

厦門大學物理科学与技术学院 College of Physical Science and Technology, Xiamen University FEW-BODY PROBLEMS IN PHYSICS (FB23)

The Peculiar Thermal Relaxation of Neutron Stars

Speaker:Zhong-Hao Tu (涂中豪) tuzhonghao@xmu.edu.cnCollaborator:Ang Li and Rodrigo Negreiros

- Background
- Thermal relaxation of neutron star
- Peculiar thermal relaxation from **superfluidity**
- Peculiar thermal relaxation of **hyperon star**
- Summary and Perspective

Contents

Background

- Thermal relaxation of neutron star
- Peculiar thermal relaxation from **superfluidity**
- Peculiar thermal relaxation of **hyperon star**
- Summary and Perspective

Neutron Stars

1967, the first observation of pulsar

Neutron Star Inner Core

2

Neutron Star Inner Core

Neutrino Emissivity

• dUrca vs. mUrca Alford2024_arXiv2406.13717

$$\epsilon_{
m dUrca}/\epsilon_{
m mUrca} = 5 imes 10^5 T_9^{-2}$$

	threshold
<i>np</i> dUrca	$Y_p > 1/9$
mUrca	×
hyperon dUrca	nearly the onset density of hyperon

 $\epsilon_{
m PBF}/\epsilon_{
m mUrca}\sim 10$

PBF process is triggered when internal temperature decreases to the critical temperature

Superfluidity and Neutron Star Cooling

Baryon superfluidity is widely present within neutron stars.

Sedrakian2024_arXiv2407.13686 Tu2022_PRC106-025806

Superfluidity and Neutron Star Cooling

Superfluidity and Neutron Star Cooling

Thermal relaxation: the **thermal coupling** between the core and crust

$$t_w = t \text{ for max} \left| \frac{d \ln(T_s)}{d(\ln(t))} \right| \qquad t_w \sim 10 - 100 \text{ years}$$

2024/9/26

6

Thermal relaxation: the **thermal coupling** between the core and crust

$$t_w = t \text{ for max} \left| \frac{d \ln(T_s)}{d(\ln(t))} \right| \qquad t_w \sim 10-100 \text{ years}$$

Fitting:
$$t_w \approx \alpha t_1$$

 $\alpha = \left(\frac{\Delta R_{\text{crust}}}{1 \text{ km}}\right)^2 (1 - 2M/R)^{-3/2}$ Linear!

- ?
- 1. How does the *superfluidity* affect the thermal relaxation?
- 2. Can we observe the peculiar thermal relaxation in other type neutron star, e.g., *hyperon star*?

Contents

Background

- Thermal relaxation of neutron star
- Peculiar thermal relaxation from **superfluidity**
- Peculiar thermal relaxation of **hyperon star**
- Summary and Perspective

Lalazissis2005_PRC71-024312 A. Bouyssy *et al.*, PLB 64 (1976) 276 Page2004_ApJSupp155-623

• EoS: $n + p + \Lambda + (\sigma \omega \rho \sigma^* \phi)$

$$\begin{split} \mathcal{L} &= \sum_{B} \bar{\psi}_{B} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega B} \omega_{\mu} - g_{\rho B} \rho_{\mu} \tau_{B} - g_{\phi B} \phi_{\mu} \right) \right. \\ &- \left(M_{B} - g_{\sigma B} \sigma - g_{\delta B} \delta - g_{\sigma^{*} B} \sigma^{*} \right) \right] \psi_{B} \\ &+ \frac{1}{2} (\partial^{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^{2} \sigma^{2}) + \frac{1}{2} (\partial^{\mu} \sigma^{*} \partial_{\mu} \sigma^{*} - m_{\sigma^{*}}^{2} \sigma^{*2}) + \frac{1}{2} (\partial^{\mu} \delta \partial_{\mu} \delta - m_{\delta}^{2} \delta^{2}) \\ &- \frac{1}{4} W^{\mu\nu} W_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} - \frac{1}{4} R^{\mu\nu} R_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \rho^{\mu} \rho_{\mu} - \frac{1}{4} \Phi^{\mu\nu} \Phi_{\mu\nu} + \frac{1}{2} m_{\phi}^{2} \phi^{\mu} \phi_{\mu} \\ &+ \sum_{l} \bar{\psi}_{l} (i \gamma_{\mu} \partial^{\mu} - m_{l}) \psi_{l}, \end{split}$$
 RMF model

