

Quark confinement in multiquark systems

Guang-Juan Wang

In collaboration with Qi Meng (NJU), Makoto Oka (RIKEN), Daisuke Jido (Tokyo Tech.)

Phys. Rev. D 106, 096005, Phys. Rev. D 108 (2023) 7, L071501, arXiv: 2404.01238

Few-Body Problems in Physics (FB23), Beijing, 2024/09/25

Outline

- Background: Classical Quark model and exotic hadrons.
- Investigation of the confinement mechanisms:
- \checkmark Sum of two-body confinements
- \checkmark Novel string-like confinement model.
- Summary.

Classical Quark model

• Struggles with excited states above two-hadron threshold

Exotic Hadrons

- Exotic states: beyond CQM
- Candidates for Multiquark Hadrons ($N \ge 4$)
- What are they?
- ✓ Different Confinement configurations

 \checkmark Coupling to thresholds play an essential role

 $D_{s0}^{*}(2317) \& X(3872) @2003, ..., P_{c} @2019, X(6900) @2020, T_{cc}^{+} @2021$

• Focus: Confinement Mechanism of tetraquark + coupling to two-hadron scattering states.

Conventional quark model Hamiltonian

• Hamiltonian:

$$H = \sum_{i} \left(m_i + \frac{p_i^2}{2m_i} \right) - T_G + \sum_{i < j} \frac{\left(\lambda_i \cdot \lambda_j \right)}{4} V_i$$

• Nonrelativistic quark model: color-Coulomb+ linear+ hyperfine

• QM1:
$$V_{ij}(\mathbf{r}) = \frac{\alpha_s}{r_{ij}} - \frac{3}{4}br_{ij} - \frac{2\pi\alpha_s}{3m_im_j} \left(\frac{\sigma}{\sqrt{\pi}}\right)^3 e^{-\sigma^2 r_{ij}^2} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j$$

T Barnes , et al. Phys. Rev. D 72 (2005) 054026

• QM2(AL1):
$$V_{ij}(\mathbf{r}) = -\frac{3}{4} \left(\frac{\kappa}{r} + \lambda r - \Lambda + \frac{2\pi\kappa'}{3m_i m_j} \frac{\exp(-r^2/r_0^2)}{\pi^{3/2} r_0^3} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j \right)$$

 $r_0(m_i, m_j) = A(\frac{2m_i m_j}{m_i + m_j})^{-B}$

Silvestre-Brac, Few-Body Syst. 20, 1 (1996)

• QM1 and QM2 reproduce the similar mass spectrum for $T_{cc\bar{c}\bar{c}}$.

parameter		Mass spectrum (MeV)					
		$^{2S+1}L_J$	Meson	EXP	THE		
$lpha_s$	0.5461	$^{1}S_{0}$	η_c	2983.9	2984		
b $[\text{GeV}^2]$	0.1452	3S_1	J/ψ	3096.9	3092		
$m_c \; [{ m GeV}]$	1.4794	${}^{3}P_{0}$	χ_{c0}	3414.7	3426		
$\sigma~[{\rm GeV}]$	1.0946	${}^{3}P_{1}$	χ_{c1}	3510.7	3506		
		${}^{1}P_{1}$	$h_c(1P)$	3525.4	3516		
		${}^{3}P_{2}$	χ_{c2}	3556.2	3556		
		$^{1}S_{0}$	$\eta_c(2S)$	3637.5	3634		
		3S_1	$\psi(2S)$	3686.1	3675		
		3S_1	$\psi(3S)$	4039.0	4076		
		$^{3}S_{1}$	$\psi(4S)$	4421.0	4412		

PDG

Conventional quark model

• Four body system: two independent color singlet states are allowed

 $\mathbf{3} \otimes \mathbf{3} \otimes \overline{\mathbf{3}} \otimes \overline{\mathbf{3}} = 2 \times \mathbf{1} \oplus 4 \times \mathbf{8} \oplus \mathbf{10} \oplus \overline{\mathbf{10}} \oplus \mathbf{27}$

