

Dispersive analysis of $\eta(1405/1475)$ on the recent BESIII decay $J/\psi \rightarrow \gamma K_0^S K_0^S \pi^0$

In collaboration with: Dr. Yin Cheng (程茵), Dr. MengChuan Du (杜蒙川) and Prof. Qiang Zhao (赵强)

The 23rd International Conference on Few-Body Problems in Physics (FB23) Beijing, China 2024/09/22-27

Lin Qiu (邱林)

Outline

Introduction & Motivation

- Khrui-Trieman Framework: three-body interactions
 - Three-body unitarity, linearly-independence & KT solution basis •
- Discussions
 - Monte-Carlo outputs, BESIII spectra

Light-meson spectrum, status of $\eta(1405/1475)$, triangle singularity, S-matrix

Muskhelishvili-Omnès Framework: two-body interactions

Dispersion relation (two-body unitarity), angular averages, analytical continuation

Introduction

Introduction

- states is regarded as 0^{-+} glueball candidate.
- However, there are many puzzles: ullet
 - 1. $KK\pi$ final states;
 - 2.
 - 3. Triangle singularity!

two-state scenario.

A better understanding of 0^{-+} spectrum in $1.2 \sim 1.5$ GeV is strongly desired!

The first radially-excited states of $\eta - \eta'$ are assigned to $\eta(1295) - \eta(1405/1475)$, among which one of the

Bottom-Up approach

Dispersion theory (on-shell)

Our goals:

- To provide the generic $KK\pi$, $\eta\pi\pi$, 3π FSIs below 1.6GeV;
- To understand the "distortion" of the three-body unitarity over the two-body one and the triangle singularity mechanism;
- To provide the systematic prescriptions for iso-scalar pseudo-scalar spectra.

- Sub-channel interactions determined from scattering data

Muskhelishvili-Omnès Framework

By virtue of crossing symmetry and reconstruction theorem,

$$\mathcal{M}(s, t, u) = \frac{1}{\sqrt{2}} \mathcal{F}_0^1(s) + \left[(-\frac{1}{\sqrt{3}}) \mathcal{F}_0^{1/2} \right]$$

The single-variable amplitudes $\mathcal{F}_{I}^{I}(x)$ are then all what we desire!

$\int_{0}^{1/2} (t) + (-\frac{1}{\sqrt{3}})(t(s-u) - \Delta)\mathcal{F}_{1}^{1/2}(t)] + [t \leftrightarrow u]$

<u>Single-variable amplitudes</u> $\mathcal{F}_{I}^{I}(x)$

Dispersion relation for two-body scattering,

 $\operatorname{disc} \mathscr{F}_{I}^{I}(s) = 2iT_{I}^{I^{*}}(s+i\epsilon)\Sigma(s)(\mathscr{F}_{I}^{I}(s+i\epsilon) + \widehat{\mathscr{F}}_{I}^{I}(s+i\epsilon))$ The most general solution (inhomogeneous Omnès problem), x = s, t $\mathscr{F}_{J}^{I}(x) = \Omega_{J}^{I}(x)(a_{0} + a_{1}x + \dots + a_{n}x^{n} + \frac{x^{n+1}}{\pi} \int_{x_{n}}^{\infty} \frac{dx'}{x'^{n+1}} \frac{\Omega^{-1}(x')T_{J}^{I*}(x')\Sigma(x')\hat{\mathscr{F}}_{J}^{I}(x')}{\sqrt{x' - x - i\epsilon}})$ **FSIs** Sub-channel interaction **Crossed-channel projection**

$$\widehat{\mathscr{F}}_{0}^{1}(s) = \left(-\sqrt{\frac{2}{3}}\right)2\langle \mathscr{F}_{0}^{1/2} \rangle_{t_{s}} + \left(-\sqrt{\frac{2}{3}}\right)\left[\frac{1}{2}(\Sigma_{0} - s)(3s - \Sigma_{0}) - \langle f \rangle_{x_{y}}\right] = \int_{-1}^{1} dz_{y}f(x(y, z_{y}))$$

- elastic $K\pi \to K\pi \longrightarrow$ Riemann sheet 1 only
- \mathscr{F} has the right-hand-cut as Ω

The integration needs to be continued on unphysical sheet!

