Self-consistent light-front quark model analyis of meson structure

International Conference on Few-Body Problems in Physics (FB23) Beijing, China, Sept 22-27, 2024

RIKEN

Ahmad Jafar Arifi

Hadron studies

Accelerator based Experiment

Strong, weak, & EM probe

Few-body problems

Hadron studies

Quark model **Light-front model** Form factor & quark distribution Mass, splitting, & resonance **Structure Spectrum Few-body** problems Decay **Dalitz plot Nuclear** modification Branching ratio & decay width <u>Quark meson</u> <u>coupling</u>

Accelerator based Experiment

Strong, weak, & EM probe

Cross section & **Production** polarization

Effective Lagrangian

- o Spectrum & Structure
- O Light-Front Dynamics (LFD)
- Results & Discussions
 - LFWFs
 - Self-consistency
 - Observables
- Outlook
 Outlook

Nonrelativistic quark model

- Quark model is one of the succesful models in describing spectrum of hadrons.
- You need to solve the Schrodinger equation:
 - Gaussian expansion method (GEM), etc 0

Nonrelativistic quark model

- Quark model is one of the succesful models in describing spectrum of hadrons.
- You need to solve the Schrodinger equation:
 - 0

Quark and gluon distribution

- Hadron depends on the scale 0
 - $^{\circ}$ In low energy \rightarrow the valence quarks are dominant
 - ^o In high energy \rightarrow gluon starts to dominate
- QCD evolution (DGLAB) 0
 - Scale evolution of parton distribution function

 Momentum distribution of quark & gluon • Parton distribution function (PDF)

Quark and gluon distribution

- Hadron depends on the scale Ο
 - $^{\circ}$ In low energy \rightarrow the valence quarks are dominant
 - ^o In high energy \rightarrow gluon starts to dominate
- QCD evolution (DGLAB) Ο
 - Scale evolution of parton distribution function

 Momentum distribution of quark & gluon • Parton distribution function (PDF)

How to connect mass spectra & partonic obserables?

Light-front dynamics

Formalism

- Proposed by Dirac (1949) 0
- Equivalent to Infinite 0 momentum frame (IMF)

Why LFD?

- Handle relativistic effect properly 0
- Relevant for high-energy process 0
- Vacuum becomes simpler, and so on 0

Light-front dynamics

Formalism

- Proposed by Dirac (1949) 0
- Equivalent to Infinite 0 momentum frame (IMF)

	Instant form	Light-Front form	
Time	<i>x</i> ⁰	$x^+ = x^0 + x^3$	
Space	x^1, x^2, x^3	$x^- = x^0 - x^3$, $\mathbf{x}_\perp = (x^1, x^2)$	
Hamiltonian	p^0	$p^- = p^0 - p^3$	
Momentum	<i>p</i> ¹ , <i>p</i> ² , <i>p</i> ³	$p^+ = p^0 + p^3$, $\mathbf{p}_\perp = (p^1, p^2)$	
Product	$x \cdot p = x^0 p^0 - \mathbf{x} \cdot \mathbf{p}$	$x \cdot p = (x^+p^- + x^-p^+)/2 - \mathbf{x}_\perp \cdot \mathbf{p}_\perp$	
Vacuum	very complex	can only contain zero-mode excitations	

Why LFD?

- Handle relativistic effect properly 0
- Relevant for high-energy process 0
- Vacuum becomes simpler, and so on 0

Light-front wave function approach

<u>Goal</u>: compute hadron structure and properties from LFWFs.

Light-front wave function approach

<u>Goal</u>: compute hadron structure and properties from LFWFs.

LFWFs

O Frame independent & Boost invariant O Current matrix element \rightarrow LFWF overlaps

 $\Psi(x,k_{\perp}) = \Phi(x,k_{\perp})\mathcal{R}(x,k_{\perp})$

Radial part Spin-orbit part

Light-front wave function approach

<u>Goal</u>: compute hadron structure and properties from LFWFs.