- ✓ Diquark-antidiquark: (QQ)- $(\bar{Q}\bar{Q})$:
- $\overline{3}_c \otimes 3_c = 1_c$ and $6_c \otimes \overline{6}_c = 1_c$.
- ✓ Meson-Meson: $(Q\bar{Q})$ - $(Q\bar{Q})$: singlet + hidden color states

$$|\mathbf{1}\rangle \equiv |(Q_1\bar{Q}_3)_{\mathbf{1}}(Q_2\bar{Q}_4)_{\mathbf{1}}\rangle, \quad \text{Or} \quad |\mathbf{1}\rangle \equiv |(Q_1\bar{Q}_3)_{\mathbf{1}}(Q_2\bar{Q}_4)_{\mathbf{1}}\rangle, \\ |\mathbf{8}\rangle \equiv |(Q_1\bar{Q}_3)_{\mathbf{8}}(Q_2\bar{Q}_4)_{\mathbf{8}}\rangle, \quad \text{Or} \quad |\mathbf{1}'\rangle \equiv |(Q_1\bar{Q}_4)_{\mathbf{1}}(Q_2\bar{Q}_3)_{\mathbf{1}}\rangle,$$

 $\langle \mathbf{1}' | \mathbf{1} \rangle = \frac{1}{3}$

Either two of them are equivalent

• Not orthogonal

Gaussian expansion method

• 4-body Jacobi coordinates

Compact diquark-antidiquark

Scattering channel (2 color singlet mesons)

• Gaussian expansion method: solving Few-body problem:

E. Hiyama, et al. Prog. Part. Nucl. Phys. 51 223-307

$$\begin{split} \psi_{JM} &= \sum_{C=a,b} \sum_{\alpha} A_{12} A_{34} \sum_{\alpha} \mathscr{B}_{\alpha}^{(C)} \xi_{C}^{(C)} \eta_{I}^{(C)} \left[\left[\underbrace{\phi_{nl}\left(\boldsymbol{r}_{C}\right) \otimes \phi_{NL}\left(\boldsymbol{R}_{C}\right) \otimes \phi_{\nu\lambda}\left(\boldsymbol{\rho}_{C}\right)}_{J_{L}} \otimes \chi_{S}^{(C)} \right]_{JM} \\ & \downarrow \\ & \downarrow \\ & \text{flavor} \\ & \text{Gaussian function} \\ & \text{Color} \\ \phi_{n_{a}l_{a}}(r_{12},\beta_{a}) = \left\{ \frac{2^{l_{a}+2}(2\nu_{n_{a}})^{l+3/2}}{\sqrt{\pi}(2l_{a}+1)!!} \right\}^{1/2} r_{12}^{l_{a}} e^{-\nu_{n_{a}}r_{12}^{2}} \end{split}$$

Complex scaling method

• Complex scaling method: identification of resonant and bound states.

6.

6.3

6.6

E [GeV]

- Bound states & resonances: independent of θ
- Scattering state: along continuum line and rotate with 2θ

Phys. Rev. D 106, 096005

6.9

7.2

S.Aoyama et al. PTP. 116, 1 (2006). T. Myo et al. PPNP. 79, 1 (2014) N. Moiseyev, Physics reports 302, 212 (1998)

Tetraquark

	$(I,)J^{P(C)}$	Mass(Width)					
ccēē	0++	6993(84)	7187(26)				
	1+-	7001(70)	7199(40)				
	2++	7018(68)	7220(40)				
$bb\overline{b}\overline{b}$	0++	19790(58)	19960(24)				
	1+-	19794(58)	19960(28)				
	2++	19800(60)	19963(31)				
$bbar{c}ar{c}$	0+	13449(74)	13585(26)	13680(26)			
	1+	13451(68)	13568(18)	13684(30)			
	2+	13462(72)	13560(12)	13652(24)	13685(50)		
$bb\overline{s}\overline{s}$	0+	11585(39)	11631(65)	11801(65)			
	1+	10853(44)	11584(46)	11643(65)	11811(76)		
	2+	10879(22)	11595(36)	11665(70)	11830(94)		
$cc\bar{s}\bar{s}$	0+	5045(92)					
	1+	5053(97)					
	2+	4808(13)	5077(84)				
$bbar{q}ar{q}$	$1,0^{+}$	10667(44)	11297(15)	11487(46)	11721(78)		
	$1, 1^+$	10682(15)	11306(15)	11496(46)	11732(82)		
	$1, 2^+$	10716(3)	11324(17)	11509(48)	11748(85)		
	$0, 1^+$	10491	10640	10699(2)	11164(20)	11610(40)	
$ccar{q}ar{q}$	$1,0^{+}$	4717(15)	4958(24)				
	$1, 1^+$	4667(37)	4958(82)	4985(38)			
	$1, 2^+$	4775(12)	4956(70)	5027(94)			
	$0, 1^+$	3863	4028(46)	4986(46)			