Lalazissis2005_PRC71-024312 A. Bouyssy *et al.*, PLB 64 (1976) 276 Page2004_ApJSupp155-623

• EoS: $n + p + \Lambda + (\sigma \omega \rho \sigma^* \phi)$

$$\begin{split} \mathcal{L} &= \sum_{B} \bar{\psi}_{B} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega B} \omega_{\mu} - g_{\rho B} \rho_{\mu} \tau_{B} - g_{\phi B} \phi_{\mu} \right) \right. \\ &- \left(M_{B} - g_{\sigma B} \sigma - g_{\delta B} \delta - g_{\sigma^{*} B} \sigma^{*} \right) \right] \psi_{B} \\ &+ \frac{1}{2} (\partial^{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^{2} \sigma^{2}) + \frac{1}{2} (\partial^{\mu} \sigma^{*} \partial_{\mu} \sigma^{*} - m_{\sigma^{*}}^{2} \sigma^{*2}) + \frac{1}{2} (\partial^{\mu} \delta \partial_{\mu} \delta - m_{\delta}^{2} \delta^{2}) \\ &- \frac{1}{4} W^{\mu\nu} W_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} - \frac{1}{4} R^{\mu\nu} R_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \rho^{\mu} \rho_{\mu} - \frac{1}{4} \Phi^{\mu\nu} \Phi_{\mu\nu} + \frac{1}{2} m_{\phi}^{2} \phi^{\mu} \phi_{\mu} \\ &+ \sum_{l} \bar{\psi}_{l} (i \gamma_{\mu} \partial^{\mu} - m_{l}) \psi_{l}, \end{split}$$
 RMF model

NN interaction	DD-ME2
$\rho_{\rm sat}~({\rm fm}^{-3})$	0.152
E/A (MeV)	-16.14
K_0 (MeV)	250.89
m^*	0.572
$a_4 (MeV)$	32.3

Lalazissis2005_PRC71-024312 A. Bouyssy *et al.*, PLB 64 (1976) 276 Page2004_ApJSupp155-623

• EoS: $n + p + \Lambda + (\sigma \omega \rho \sigma^* \phi)$

$$\begin{split} \mathcal{L} &= \sum_{B} \bar{\psi}_{B} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega B} \omega_{\mu} - g_{\rho B} \rho_{\mu} \tau_{B} - g_{\phi B} \phi_{\mu} \right) \right. \\ &- \left(M_{B} - g_{\sigma B} \sigma - g_{\delta B} \delta - g_{\sigma^{*} B} \sigma^{*} \right) \right] \psi_{B} \\ &+ \frac{1}{2} (\partial^{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^{2} \sigma^{2}) + \frac{1}{2} (\partial^{\mu} \sigma^{*} \partial_{\mu} \sigma^{*} - m_{\sigma^{*}}^{2} \sigma^{*2}) + \frac{1}{2} (\partial^{\mu} \delta \partial_{\mu} \delta - m_{\delta}^{2} \delta^{2}) \\ &- \frac{1}{4} W^{\mu\nu} W_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} - \frac{1}{4} R^{\mu\nu} R_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \rho^{\mu} \rho_{\mu} - \frac{1}{4} \Phi^{\mu\nu} \Phi_{\mu\nu} + \frac{1}{2} m_{\phi}^{2} \phi^{\mu} \phi_{\mu} \\ &+ \sum_{l} \bar{\psi}_{l} (i \gamma_{\mu} \partial^{\mu} - m_{l}) \psi_{l}, \end{split}$$
 RMF model

NN interaction	DD-ME2
$\rho_{\rm sat}~({\rm fm}^{-3})$	0.152
E/A (MeV)	-16.14
K_0 (MeV)	250.89
m^*	0.572
<i>a</i> ₄ (MeV)	32.3

NY and YY interactions

$$U_{\Lambda}^{(N)} \simeq -30 \text{ MeV}$$

 $2U_{\Lambda}^{(\Lambda)} \simeq -10 \text{ MeV}$ No *np* dUrca, Λp dUrca $M_c^{\text{DU}} = 1.3184 M_{\odot}$