 \circ Large Momentum EFT (LAMET) \rightarrow Lattice QCD

Radial part

Spin-orbit part

Spin-orbit wave function (Meson)

$$u - \frac{(p_q - p_{\bar{q}})^{\mu}}{D} \bigg] v_{\lambda_{\bar{q}}}(p_{\bar{q}})$$

Orthonormality

$$\sum_{\lambda_q,\lambda_{\bar{q}}} \left\langle \mathcal{R}^{Jh}_{\lambda_q\lambda_{\bar{q}}} \middle| \mathcal{R}^{J'h'}_{\lambda_q\lambda_{\bar{q}}} \right\rangle = \delta_{JJ'}$$

Spin-orbit wave function (Meson)

$$\frac{1}{2} - \frac{(p_q - p_{\bar{q}})^{\mu}}{D} v_{\lambda_{\bar{q}}}(p_{\bar{q}}) = \lambda_{\lambda_q,\lambda_{\bar{q}}} \left\langle \mathcal{R}_{\lambda_q\lambda_{\bar{q}}}^{Jh} \middle| \mathcal{R}_{\lambda_q\lambda_{\bar{q}}}^{J'h'} \right\rangle = \delta_{JJ'} \delta_{hh} \\
\sum_{\lambda_q,\lambda_{\bar{q}}} \left\langle \mathcal{R}_{\lambda_q\lambda_{\bar{q}}}^{Jh} \middle| \mathcal{R}_{\lambda_q\lambda_{\bar{q}}}^{J'h'} \right\rangle = \delta_{JJ'} \delta_{hh} \\
\frac{1}{2} \sum_{\lambda_1\lambda_2} (x, \mathbf{k}_{\perp}) = \mathcal{R}_0 \left(\begin{array}{c} \mathcal{A} + \frac{k_{\perp}^2}{D} & k^R \frac{\mathcal{M}_1}{D} \\ -k^R \frac{\mathcal{M}_2}{D} & -\frac{(k^R)^2}{D} \end{array} \right), \quad \Psi_{\uparrow\uparrow} \\
\frac{1}{2} \sum_{\lambda_1\lambda_2} (x, \mathbf{k}_{\perp}) = \frac{\mathcal{R}_0}{\sqrt{2}} \left(\begin{array}{c} k^L \frac{\mathcal{M}}{D} \\ \mathcal{A} + \frac{2k_{\perp}^2}{D} & -k^R \frac{\mathcal{M}}{D} \end{array} \right), \quad \frac{1}{\sqrt{2}} (\psi_{\uparrow\downarrow} + \psi_{\downarrow\uparrow} \\ \frac{2k_{\perp}^{1-1}}{D} & -k^R \frac{\mathcal{M}}{D} \end{array} \right), \quad \Psi_{\downarrow\downarrow} \\
\frac{k_{\perp}^{1-1}}{2} (x, \mathbf{k}_{\perp}) = \mathcal{R}_0 \left(\begin{array}{c} -\frac{(k^L)^2}{D} & k^L \frac{\mathcal{M}_2}{D} \\ -k^L \frac{\mathcal{M}_1}{D} & \mathcal{A} + \frac{k_{\perp}^2}{D} \end{array} \right), \quad \Psi_{\downarrow\downarrow} \\
\end{array}$$

Gaussian expansion method

A numerical method to solve Schrödinger equation.

o Solving Schrödinger equation

$$H\left|\psi\right\rangle = E\left|\psi\right\rangle$$

o Gaussian basis functions

$$\phi_n^G(r) = \frac{(2\nu_n)^{3/4}}{\pi^{3/4}} e^{-\nu_n r^2}$$

PPNP51, 223 (2003)

Generalized Eigenvalue equation

$$oldsymbol{H}_{h}oldsymbol{c} = M_{h}oldsymbol{S}oldsymbol{c} \qquad egin{array}{ll} oldsymbol{H} = \left\langle \phi_{n}^{G} \left| \hat{H}
ight| \phi_{m}^{G}
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{n}^{G} \left| \phi_{m}^{G}
ight
angle \ oldsymbol{S} = \left\langle \phi_{m}^{G} \left| \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{m}^{G} \left| \phi_{m}^{G}
ight
angle
ight
angle \ oldsymbol{S} = \left\langle \phi_{m}^{G} \left| \phi_{m}^{G}
ight
angle \ oldsymbol{S} \ olo$$