• $QQ\bar{Q}'\bar{Q}'(Q,Q'=c,b), QQ\bar{q}\bar{q}(q=u,d,s)$

 \checkmark Constrained by Fermi-Dirac statistics: less No. of possible flavor-spin-color wave functions

Flavor	S-wave $(L = 0)$	Spin	Color		J^P
S	S	$S(S_{QQ} = 1)$	$\bar{3}_c(A)$	$[QQ]^{1}_{\bar{3}}$	1+
S	S	$\mathcal{A}(S_{QQ}=0)$	$6_c(S)$	$[QQ]_{6_c}^0$	0+
Flavor	<i>P</i> -wave $(L = 1)$	Spin	Color		
S	A	$S(S_{QQ} = 1)$	$6_c(S)$	$[[QQ]^1_{6_c}, \rho]^0_{6_c}$	0-
				$[[QQ]_{6_c}^1, \rho]_{6_c}^1$	1-
				$[[QQ]_{6_c}^1, \rho]_{6_c}^2$	2-
S	А	$S(S_{QQ}=0)$	$\bar{3}_c(A)$	$[[QQ]^0_{\bar{3}_c}, \rho]^1_{\bar{3}_c}$	1-

• 62 resonant states and 3 bound states

arXiv: 2404.01238

Experimental search for T_{ccccc}

• Observation of structure $T_{cc\bar{c}\bar{c}}$ in di- J/ψ and $J/\psi\psi(2S)$ channel

J/ψ - J/ψ resonances observed in experiments

$T_{cc\bar{c}\bar{c}}$

Phys. Rev. D 106, 096005

• The confinement mechanism $\sim br$. $V = -\frac{3}{4}\sigma \sum_{i < j} (T_i \cdot T_j)r_{ij}$

11

 $T_{bb\overline{b}\overline{b}}$

• No significant excess observed for $T_{bb\overline{b}\overline{b}}$.

• Two resonances for $T_{bb\overline{b}\overline{b}}$.

 $T_{cc\bar{q}\bar{q}}$

 $\sqrt{\delta m_U} = -15 \text{ MeV} >> \delta m_U^{exp} = -361 \pm 40 \text{ keV} \longrightarrow Experimental T_{cc}^+$ is not a tetraquark state

 \checkmark Not allowed in $DD\pi$, but only $DD\gamma$

Mass ratio dependence

• I=0: attractive $\langle V_{QQ}^{ce} \rangle \& \langle V_{qq}^{cm} \rangle$, thus smaller $\frac{m_Q}{m_{\bar{q}}}$ (physical value) can form the bound state.

Investigation of the confinement mechanisms

- Conventional quark-quark confinement potential form $\overline{Q}Q$ meson: $V(r) \sim br$
- Application to baryons (qqq): $V = -\frac{3}{4}\sigma \sum_{i < i} (T_i \cdot T_j)r_{ij}$ (Δ -shape) + Y-shape?
- Direct application to $T_{Q_1Q_2}\bar{Q}_3\bar{Q}_4$: $V = -\frac{3}{4}\sigma \sum_{i < j} (T_i \cdot T_j)r_{ij}$ V. Dmitrasinovic et al., Eur. Phys. J. C 62, 383-397 (2009)

✓ Problem: *long-range color van der Waals* between color singlet mesons,

$$V_{
m cvdW} = rac{|\langle \mathbf{8} | V_{
m QM} | \mathbf{1}
angle|^2}{\Delta E} \propto -rac{1}{R^3}$$

T. Appelquist, et al. Phys. Lett. B77, 405 (1978)

String confinement model

• "Reconnection of strings and quark matter"

$$V_{\text{string}} = \sigma \times \min_{\text{links}} \sum r_{\text{link}}$$
 H. Miyazawa, PRD20, 2953 (1979).