Lalazissis2005_PRC71-024312 A. Bouyssy *et al.*, PLB 64 (1976) 276 Page2004_ApJSupp155-623

• EoS: $n + p + \Lambda + (\sigma \omega \rho \sigma^* \phi)$ • Superfluidity: (a) w/o Λ 6 w/ A $\mathcal{L} = \sum_{B} \bar{\psi}_{B} \left[\gamma^{\mu} \left(i \partial_{\mu} - g_{\omega B} \omega_{\mu} - g_{\rho B} \rho_{\mu} \tau_{B} - g_{\phi B} \phi_{\mu} \right) \right]$ 5 $\widehat{\mathbf{v}}$ 4₆01) ${}^{1}S_{0}(n)$ $-\left(M_{B}-g_{\sigma B}\sigma-g_{\delta B}\delta-g_{\sigma^{*}B}\sigma^{*}\right)\right]\psi_{B}$ ${}^{1}S_{0}(p)$ $+\frac{1}{2}(\partial^{\mu}\sigma\partial_{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}) + \frac{1}{2}(\partial^{\mu}\sigma^{*}\partial_{\mu}\sigma^{*} - m_{\sigma^{*}}^{2}\sigma^{*2}) + \frac{1}{2}(\partial^{\mu}\delta\partial_{\mu}\delta - m_{\delta}^{2}\delta^{2})$ 2 ³P₂(n) $-\frac{1}{4}W^{\mu\nu}W_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} - \frac{1}{4}R^{\mu\nu}R_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho^{\mu}\rho_{\mu} - \frac{1}{4}\Phi^{\mu\nu}\Phi_{\mu\nu} + \frac{1}{2}m_{\phi}^{2}\phi^{\mu}\phi_{\mu}$ 10⁰ (b) + $\sum \bar{\psi}_l (i \gamma_\mu \partial^\mu - m_l) \psi_l$, RMF model 10^{-1} р ρ¦/ρ NN interaction DD-ME2 NY and YY interactions 10^{-2} $U^{(N)}_{\Lambda} \simeq -30 \text{ MeV}$ $\rho_{\rm sat} \,({\rm fm}^{-3})$ 0.152 E/A (MeV) -16.14 10^{-3} $2U^{(\Lambda)}_{\Lambda} \simeq -10 \text{ MeV}$ 10^{0} K_0 (MeV) 250.89 m^* 0.572 ρ/ρ_0 No *np* dUrca, Λ*p* dUrca 32.3 a_4 (MeV) $T_{\rm cn} = R_{^3P_2}T_{\rm max}$ $M_{c}^{\rm DU} = 1.3184 M_{\odot}$

- Closing the dUrca, the dependence of t_w on mass is linear, while its dependence on the critical temperature is nonlinear;
- Above the mass that dUrca sets in, the dependences of t_w on both mass and critical temperature are nonlinear.

Contents

- Background
- Thermal relaxation of neutron star
- Peculiar thermal relaxation from **superfluidity**
- Peculiar thermal relaxation of **hyperon star**
- Summary and Perspective

The smaller critical temperature T_{cn} , the longer relaxation time

The late trigger of PBF process: waiting time t_{wait} global energy balance: $C_V \frac{dT}{dt} = -R_{eff} L_{\nu}^{mu}$ $C_V = C_9 T_9$ with $C_9 \approx 10^{39} \text{ erg/K}$ $C_V = \int c_v dV$ $L_{\nu}^{mu} = L_9 T_9^8$ with $L_9 \approx 10^{40} \text{ erg/s}$ $L_{\nu} = \int \epsilon dV$ $T_9 = T/10^9 \text{ K}$ Page2011_PRL106-081101