• Geometric progression $[r_1, r_{max}]$

$$\nu_n = \frac{1}{r_n^2} \quad r_n = r_1 a^{n-1} \quad a = \left(\frac{r_{\max}}{r_1}\right)^{\overline{n}}$$

o Normalization

$$\langle \psi \mid \psi \rangle = \sum_{m,n} c_n^* S_{nm} c_m = 1$$

Simple variational analysis

A simple approach

$$\begin{pmatrix} \Phi_{1S} \\ \Phi_{2S} \\ \Phi_{3S} \end{pmatrix} = \begin{pmatrix} c_1^{1S} & c_2^{1S} & c_3^{1S} \\ c_1^{2S} & c_2^{2S} & c_3^{2S} \\ c_1^{3S} & c_2^{3S} & c_3^{3S} \end{pmatrix} \begin{pmatrix} \phi_{1S} \\ \phi_{2S} \\ \phi_{2S} \\ \phi_{3S} \end{pmatrix}$$

$$\boldsymbol{R} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Harmonic oscillator wave function

$$\begin{split} \phi_{1S}^{\rm HO}(\boldsymbol{k}) &= \frac{1}{\pi^{3/4}\beta^{3/2}} e^{-k^2/2\beta^2}, \\ \phi_{2S}^{\rm HO}(\boldsymbol{k}) &= \frac{(2k^2 - 3\beta^2)}{\sqrt{6}\pi^{3/4}\beta^{7/2}} e^{-k^2/2\beta^2}, \\ \phi_{3S}^{\rm HO}(\boldsymbol{k}) &= \frac{(15\beta^4 - 20\beta^2k^2 + 4k^4)}{2\sqrt{30}\pi^{3/4}\beta^{11/2}} e^{-k^2/2\beta^2}, \end{split}$$

• More accurate method:

• Using Gaussian-expansion method (GEM)

Orthonormality

$$\langle \Phi_{nS} | \Phi_{n'S} \rangle = \delta_{nn'}$$

Simple variational analysis

A simple approach

$$\begin{pmatrix} \Phi_{1S} \\ \Phi_{2S} \\ \Phi_{3S} \end{pmatrix} = \begin{pmatrix} c_1^{1S} & c_2^{1S} & c_3^{1S} \\ c_1^{2S} & c_2^{2S} & c_3^{2S} \\ c_1^{3S} & c_2^{3S} & c_3^{3S} \end{pmatrix} \begin{pmatrix} \phi_{1S} \\ \phi_{2S} \\ \phi_{2S} \\ \phi_{3S} \end{pmatrix}$$

$$\boldsymbol{R} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Harmonic oscillator wave function

$$\begin{split} \phi_{1S}^{\text{HO}}(\boldsymbol{k}) &= \frac{1}{\pi^{3/4}\beta^{3/2}} e^{-k^2/2\beta^2}, \\ \phi_{2S}^{\text{HO}}(\boldsymbol{k}) &= \frac{(2k^2 - 3\beta^2)}{\sqrt{6}\pi^{3/4}\beta^{7/2}} e^{-k^2/2\beta^2}, \\ \phi_{3S}^{\text{HO}}(\boldsymbol{k}) &= \frac{(15\beta^4 - 20\beta^2k^2 + 4k^4)}{2\sqrt{30}\pi^{3/4}\beta^{11/2}} e^{-k^2/2\beta^2}, \end{split}$$

• More accurate method:

• Using Gaussian-expansion method (GEM)

Orthonormality

$$\langle \Phi_{nS} | \Phi_{n'S} \rangle = \delta_{nn'}$$

• Variable transformation $(k_z, k_\perp) \rightarrow (x, k_\perp)$

$$\Phi_{nS}(x, \mathbf{k}_{\perp}) = \sqrt{2(2\pi)^3} \sqrt{\frac{\partial k_z}{\partial x}} \Phi_{nS}(\mathbf{k})$$

$$k_{z} = \left(x - \frac{1}{2}\right)M_{0} + \frac{\left(m_{\bar{q}}^{2} - m_{q}^{2}\right)}{2M_{0}} \qquad \frac{\partial k_{z}}{\partial x} = \frac{M_{0}}{4x(1 - x)} \left|1 - \frac{\left(m_{q}^{2} - m_{q}^{2}\right)}{M_{0}}\right|$$

Distribution amplitude: GEM vs SGA

Distribution amplitude: GEM vs SGA

Decay constants

Let us consider pseudoscalar and vector meson decay constants

$$\langle 0 | \bar{q}(0) \gamma^{\mu} \gamma_5 q(0) \\ \langle 0 | \bar{q}(0) \gamma^{\mu} q(0) | V$$

