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• Summary
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Driplines
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Stroberg et al., PRL (2021)



Neutron Dripline
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• Can we explain the dripline properties of Carbon and Oxygen isotopes in NLEFT? 
• Is it sensitive to nuclear force? (role of 3NF)

Zhang et al., At. Data Nucl. Data Tables (2022)



Nuclear Lattice EFT

• one of ab initio method for few-, many-fermion 
system 

• powerful numerical method formulated in the 
framework of chiral EFT 

• EFT (theory) + Lattice method + Monte Carlo 
algorithm
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Nuclear Lattice EFT

• Instead of calculating Grassmann path integral of the exponential of the lattice 
action. we use transfer matrix operator formalism 

• Transfer matrix formalism                                                 
with microscopic Hamiltonian 

M = : exp{−Hat} :
H = Hfree + V
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Z(Lt) = Tr(MLt) = ∫ DcDc* exp[−S(c*, c)]



Auxiliary field Quantum Monte Carlo
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slide from Y. Ma



Wavefunction Matching method

• realistic high-fidelity H (chiral EFT 
interaction at N3LO) 

• avoid severe sign problem - creating a 
new H’ (WFM method)
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Kinetic E. OPEP at leading order Coulomb

3N potential

2N short-range at N3LO

2N GIR at N3LO

WFM interaction & GIR correction

H = K+ VΛπ
OPE + VΛπ

Cπ
+VCoulomb+VQ3

3N+VQ4

2N+WQ4

2N+VQ4

2N,WFM + WQ4

2N,WFM
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Carbon and Oxygen isotopes (preliminary)
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Song et al., work in progress

Carbon



Woods-Saxon potential for protons

• Mean field picture is very useful to understand the general behavior 

• Half ab initio / phenomenological approach 

• Replacing proton contributions into WS potential -> Neutrons are bounded by 
effective proton mean field
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Vp(r) = −
V0

1 + exp ( r − R
a )

set 1 - V0 = − 45 MeV, a0 = 0.5 fm, R = 1.386 × 81/3

set 2 - V0 = − 45 MeV, a0 = 0.5 fm, R = 1.259 × 81/3



Binding energies
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Binding energies
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Neutron separation energies 
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PreliminaryWS

WFM



Summary & outlook

• NLEFT is powerful to understand nuclear properties and successfully 
reproduce and estimate binding energies and charge radii with chiral EFT 
interaction at N3LO using wavefunction matching method. 

• Toward neutron rich isotope for carbon and oxygen, the results are in good 
agreement with experimental measurement. We do further analysis for 
understanding the structure of carbon and oxygen. 

• Woods-Saxon potential for proton mean field reproduce not only separation 
energies but also similar patter in terms of shell-model orbitals in oxygen 
isotopes. Also it has potential to extend neutron rich side at large N (such as 
Au, Pb, etc.)
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