Analytical structure and continuation

$K\pi$ scattering J.R.Peláez, j.physrep.2022.03.004

- Single-channel continuation: $\Omega^{II}(s) = \Omega^{I}(s) / \hat{S}(s)$.
- Model-independent accesses to S(s):
 - (Elastical, narrow) A. Conformal expansion: $T_J^I(s) = \frac{1}{\sigma(s)} \frac{1}{\cot \delta_J^I(s) - i}$, $\cot \delta_J^I(s) = \frac{\sqrt{s}}{2q^{2J+1}} F(s) \sum_n B_n \omega(s)^n$; (Smooth, wide) (Smooth, wide)

(Semi-determined)

C. Padé series:
$$P_M^N(s, s_0) = \frac{Q_N(s, s_0)}{R_M(s, s_0)}$$

M.Albaladejo et al., EPJC(2015)75:488 $\pi\eta - KK$ scattering

These methods give consistent results!

$(I, J) = (1/2, 0 \& 1) K\pi$ scattering

- Elastic up til $K\eta'$ threshold; L. von Detten et al., EPJC(2021) 81:420 lacksquare
- Treatment: conformal expansion ($\sim K\eta$ threshold)

 \Rightarrow Schlesinger fraction (~ 1.3GeV).

Continued to lower-half plane on RS-II

Pole positions (MeV):

- κ : 667 *i*335;
- *K*[∗](892): 892 − *i*28

 $(I, J) = (1, 0) \pi \eta - KK scattering$

The isovector $\pi\eta - KK$ coupling has a significant inelastic effect due to the onset of $a_0(980)$ and $a_0(1450)$. We adopt the following δ, η, g which satisfies the most (5 ~ 6) chiral constraints, B.Moussallam, EPJC14,111–122(2000)

phase[degree] Im Ω^{10}_{11} D_{12}^{10} δ_{11} 0 3 5.0 Im 2 2.5 D_{22}^{10} Ω^{10}_{21} 0.0 -2.5 0 $\mathbf{0}$ $\sqrt{s}[GeV]$ $\sqrt{s}[GeV]$ $\sqrt{s}[GeV]$

The form factors $F_{S}^{\pi\eta,K\bar{K}}(s)$ are evaluated to be the same with that in the above refs.

J.F.Donoghue, NPB343(1990) M.Doring, JHEP10(2013)011

$$T(s) = \begin{pmatrix} \frac{\eta e^{2i\delta_{11}} - 1}{2i\sigma_1} & ge^{i\phi_{12}} \\ g^{i\phi_{12}} & \frac{\eta e^{2i\delta_{22}} - 1}{2i\sigma_2} \end{pmatrix}$$

M.Albaladejo et al., EPJC(2015)75:488 M.Albaladejo et al., EPJC(2017)77:508

"<u>Effective</u>" elastic KK scattering

The 2×2 Omnès matrix describes the coupling between the production amplitudes $J/\psi \bar{\gamma} \bar{\pi} \rightarrow \pi \eta$ and $J/\psi \bar{\gamma} \bar{\pi} \rightarrow K K$,

$$\begin{pmatrix} \mathscr{M}^{\pi\eta} \\ \mathscr{M}^{K\bar{K}} \end{pmatrix} = \begin{pmatrix} \Omega_0^1(s)_{\pi\eta \to \pi\eta} & \Omega_0^1(s)_{K\bar{K} \to \pi\eta} \\ \Omega_0^1(s)_{\pi\eta \to K\bar{K}} & \Omega_0^1(s)_{K\bar{K} \to K\bar{K}} \end{pmatrix} \begin{pmatrix} \mathscr{M}^{\chi,\pi\eta} \\ \mathscr{M}^{\chi,K\bar{K}} \end{pmatrix}.$$
(2023)17

T.Isken et al., EPJC(2017)77:489;E.Kou et al. ,JHEP12

To simplify the problem, we adopt the idea of "effective phase shift" (LO approximation of production form factors), $(\boldsymbol{\xi} \cdot \boldsymbol{\Omega}_{\pi n \to K\bar{K}}(s) + \boldsymbol{\Omega}_{K\bar{K} \to K\bar{K}}(s))P_{eff}(s) =: \boldsymbol{\Omega}_{eff}(s)P_{eff}(s).$

$$\mathscr{M}^{K\bar{K}} = \Omega(s)_{\pi\eta \to K\bar{K}} P_1(s) + \Omega(s)_{K\bar{K} \to K\bar{K}} P_2(s) =$$

The ambiguity of ξ shall not affect a lot!