 $|P(P)\rangle = if_P P^{\mu}$ $\langle (P,h)\rangle = f_V M \epsilon^{\mu}$ I.h.s: $\mathcal{J}^{\mu} = \langle 0 | \bar{q}(0) \Gamma q(0) | \mathcal{M} \rangle$ r.h.s: $\mathcal{G}^{\mu}_{P} = iP^{\mu}$ $\mathcal{G}^{\mu}_{V} = M\epsilon^{\mu}$

Decay constants

Let us consider pseudoscalar and vector meson decay constants

• Decay constant calculation

In the nonrelativistic limit ~ $|\psi(r=0)|$

I.h.s: $\mathcal{J}^{\mu} = \langle 0 | \bar{q}(0) \Gamma q(0) | \mathcal{M} \rangle$ r.h.s: $\mathcal{G}_P^\mu = iP^\mu \quad \mathcal{G}_V^\mu = M\epsilon^\mu$

$$f_{P(V)} = \frac{\mathcal{J}^{\mu}}{\mathcal{G}^{\mu}_{P(V)}} \qquad \begin{array}{l} \mu = \pm, \bot \\ h = 0, \pm 1 \end{array}$$

Decay constants

Let us consider pseudoscalar and vector meson decay constants

Decay constant calculation

In the nonrelativistic limit ~ $|\psi(r=0)|$

$$f_{P(V)} = \sqrt{3} \int \frac{dx d^2 k_{\perp}}{2(2\pi)^3} \frac{\Phi(x, k_{\perp})}{\mathcal{G}_{P(V)}} \sum_{\lambda_1, \lambda_2} \mathcal{R}^{Jh}_{\lambda_1 \lambda_2}(x, k_{\perp}) \left[\frac{\bar{\nu}_{\lambda_2}(p_2)}{\sqrt{x_2}} \Gamma \frac{u_{\lambda_1}(p_1)}{\sqrt{x_1}} \right]$$

I.h.s: $\mathcal{J}^{\mu} = \langle 0 | \bar{q}(0) \Gamma q(0) | \mathcal{M} \rangle$ r.h.s: $\mathcal{G}_P^\mu = iP^\mu \quad \mathcal{G}_V^\mu = M\epsilon^\mu$

$$f_{P(V)} = \frac{\mathcal{J}^{\mu}}{\mathcal{G}^{\mu}_{P(V)}} \qquad \begin{array}{l} \mu = \pm, \bot \\ h = 0, \pm 1 \end{array}$$

$$\begin{split} \langle 0 | \bar{q}(0) \gamma^{\mu} q(0) | V(P,h) \rangle &= f_{V} M \epsilon^{\mu} \\ \mathcal{G}_{V}^{\mu} &= M \epsilon^{\mu} \\ \mathbb{E} \mathsf{xternal} \\ \mathsf{variable} \\ \end{split}$$

• To obtain the self-consistency Invariant mass Physical mass

In Light-front Bethe-Salpheter approach

 $S = S_{on} + S_{inst} + S_{z,m}$

• Physical mass should be replaced by the invariant mass

$$f_{P(V)} \propto rac{1}{M} \int rac{dx d^2 k_{\perp}}{2(2\pi)^3} \longrightarrow f_{P(V)} \propto \int rac{dx d^2 k_{\perp}}{2(2\pi)^3} rac{1}{M_0(x,k_{\perp})}$$

$$S = S_{on} + S_{inst} + S_{z.m.}$$

The explicit expression is given by $f_{P(V)} = \sqrt{6} \int \frac{dx d^2 k_{\perp}}{2(2\pi)^3} \frac{\Phi(x, k_{\perp})}{\sqrt{A^2 + k_{\perp}^2}} \mathcal{O}_{P(V)}^{\mu}(h)$

Arifi, Choi, Ji, Oh. PRD107, 053003 (2023)

The explicit expression is given by $f_{P(V)} = \sqrt{6} \int \frac{dx d^2 k_{\perp}}{2(2\pi)^3} \frac{\Phi(x,k_{\perp})}{\sqrt{A^2 + k_{\perp}^2}} \mathcal{O}_{P(V)}^{\mu}(h)$

Arifi, Choi, Ji, Oh. PRD107, 053003 (2023)

M1 Radiative decays

• Let us consider $V \rightarrow P\gamma$ decay:

$\langle P(P')|J_{em}(0)|V(P,h)\rangle = ie\epsilon^{\mu\nu\rho\sigma}\epsilon_{\nu}q_{\rho}P_{\sigma}F_{VP\gamma}(Q^2)$