The smaller critical temperature T_{cn} , the longer relaxation time

The late trigger of PBF process: waiting time t_{wait} global energy balance: $C_V \frac{dT}{dt} = -R_{\text{eff}} L_{\nu}^{\text{mu}}$ $C_V = C_9 T_9$ with $C_9 \approx 10^{39} \text{ erg/K}$ $C_V = \int c_v dV$ $L_{\nu}^{\rm mu} = L_9 T_9^8$ with $L_9 \approx 10^{40} \text{ erg/s}$ $L_{\nu} = \int \epsilon \mathrm{d}V$ $T_9 = T/10^9 \text{ K}$ Page2011_PRL106-081101 $t(T) = \tau_{\rm mu}^{\rm eff} \left(\frac{1}{T_0^6} - \frac{1}{T_0^6} \right) \longrightarrow t_{\rm wait} = t(T_{\rm cn})$ $\tau_{\rm mu}^{\rm eff} = \tau_{\rm mu}/R_{\rm eff}$ $\tau_{\rm mu} = 10^9 C_9/6L_9 \approx 1.0$ year

 τ_{mu} : time-scale of mUrca dominated cooling R_{eff} : SF effective suppression factor

The smaller critical temperature T_{cn} , the longer relaxation time

The late trigger of PBF process: waiting time t_{wait}

$$\underline{t_{w}} \approx t_{wait} + t_{w}^{PBF}$$

$$t_{w} \approx \tau_{mu}^{eff} \left(\frac{1}{T_{cn,9}^{6}} - \frac{1}{T_{0,9}^{6}} \right) + \alpha t_{1} \quad \text{re-coupling of core and crust}$$

waiting for the trigger of PBF; nonlinear

Fitting:

$$\tau_{\rm mu}^{\rm eff}$$
 =2.8–3.0 years

 $t_1 = 30 - 37$ years

Other interactions (NL3 and PKDD) give the similar results: **Model-independent.**

Contents

- Background
- Thermal relaxation of neutron star
- Peculiar thermal relaxation from **superfluidity**
- Peculiar thermal relaxation of **hyperon star**
- Summary and Perspective

■ DU core:

- dUrca process, Low temperature;
- outer core: ➤ mUrca + PBF process;

■ DU core:

- dUrca process, Low temperature;
- outer core:
 - ➢ mUrca + PBF process;
 - > Thermal compensation to the DU core.

■ DU core:

- dUrca process, Low temperature;
- the temperature is nearly *constant* if the DU core is very small.
- outer core:
 - ➢ mUrca + PBF process;
 - Thermal compensation to the DU core.

The thermal coupling between DU core and outer core:

Outer core energy balance

$$C_V \frac{dT}{dt} = -R_{\text{eff}} L_{\nu}^{\text{mu}} \theta(T - T_{\text{cn}}) \quad \text{mUrca}$$
$$- f_{\text{PBF}} L_{\nu}^{\text{mu}} \theta(T_{\text{cn}} - T) \quad \text{mUrca+PBF}$$
$$- R f_{\text{DU}} L_{\nu}^{\text{mu}} T_{\text{DU}}^8 / f_V \qquad \text{DU core}$$
$$= \text{nergy loss}$$

 $T_{\rm DU}$: DU core temperature before reaching relaxation $f_{\rm DU}$: ratio of neutrino emissivity of dUrca to mUrca $f_{\rm V}$: ratio of the outer core volume to DU core R: ratio of neutrino emissivity of Λp to np dUrca, ~ 0.04

The thermal coupling between DU core and outer core:

DU core energy balance

$$C_V \frac{dT}{dt} = 0$$

 $T_{\rm t}$: the outer core temperature that reaching relaxation $T_{\rm t} \approx T_{\rm DU}$ for a neutron star with a very small DU core

 T_t : the outer core temperature that reaching relaxation

 $T_{\rm t} \approx T_{\rm DU}$ for a neutron star with a very small DU core

Suitable for a neutron star with a small DU core

The thermal coupling between DU core and outer core:

 $T_{\rm t}$: the outer core temperature that reaching relaxation $T_{\rm t} \approx T_{\rm DU}$ for a neutron star with a very small DU core

Contents

- Background
- Thermal relaxation of neutron star
- Peculiar thermal relaxation from **superfluidity**
- Peculiar thermal relaxation of **hyperon star**
- Summary and Perspective

• Summary:

- PBF and dUrca processes change the thermodynamic structure of neutron stars, leading to the recoupling of the crust and core and peculiar relaxation times.
- > A possible way to probe the superfluidity and internal thermal properties of neutron stars.

• Perspective:

- > More precise microscopic physical inputs for neutron stars are needed.
- Suitable observation targets are required.

Thanks for your attention!