- Only changes high-energy behaviour
- Shifted into elastic region by contour deformation

Khrui-Trieman Framework

<u>Khrui-Trieman equation: $1 \rightarrow 3$ decaying</u>

Iteration

$$\mathcal{F}_{J}^{I}(x) = \Omega_{J}^{I}(x) \{ P_{n}(x) + \frac{x^{n+1}}{\pi} \int \frac{dx'}{x'^{x+1}} \frac{\hat{\mathcal{F}}_{J}}{|\mathcal{S}|}$$

$$Input a_{i}/b_{i}/c_{i} = 1 \longrightarrow \mathcal{F}_{J}^{I} -$$

KT solution basis

J.Gasser and A.Rusetsky, EPJC(2018)78:906 The pseudo-threshold singularity $\hat{\mathscr{F}}_{1}^{1/2} \propto \frac{1}{\sqrt{(m_{\eta_x} - m_{\pi})^2 - t^3}}$ can be avoided by contour deformation; e.g. $\gamma\gamma$ collisions, $p\bar{p}$ annihilation...

 \bullet

$$\mathcal{M}(s, t, u; m_{\eta_x}) = \sum_i C_i \mathcal{M}_i(s, t, u; m_{\eta_x})$$

The subtractions are calculated from CHPT / fitted by experimental data; lacksquare

The solutions are linearly-independent of subtractions $a_i/b_i/c_i \rightarrow \text{Generic & Reusable}$;

<u>KT basis function: $c_0 = 1$ </u>

$$\mathscr{F}_{0}^{1}(s) = \Omega_{0}^{1}(s)\frac{s^{3}}{\pi}\int\frac{ds'}{s^{'3}}\frac{\hat{\mathscr{F}}_{0}^{1}(s')\sin\delta_{0}^{1}(s')}{|\Omega_{0}^{1}(s')|(s'-s)} \qquad \mathscr{F}_{0}^{1/2}(t) = \Omega_{0}^{1/2}(t)\frac{t^{4}}{\pi}\int\frac{dt'}{t'^{4}}\frac{\hat{\mathscr{F}}_{0}^{1/2}(t')\sin\delta_{0}^{1/2}(t')}{|\Omega_{0}^{1/2}(t')|(t'-t)} \qquad \mathscr{F}_{1}^{1/2}(t) = \Omega_{1}^{1/2}(t)\{1+\frac{t}{\pi}\int\frac{dt'}{t'}\frac{\hat{\mathscr{F}}_{1}^{1/2}(t')\sin\delta_{0}^{1/2}(t')}{|\Omega_{1}^{1/2}(t')|(t'-t)|}$$

Dominant channel to $\eta(1440)!$

When $m_{K_{S}^{0}K_{S}^{0}\pi^{0}} \sim 1.44 GeV$,

Triangle singularity

<u>KT basis function: $c_0 = 1$ </u>

• $K^*K \rightarrow a_0\pi$: Triangle singularity

• $K^*K \rightarrow \kappa K$: weak coupling

• $K^*K \rightarrow K^*K$: vertex renormalization

10

-10

-20

-30

-10

-20

-30

Re \mathcal{F}_0^1

 ${\sf Im}\; {\cal F}_0^1$

<u>*KT* basis function: $a_0 = 1$ or else</u>

Re ${\cal F}_0^1$ -2

And for the case $a_0 = 1...$

• $a_0\pi \rightarrow \kappa K$: sizable coupling

0.0 -2.5 ${\sf Im}\; {\cal F}_0^1$ -5.0 -7.5 -10.0

Abs \mathcal{F}_0^1 10.0 7.5 5.0 2.5

Each case $a_i, b_i, c_i = 1$ corresponds to such a basis!