• "String Flip-Flop" -- Strings can make a transition to another spatial configuration when they touch each other.

• long-range color van der Waals between color singlet mesons disappear.

H. Miyazawa, PR D20, 2953 (1979)
N. Isgur, J. E. Paton, Phys. Lett. B 124, 247 (1983)
M. Oka, Phys. Rev. D 31, 2274 (1985).
J. Vijande, et. Al. Phys. Rev. D 85, 014019 (2012).

• The lattice QCD may choose the adiabatic potential of the configuration with the shortest string lengths to minimize the string tension energy – Flip-Flop model

$$V_{\rm FF} = \sigma \operatorname{Min} \left[r_{13} + r_{24}, r_{14} + r_{23} \right].$$

F. Okiharu, et al. PRD72 (2005) 014505
C. Alexandrou . et al. Nucl. Phys. A 518, 723-751 (1990)
F. Okiharu .et al. J. Mod. Phys. 7, 774-789 (2016)

String Flip-Flop model

• The flip-flop potential model may not be satisfactory for color SU(3): choice of color configurations has some ambiguity

• $|1\rangle$ and $|1'\rangle$ are not smoothly connected in SU(3), because the overlap of $|1\rangle$ and $|1'\rangle$ is not complete. only the $1/N_c$ part of $|1\rangle$ can go directly to $|1'\rangle$.

Hidden color channel automatically mixed

• The transition between two color configurations is dynamically generated, and the HC channel can be treated as an independent configuration.

Novel string-like confinement potential

• Three bases: States with different string configurations are orthogonal

 $|\mathbf{1}\rangle\rangle \equiv |(Q_{1} \rightarrow \bar{Q}_{3})_{\mathbf{1}}(Q_{2} \rightarrow \bar{Q}_{4})_{\mathbf{1}}\rangle$ $|\mathbf{1}'\rangle\rangle \equiv |(Q_{1} \rightarrow \bar{Q}_{4})_{\mathbf{1}}(Q_{2} \rightarrow \bar{Q}_{3})_{\mathbf{1}}\rangle.$ $|\mathbf{hc}\rangle\rangle \equiv |(Q_{1} \leftrightarrow Q_{2})_{\mathbf{3}} \leftarrow (\bar{Q}_{3} \leftrightarrow \bar{Q}_{4})_{\mathbf{3}}\rangle,$ $\langle\langle \mathbf{1}'|\mathbf{1}\rangle\rangle = 0.$ $\langle\langle \mathbf{1}|\mathbf{hc}\rangle\rangle = \langle\langle \mathbf{1}'|\mathbf{hc}\rangle\rangle = 0.$ $|\mathbf{1}\rangle\rangle$ $\overset{I_{\mathbf{1}}\rangle}{\overset{I_{\mathbf{1}}}}{\overset{I_{\mathbf{1}}\rangle}{\overset{I_{\mathbf{1}}\rangle}{\overset{I_{\mathbf{1}}\rangle}{\overset{I_{\mathbf{1}}\rangle}{\overset{I_{\mathbf{1}}}}{\overset{I_{\mathbf{1}}\rangle}$

• Minimal surface area S: N-body force

A toy model: Conventional QM VS String-like potential

A toy model: Conventional QM VS String-like potential

Novel string-like potential: T_{ccccc}

- Application to the $T_{cc\bar{c}\bar{c}}$ and $T_{bb\bar{b}\bar{b}}$ states:
- Parameters are same as the conventional QM reproduce the two meson thresholds
- Replace the linear confinement by the string-like confinement