EM vector current

Lorentz structure

Ridwan, Arifi, Mart. Arxiv:2409.13172

 $F_{VP\gamma}(Q^2) = \frac{\mathcal{J}^{\mu}}{\mathcal{G}^{\mu}}$

Form factor

I.h.s: $\mathcal{J}^{\mu} = \langle P(P') | J_{em}(0) | V(P,h) \rangle$ r.h.s: $\mathcal{G}^{\mu} = ie\epsilon^{\mu\nu\rho\sigma}\epsilon_{\nu}q_{\rho}P_{\sigma}$

M1 Radiative decays

• Let us consider $V \rightarrow P\gamma$ decay:

$\langle P(P')|J_{em}(0)|V(P,h)\rangle = ie\epsilon^{\mu\nu\rho\sigma}\epsilon_{\nu}q_{\rho}P_{\sigma}F_{VP\gamma}(Q^2)$

EM vector current

Lorentz structure

Ridwan, Arifi, Mart. Arxiv:2409.13172

Form factor

 $F_{VP\gamma}(Q^2) = \frac{\mathcal{J}^{\mu}}{\mathcal{G}^{\mu}}$

I.h.s: $\mathcal{J}^{\mu} = \langle P(P') | J_{em}(0) | V(P,h) \rangle$ r.h.s: $\mathcal{G}^{\mu} = ie\epsilon^{\mu\nu\rho\sigma}\epsilon_{\nu}q_{\rho}P_{\sigma}$

Feynman Diagrams 0

 $F_{VP\gamma}(Q^2) = \frac{\mathcal{J}^{\mu}}{\mathcal{G}^{\mu}}$

 $F_{VP\gamma}(Q^2) = e_q I_q^\mu + e_{\bar{q}} I_{\bar{q}}^\mu$

 $I_{j} = \int \frac{dx d^{2} k_{\perp}}{2(2\pi)^{3}} \frac{\Phi(x, k'_{\perp})}{\sqrt{A^{2} + k_{\perp}^{2}}} \frac{\Phi(x, k_{\perp})}{\sqrt{A^{2} + k_{\perp}^{2}}} \mathcal{O}_{VP\gamma}^{\mu}(h)$

 $F_{VP\gamma}(Q^2) = \frac{\mathcal{J}^{\mu}}{\mathcal{G}^{\mu}}$

 $F_{VP\gamma}(Q^2) = e_q I_q^\mu + e_{\bar{q}}$

μ	$\epsilon(h)$	${\cal O}$
+	$\epsilon(0)$	•••
+	$\epsilon(\pm 1)$	$2(1-x)\left[{\cal A} + {2 \over {\cal D}_0} igg({m k}_\perp^2 - ight. ight.$
R(L)	$\epsilon(0)$	$rac{1}{xM_0}iggl\{ \mathcal{A}\left(\mathcal{A}+rac{2m{k}_{\perp}^2}{\mathcal{D}_0} ight)+$
R(L)	$\epsilon(-1)[\epsilon(+1)]$	${2\over x(M_0^2-M_0'^2-m{q}_{\perp}^2)} \left[(m{k}_{\perp}$
R(L)	$\epsilon(+1)[\epsilon(-1)]$	$2(1-x)\left[\mathcal{A}+rac{2}{\mathcal{D}_0}ig(oldsymbol{k}_\perp^2- ight. ight.$

$${}_{ar{q}}I^{\mu}_{ar{q}} \qquad I_{j} = \int rac{dx d^{2}k_{\perp}}{2(2\pi)^{3}} rac{\Phi(x,k'_{\perp})}{\sqrt{A^{2}+k_{\perp}^{2}}} rac{\Phi(x,k_{\perp})}{\sqrt{A^{2}+k_{\perp}^{2}}} \mathcal{O}^{\mu}_{VP}$$

$$\begin{split} & = \frac{\left(\boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp}\right)^{2}}{\boldsymbol{q}_{\perp}^{2}} \bigg) \bigg] \\ & + \frac{\mathcal{M}}{\mathcal{D}_{0}} \left[(1 - 2x) \boldsymbol{k}_{\perp}^{2} + (1 - x) \left((\boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp}) - \frac{2(\boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp})^{2}}{\boldsymbol{q}_{\perp}^{2}} \right) \right] \bigg\} \\ & \boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp}) \left(\mathcal{A} + \frac{x \boldsymbol{k}_{\perp}^{2}}{\mathcal{D}_{0}} - \frac{\mathcal{A}\mathcal{M}_{1}}{\mathcal{D}_{0}} \right) + (1 - x) (\boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp} - \boldsymbol{q}_{\perp}^{2}) \left(\mathcal{A} + \frac{\boldsymbol{k}_{\perp}^{2}}{\mathcal{D}_{0}} - \frac{(\boldsymbol{k}_{\perp} \cdot \boldsymbol{q}_{\perp})^{2}}{\boldsymbol{q}_{\perp}^{2}} \right) \bigg] \end{split}$$