 m_{η_x}

Discussion

<u>Monte-Carlo Dalitz plots</u>

S.X.Nakamura et al., PRD.109.014021 ;PRD.107.L091505

BESIII, JHEP03(2023)121

<u>Analysis from Monte-Carlo data</u>

Constructive/destructive interference between $a_0\pi \& \kappa K$

On real axis (Data), our model is consistent with S.X. Nakamura, PRD109.014021;107.L091505 On complex plane (analytical continuation), it remains questionable.

 $a_0\pi$ from tree-level and TS

The preliminary Khrui-Trieman study implies that

- The one-loop approximation (TS mechanism) may be reasonable

Fitting scheme up to one-loop level Y.Cheng et al., arXiv:2407.10234

• Most corrections above two-loops shall be able to be absorbed into the vertex, propagators...

Summary & Outlook

- The nature of iso-scalar pseudo-scalar states and their dynamics involved are still beyond our knowledge;
- The 2-body $KK\pi$ FSIs have been established dispersively (almost model-independently) and the 3-body ones are almost ready $\Rightarrow \eta \pi \pi, 3\pi$ etc
- The above treatment proceeds similarly for generic 3-body scatterings in a modern & sophisticated perspective $\Rightarrow f_1(1285), f_1(1420), a_1(1260)$
- The comprehensive understanding of those states relies on the inclusions of more robust experimental data (upcoming) and more fundamental theories such as χPT (setting up)

MC fitting in isobaric approach

1300~30~1600 MeV

<u>Pseudo-threshold singularity and its nature</u>

$$\begin{split} & \kappa_{K\bar{K}}(s) \\ &= \frac{\sqrt{\lambda(s,m_K^2,m_K^2)}\sqrt{(m_{\eta_x}-m_\pi)^2 - s + i\epsilon}\sqrt{s}}{s} \\ & \kappa_{\pi K}(t) \\ &= \frac{\sqrt{\lambda(t,m_\pi^2,m_K^2)}\sqrt{(m_{\eta_x}-m_K)^2 - t + i\epsilon}\sqrt{t}}{t} \\ & \text{The singular behaviour of } \hat{\mathcal{F}}_J^I(x) \text{ at provide a structure of } \\ & \mathbf{1} \\ & \text{The singular behaviour of } \hat{\mathcal{F}}_J^I(x) \text{ at provide a structure of } \\ & \mathbf{1} \\ & \text{manifests both when solving } \mathcal{F}_J^I(x) \\ & \mathbf{2} \\ & \text{S-wave } (J=0) \Rightarrow \text{ integral } \\ & \mathbf{3} \text{ above S-wave } (J>0) \Rightarrow \\ & \text{The integral } H(x) = \frac{x^n}{\pi} \int \frac{dx'}{x'^n} \frac{\hat{\mathcal{F}}(x') \sin \alpha}{|\Omega(x')|(x')|} \\ & \mathbf{3} \text{ is finite on physical sheet, i.e., } \\ & \mathbf{4} \\ & \mathbf{3} \text{ can be evaluated both analytically} \end{split}$$

y and numerically

Avoiding the pseudo-threshold singularity

$$H(x+i\epsilon) = \frac{x^n}{\pi} \int \frac{dx'}{x'^n} \frac{\tilde{\mathcal{F}}_J^I(x')}{\kappa^{2J+1}(x')(x'-x-i\epsilon)} \frac{\sin\delta_J^I(x')}{|\Omega_J^I(x')|}$$

Analytical approach G.Colangelo et al., EPJC(2018)78:947

$$\mathcal{M}_{1}^{H}(s) = \Omega_{1}(s) \{ \int_{s_{1}}^{s_{3}} ds' \frac{\bar{\phi}(s')H_{1}(s') - h(s')\bar{\phi}(s_{2})H_{1}(s_{2})}{(s' - s - i\epsilon)(s_{2} - s')^{3/2}} + \bar{\phi}(s_{2})H_{1}(s_{2})G(s) \}$$