$$\begin{split} H &= H_0 + \sum_{i,j} \frac{\lambda_i}{2} \cdot \frac{\lambda_j}{2} V_{\text{SR}} (r_{ij}) + V_{\text{ST}} \\ H_0 &= \sum_{i=1}^4 \frac{\mathbf{p}_i^2}{2m_i} + \sum_i m_i - T_G \\ V_{\text{SR}} (r_{ij}) &= \frac{\alpha_s}{r_{ij}} - \frac{8\pi\alpha_s}{3m_im_j} \left(\frac{\sigma}{\sqrt{\pi}}\right)^3 e^{-\sigma^2 r_{ij}^2} \mathbf{s}_i \cdot \mathbf{s}_j \\ V_{\text{ST}} &= \begin{pmatrix} \sigma (r_{13} + r_{24}) & \kappa e^{-\sigma S} & \kappa' e^{-\sigma S} \\ \kappa e^{-\sigma S} & \sigma (r_{14} + r_{23}) & -\kappa' e^{-\sigma S} \\ \kappa' e^{-\sigma S} & -\kappa' e^{-\sigma S} & \frac{\sigma}{4} \left[r_{13} + r_{24} + r_{14} + r_{23} + 2 \left(r_{12} + r_{34} \right) \right] \end{pmatrix} \\ \text{with} \end{split}$$

$$S = \frac{1}{4} \left(r_{13}^2 + r_{24}^2 + r_{14}^2 + r_{23}^2 \right) \longrightarrow N\text{-body force}$$

Novel string-like potential: T_{ccccc}

- 2nd pole: a candidate for X(6900).
- A third pole at around 7.0 GeV?- convergency not good. For instance: 0^{++} : E=6980.4 MeV, $\Gamma = 29.0$ MeV

$T_{cc\bar{c}\bar{c}}$ spectrum

Phys. Rev. D 106, 096005 Phys. Rev. D 108 (2023) 7, L071501

• Conventional confinement: $V = -\frac{3}{4}\sigma \sum_{i < j} (T_i \cdot T_j)r_{ij}$

✓ 1st pole -X(6900) & 2nd pole-X(7200).

 \checkmark Absence of the lower X(6600) state.

• Novel string confinement: **N-body force**

 \checkmark Mixings of states induce a strong attraction.

 \checkmark *A bound state appears.*

 \checkmark Two candidates for *X(6900) and X(6900)*.

```
√ X(7200) or X(7000)?
```

Pole trajectories

$T_{bb\overline{b}\overline{b}}$ spectrum

Summary

• The mass spectra of S-wave $QQ\bar{Q}'\bar{Q}'$ and $QQ\bar{q}\bar{q}$ tetraquark.

- TWO confinement potentials: $-\frac{3}{4}\sigma\Sigma_{i< j}(T_i \cdot T_j)r_{ij}$ VS $e^{-\frac{1}{4}(r_{13}^2 + r_{24}^2 + r_{14}^2 + r_{23}^2)}$
- $-\frac{3}{4}\sigma\Sigma_{i<j}(T_i \cdot T_j)r_{ij}$: 3 bound states with $I(J^P) = 1^+$ and 62 low-lying resonant tetraquarks.

 $\checkmark A \ deep \ bound \ T_{bb\bar{q}\bar{q}} \ (BB\gamma) \ and \ a \ shallow \ T_{bb\bar{q}\bar{q}} \ state; A \ bound \ T_{cc\bar{q}\bar{q}} \ (DD\gamma) \xrightarrow{} experimental \ T_{cc}^+$

 \checkmark cc $\bar{c}\bar{c}$: Absence of lower X(6600) & 1st pole -X(6900) & 2nd pole-X(7200).

• General rule: Lager $\frac{m_Q}{m_{\overline{q}}}$, the easier to form the bound states

• $e^{-\frac{1}{4}(r_{13}^2 + r_{24}^2 + r_{14}^2 + r_{23}^2)}$: $cc\bar{c}\bar{c}$ and $bb\bar{b}\bar{b}$

 \checkmark cccc : Additional bound state & 1st pole -X(6600) & 2nd pole-X(6900) & Third pole at 7.0 GeV-X(7200)?

 $\sqrt{bb\overline{b}\overline{b}}$: 2 bound state and 7 resonances.

Thank you for your attention!