Lattice		4 47 405	conider	
m_s	87 MeV	Lattice	G _F	1.17x10-5	Non-collider	0
m.	1.3 MeV	Collider	α_s	0.12	Lattice + collid	er
m _b	4.24 MeV	Collider	Flavouranc	d CP viola	tion	
m _t	173 GeV	Collider	Parameter	Value	Method	
me	511 keV	Non-collider				
m	106 MeV	Non-collider	θ_{12} (CKM)	13.1°	Collider	
mμ	1 70 Call	Callidan	θ_{23} (CKM)	2.4°	Collider	
m_{τ}	1.78 GeV	Collider	θ_{13} (CKM)	0.2°	Collider	
m _z	91.2 GeV	Collider	S(CKM-CPV)	0 995	Collider	
m_H	125 GeV	Collider		0.555		
			e (strong CP)	~0	Non-collider	

Rich Physics in the Tau-Charm Energy Region

 The tau-charm energy region covers a unique transition region between perturbative and non-perturbative QCD, with unique and rich physics programs

The Super Tau Charm Facility

Energy range E_{cm} = 2-7 GeV Peak luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV Potential to increase luminosity & realize beam polarization Total cost: 4.5B RMB 1 ab⁻¹ data expected per year

A Super Particle Factory

- Rich resonances, large production cross-sections of charmonium, threshold production of hadron and tau pairs
- Huge numbers of exotic hadrons, including multi-quarks & states with gluonic excitations

Physics Program at STCF

M. Achasov, et al., STCF conceptual design report (Volume 1): Physics & detector, Front. Phys. 19(1), 14701 (2024)

Key Question: Inner structure of hadrons

Hadron structure/spectroscopy is a crucial way to explore the QCD theory and confinement

QCD and hadron structure

- Remaining big challenge in SM: non-perturbative effect in QCD theory
- The largest uncertainty is from the low-energy non-perturbative energy region
- STCF fine (ISR) scan from 0.6–7 GeV to study production of hadrons inclusively and exclusively

Fragmentation functions

Fragmentation function $D_q^h(z)$: probability that hadron *h* is found in the debris of a hadron carrying a fraction $z=2E_h/\sqrt{s}$ of parton's momentum.

World data: Pion

World data: Kaon

Fragmentation functions at STCF

- e⁺e⁻ collider experiment provides the cleanest input for fragmentation functions (FFs) fitting. To accurately extract Parton Distribution Functions (PDFs), more precise FFs are required.
- Two types of FFs can be studied at an unpolarized e^+e^- collider: *D* and H_1^{\perp} . Multi-dimensional binning of the measurements can be provided.
- With polarized electron beam, more FFs can be studied. There is a task-force group working on it.

		Quark Polarization											
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)									
Unpolarized	Hadrons	$D_1 = \underbrace{\bullet}_{\text{Unpolarized}}$		$H_1^{\perp} = \underbrace{\textcircled{\dagger}}_{\text{Collins}} - \underbrace{\textcircled{\bullet}}_{\text{Collins}}$									
idrons	L		$G_1 = \underbrace{\bullet }_{\text{Helicity}} - \underbrace{\bullet }_{\text{Helicity}}$	$H_{1L}^{\perp} = {} - {} +$									
Polarized Ha	т	$D_{1T}^{\perp} = \underbrace{\bullet}^{\dagger} - \underbrace{\bullet}_{Polarizing FF}$	$G_{1T}^{\perp} = \underbrace{\dagger}_{\bullet} - \underbrace{\bullet}_{\bullet}$	$ \begin{array}{c} H_1 = \underbrace{\bigstar}_{\text{Transversity}} - \underbrace{\bigstar}_{\text{Transversity}} \\ H_{1T}^{\perp} = \underbrace{\bigstar}_{\text{Transversity}} - \underbrace{\bigstar}_{\text{Transversity}} \end{array} $									

Electromagnetic form factors (EMFFs)

- Various theoretical models describe TLFF in non-perturbative region: ChEFT, VMD, relativistic CQM, parton model, pQCD etc.
- Dispersion theoretical analysis, provide a coherent framework for the joint interpretation of SL and TL EMFFs over the entire physical range of q².