• Contour deformation without crossing the pole positions (δ_{J}^{I} diverges at pole)

• Contour deformation even crossing the pole positions: $\frac{\sin \delta_J^I(x')}{|\Omega_J^I(x')|} \text{ is free of the singularities} \Rightarrow \begin{cases} \text{the singularity is avoided} \\ \text{integrate on elastic complex region now!} \end{cases}$

Analytical continuation of $\sin \delta_I^l / |\Omega_I^l|$ (1)

For 2-body elastic scattering,

$$f_l(s) = \frac{e^{i2\delta_l(s)} - 1}{2i\sigma(s)} = \frac{1}{\sigma(s)} \cdot \frac{1}{\cot \delta_l(s) - i}$$

conformal polynomials on a certain analytical region. The S-matrix is then,

$$\begin{split} \hat{S}(s) &= \begin{cases} 1 + 2i\sigma f_l(s) = \frac{\cot \delta_l(s) + i}{\cot \delta_l(s) - i}, & \Im s \ge 0\\ [\frac{\cot \delta_l(s^*) + i}{\cot \delta_l(s^*) - i}]^* = \frac{\cot \delta_l(s) - i}{\cot \delta_l(s) + i}, & \Im s < 0. \end{cases} \\ \text{By utilizing } \frac{\sin \delta_l(s)}{|\Omega_l(s)|} &= \frac{e^{i\delta_l(s)} \sin \delta_l(s)}{\Omega_l(s)} = \frac{1}{\Omega_l(s)} \cdot \frac{1}{\cot \delta_l(s) - i} \text{ and } \Omega_l^{(II)}(s) = \frac{\Omega^{(I)}(s)}{\hat{S}(s)}, \text{ one derives,} \\ \\ \frac{\sin \delta_l(s)}{|\Omega_l(s)|} &= \begin{cases} \frac{1}{\Omega_l^{(I)}(s)} \frac{1}{\cot \delta_l(s) - i}, & \Im s \ge 0\\ \frac{1}{\Omega_l^{(I)}(s)} \frac{1}{\cot \delta_l(s) + i}, & \Im s < 0 \end{cases}. \end{split}$$

$$\begin{split} f(s) &= \begin{cases} 1+2i\sigma f_l(s) = \frac{\cot \delta_l(s)+i}{\cot \delta_l(s)-i}, & \Im s \ge 0\\ [\frac{\cot \delta_l(s^*)+i}{\cot \delta_l(s^*)-i}]^* = \frac{\cot \delta_l(s)-i}{\cot \delta_l(s)+i}, & \Im s < 0. \end{cases} \\ &\frac{e^{i\delta_l(s)} \sin \delta_l(s)}{\Omega_l(s)} = \frac{1}{\Omega_l(s)} \cdot \frac{1}{\cot \delta_l(s)-i} \text{ and } \Omega_l^{(II)}(s) = \frac{\Omega^{(I)}(s)}{\hat{S}(s)}, \text{ one} \end{cases} \\ &\frac{\sin \delta_l(s)}{|\Omega_l(s)|} = \begin{cases} \frac{1}{\Omega_l^{(I)}(s)} \frac{1}{\cot \delta_l(s)-i}, & \Im s \ge 0\\ \frac{1}{\Omega_l^{(I)}(s)} \frac{1}{\cot \delta_l(s)+i}, & \Im s < 0 \end{cases}. \end{split}$$

The convention of $\cot \delta_l(s)$ may differentiate from the literature by an extra minus sign on the lower half plane but the conclusion shall not change!

with $\cot \delta_l(s)$ real and satisfying Schwartz reflection theorem and can be expanded by

30

Analytical continuation of $\sin \delta_I^l | \Omega_I^l | (2)$

The complex function

0.30 0.25 0.20 0.15 0.10 0.05

 $Re t [GeV^2]$

Re

of $K\pi$ scatterings are plotted below,

The dispersive integral on any deformed integral-path on the lower half plane (even crossing the pole position) has been checked to be consistent with that integrated from the real axis!