Heavy quarkonia & B_c mesons

Mass spectra

Decay constants

Self-consistency (different polarizations)

Decay constant

$$\Delta \mathcal{O}_1 = \mathcal{O}_V^{\perp}(\pm 1) - \mathcal{O}_V^{+}(0)$$
$$\Delta \mathcal{O}_1 = -\frac{2}{D}(k_{\perp}^2 - 2k_z^2)$$

Self-consistency (different polarizations)

Decay constant

$$\Delta \mathcal{O}_1 = \mathcal{O}_V^{\perp}(\pm 1) - \mathcal{O}_V^{+}(0)$$
$$\Delta \mathcal{O}_1 = -\frac{2}{D}(k_{\perp}^2 - 2k_z^2)$$

<u>M1 radiative decay</u>

$$\begin{split} \Delta \mathcal{O}_2 &= \mathcal{O}_{PV}^+(\pm 1) - \mathcal{O}_{PV}^\perp(0) \\ \Delta \mathcal{O}_2 &= -\frac{2}{D} \left[\frac{2k_z^2 k_\perp^2}{m^2 + k_\perp^2} + k_\perp^2 - 2k_z^2 \right] \end{split}$$

Self-consistency (different polarizations)

Decay constant

$$\Delta \mathcal{O}_1 = \mathcal{O}_V^{\perp}(\pm 1) - \mathcal{O}_V^{+}(0)$$
$$\Delta \mathcal{O}_1 = -\frac{2}{D}(k_{\perp}^2 - 2k_z^2)$$

<u>M1 radiative decay</u>

$$\begin{split} \Delta \mathcal{O}_2 &= \mathcal{O}_{PV}^+(\pm 1) - \mathcal{O}_{PV}^\perp(0) \\ \Delta \mathcal{O}_2 &= -\frac{2}{D} \left[\frac{2k_z^2 k_\perp^2}{m^2 + k_\perp^2} + k_\perp^2 - 2k_z^2 \right] \end{split}$$

Probing the rotational symmetry breaking.

$$\langle k_{\perp}^2 \rangle = \langle 2k_z^2 \rangle$$

Ridwan, Arifi, Mart. Arxiv:2409.13172

Integrands

Allowed case (n' = n)

Overlap of wave function

Hindered case $(n' \neq n)$

Orthogonality of wave function

Transition form factor

Transition form factor

Coupling constant

$$g_{PV\gamma} = F_{PV\gamma}(Q^2 \to 0)$$

(Real photon)

Transition	Our	Expt.	[38]
$J/\psi \to \eta_c(1S)\gamma$	0.745(15)	0.670	0.873
$\psi(2S) \rightarrow \eta_c(2S)\gamma$	0.713(14)	0.884	0.739
$\psi(3S) \rightarrow \eta_c(3S)\gamma$	0.688(12)		
$\psi(2S) \rightarrow \eta_c(1S)\gamma$	-0.0605(37)	-0.040	-0.144
$\psi(3S) \to \eta_c(2S)\gamma$	-0.0595(33)		
$\psi(3S) \to \eta_c(1S)\gamma$	-0.0108(4)		
$\eta_c(2S) \to J/\psi\gamma$	-0.0605(37)		-0.022
$\eta_c(3S) \to \psi(2S)\gamma$	-0.0595(33)		
$\eta_c(3S) \to J/\psi\gamma$	-0.0108(4)		

(allowed)>>(hindered)

Summary

- Hadron spectra & structure
 - Quark model & light-front dynamics 0
- Discussions 0
 - Realistic LFWF with GEM: consistent with perturbative QCD 0
 - Self-consistency with different polarizations 0
 - Prediction has reasonable agreement with the data 0
- Outlook 0
 - Further works on the obervables and self-consistency 0
 - Extension to baryon and beyond 0

Thank you for your attention!