Prospect of TL-EMFF at STCF

- Remaining questions of TL-EMFFs:
 - Step-like behavior of production cross section, indication of near-threshold singularity.
 - Damped oscillation distribution after subtracting modified dipole in effective FF.
 - Damped oscillation distribution of $|G_E/G_M|$ ratio.
 - Evolution of the phase between G_E and G_M.
 - The asymptotic behavior of TL-EMFFs

Charmonium (like) States

• The overpopulated charmonium spectrum is a unique territory to study exotic hadrons

Existing XYZ puzzles:

- Masses away from quark model predictions, e.g. X(3872), Y(4230) and Y(4260)
- Many seen in final states of charmonium, instead of open-cham channels (Not all)
- Charged structures like Z_{c(s)} must contain at least four quarks. Their connections to Y and X are of interest
- An overall classification is still lacking

Charmonium(like) States at STCF

- STCF provides unique fine scan of the exotic hadron states
- 1 ab⁻¹/year luminosity at STCF can produce: 1B Y(4230), 100M Z_c(3900) and 5M X(3872)

More opportunities at STCF:

- Energy dependent structures of Z_{c(s)}
- Structures in more channels, with larger production rates above 5 GeV
- Charged hadron final states of the whole energy range
- Hybrid candidates
- Missing charmonium states and their transitions

Light Hadron Opportunity at STCF

High Statistical Data : 1 ab⁻¹/year

CME (GeV)	Lumi (ab ⁻¹)	Samples	$\sigma(nb)$	No. of Events	Remarks						
3.097	1	J/ψ	3400	3.4×10^{12}							
3.670	1	$\tau^+\tau^-$	2.4	2.4×10^{9}	2 <u>5</u> 4						
	5	ψ(3686)	640	6.4×10^{11}	s 						
3.686	1	$\tau^+\tau^-$	2.5	2.5×10^{9}							
	1959 1	$\psi(3676) = \tau^+ \tau^-$	1012	2.0×10^{9}							
		JAY	3.0	3.6×10^{9}							
	and a second	11(3686)	~101	$1 2.8 \times 10^9$							
3.770	1	$\varphi(3900)$		7.9×10^{8}	Single tag						
		$D^+ \overline{D}^-$		5.5×10^{8}	Single tag						
		$\tau^+\tau^-$	2.9	2.9×10^{9}							
		$D^{*0}\bar{D}^{0} + c.c$	4.0	1.4×10^{9}	$CP_{D^0\bar{D}^0} = +$						
1 000	1	$D^{*0}\bar{D}^{0} + c.c$	4.0	2.6×10^{9}	$CP_{D^0\bar{D}^0} = -$						
4.009		$D_s^+ D_s^-$	0.20	2.0×10^{8}	22						
		$\tau^+\tau^-$	3.5	3.5×10^{9}							
4.180		$D_s^{+*}D_s^{-}$ +c.c.	0.90	9.0×10^{8}							
	1	$D_{s}^{+*}D_{s}^{-}+c.c.$		1.3×10^{8}	Single tag						
		$\tau^+\tau^-$	3.6	3.6×10^{9}	0 0						
		$J/\psi\pi^+\pi^-$	0.085	8.5×10^{7}							
4.230	1	$\tau^+\tau^-$	3.6	3.6×10^{9}							
	80.00	γX(3872)	1002.01								
1.9.60		$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}							
4.360	1	$\tau^+\tau^-$	3.5	3.5×10^{9}							
1.100		$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}							
4.420	1	$\tau^+\tau^-$	3.5	3.5×10^{9}							
4.630		$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}							
		$\Lambda_c \bar{\Lambda}_c$	0.56	5.6×10^{8}							
	1	$\Lambda_c \bar{\Lambda}_c$		6.4×10^{7}	Single tag						
		$\tau^+\tau^-$	00								
4.0-7.0	3	300-point scan with 10 MeV steps, 1 fb ⁻¹ /point									
> 5	2–7	Several ab^{-1} of high-energy data, details dependent on scan results									

- Large number of J/ψ and $\psi(3686)$ events for exploring light hadron physics
- Traces of glueballs and hybrid states may be found in more ways
- Search for more production and decay modes of hybrid candidates and glueball candidates
- Electromagnetic couplings to glueball candidates:
 - radiative transition rates
 - > transition form factors in the time-like region
 - \succ couplings to $\gamma\gamma$

Key Question: matter-antimatter asymmetry

The very fact that we exist in a matter-

dominated universe. Sakharov Condition (1967)

- 1. Baryon number *B* violation
- 2. *C* and *CP* symmetry violation
- 3. Interactions out of thermal equilibrium

Andrei Sakharov (1921-1989)

Huge numbers of K, τ , hyperons, D will be produced at STCF. With unprecedented high statistics, studies of the particles and their decays can reveal new information

Polarization of A Hyperons and CP Test

- Updated results based on 10B J/ψ events: ~0.42M signals
- Decay asymmetries with best precisions ever CP test $A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$

Par.	This Work*	Previous results **	PDG 2018 ***	w7- unwend shift from all
$lpha_{J/\psi}$	$0.4748 \pm 0.0022 \pm 0.0024$	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027	~/o upwara shiji jrom ali
$\Delta \Phi$	$0.7521 \pm 0.0042 \pm 0.0080$	$0.740 \pm 0.010 \pm 0.009$	-	previous measurements
α_{-}	$0.7519 \pm 0.0036 \pm 0.0019$	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013	
α_+	$-0.7559 \pm 0.0036 \pm 0.0029$	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08	0.5% lovel consitivity for CPV test
A_{CP}	$-0.0025 \pm 0.0046 \pm 0.0011$	$0.006 \pm 0.012 \pm 0.007$	-	0.5% level sensitivity for CFV test
$lpha_{\pm,avg.}$	$0.7542 \pm 0.0010 \pm 0.0020$	$0.754 \pm 0.003 \pm 0.002$	-	SM prediction: 10-4~10-5

CP Test in *A* Decay with Polarized Electron Beam

e sensitivity of CPV follows :
$$\sigma_{A_{CP}} \approx \sqrt{2}$$

 $1 \times 10^{9} \Lambda \overline{\Lambda}, \quad \langle P_{B}^{2} \rangle = 0.1$
 $\rightarrow \sigma_{A_{CP}} \sim 1.4 \times 10^{-4}$
 $1 \times 10^{9} \Lambda \overline{\Lambda}, \quad \langle P_{B}^{2} \rangle = 0.8$
 $\rightarrow \sigma_{A_{CP}} \sim 0.5 \times 10^{-5}$

Searching for Hyperon EDM

Detailed dynamics in J $/\psi$ decay to hyperon pair have been studied:

 $\mathcal{A} = \epsilon_{\mu}(\lambda)\overline{u}(\lambda_{1})\left(\mathbf{F}_{\mathbf{V}}\gamma^{\mu} + \frac{i}{2M_{\Lambda}}\sigma^{\mu\nu}q_{\nu}\mathbf{H}_{\sigma} + \gamma^{\mu}\gamma^{5}\mathbf{F}_{A} + \sigma^{\mu\nu}\gamma^{5}q_{\nu}\mathbf{H}_{T}\right)\nu(\lambda_{2})$

µ: magnetic dipole momentd: electric dipole moment

Non-zero EDM will violate *P* and *T* symmetry: *T* violation ↔ *CP* violation, if CPT holds.

Systematic measurement of the EDMs of the hyperon family!

X.G.He, J.P. Ma, Phys.Lett.B 839(2023)137834

Sensitivity of Precision Measurements

- The precision frontier for testing of SM parameters
- > Uncertainties from reducible (selection-based), and irreducible sources (theoretical input, instrument effect)

Sensitivity of Rare or Forbidden Decays

- Sensitivity of various rare/forbidden decays measurements at STCF are compared with various BSM models
- The excellent precision at STCF can be used to distinguish between various BSM models

Challenges of STCF Accelerator

Goal: ultra-high luminosity in tau charm energy region (2-7 GeV), high-quality beam, stable operation **Characteristics:** extremely small bunch size, high current intensity, strong nonlinearity and collective effect

e+/e- sources

Preliminary machine parameters

	Parameters	Units	STCF (April. 2024)
	Optimal beam energy, <i>E</i>	GeV	2
	Circumference, C	m	848.4
	Crossing angle, 2q	mrad	60
	Horizontal emittance, e x	nm	6.919
٦	Coupling, k		0.50%
	Vertical emittance, e _y	pm	34.595
	Ver. beta function at IP, β_y	mm	0.6
	Ver. beam size at IP, s y	mm	0.144
	Beam current, <i>I</i>	А	2
	Single-bunch charge	nC	8.04
J	SR power per beam, P sr	MW	0.572
	Bunch length, s z	mm	8.43
	Ver. beam-beam parameter, ξ y		0.094
	Luminosity, <i>L</i>	10 ³⁵ cm ⁻² s ⁻¹	1.19

Collider Ring and IR AP design: IP beam size (Y) nm scale, Crab-Waist, nonlinear compensation extremely difficult

> **IR Technologies:** SC magnets, MDI

Other key technologies: Ring RF, beam instrum. and control, beam injection...

STCF Accelerator R&D

Positron Source Design

Bunch-by-Bunch 3D position measurement

Photocathode RF gun

Low level RF system

STCF detector

Requirement:

- High detection efficiency and good resolution
- Superior PID ability
 - Tolerance to high rate/background environment
- ITK <0.25%X0 / layer σ_{xv} < 100 μ m **MDC** σ_{xv} < 130 μ m σp/p ~ 0.5% @ 1 GeV PID π/K (and K/p) 3-4 σ separation up to 2GeV/c **EMC** E range: 0.025-3.5 GeV $\sigma_{\rm F}$ @ 1 GeV: 2 .5% in barrel, 4% at endcaps Pos. Res. : ~ 4 mm MUD 0.4 - 1.8 GeV π suppression >30

STCF Detector Conceptual Design

STCF Detector R&D — **Detector Prototypes**

Offline Software

□ Offline Software System of Super Tau-Charm Facility (OSCAR)

- External Interface+ Framework +Offline
- **SNiPER framework** provides common functionalities for whole data processing

□ Offline including Generator, Simulation, Calibration, Reconstruction and Analysis

□ Full simulation under OSCAR is undergoing: $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, $\Lambda \overline{\Lambda}$, $\pi \pi/K\pi/KK + X$, $D^0\overline{D}^0$...

Site of STCF : Hefei

- Funded R&D: 0.4 Billion CNY funded by the Anhui government
- Construction budget: 4.5 Billion CNY

Tentative Project Schedule for STCF

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032-2047
CDR															
Key Technology R&D & TDR															
Construction															
Operation															15 years

Summary

- STCF covers a unique transition region between perturbative and nonperturbative QCD, providing precision measurements aimed at answering key questions in QCD and search for new physics BSM
- STCF will utilized and challenge key technologies accelerator, particle detection and data processing, computing and networking
- Anhui province and USTC have committed support, aiming for applying construction approval during the 15th five-year plan (2026-2030)
- International collaboration is crucial, with ongoing efforts to expand collaborations both domestically and internationally

FTCF2024-Guangzhou

The 6th International Workshop on Future Tau-Charm Facilities (**FTCF2024-Guangzhou**) will be hosted by Sun Yat-sen University (SYSU) in Guangzhou, China, **Nov. 17-21, 2024**.

https://indico.pnp.ustc.edu.cn/event/1948/

Thanks for your listening!