

Multi-neutron detection based on machine learning

DU Zeyu^{1, 2}, HUANG Siwei^{1, 2}, YANG Zaihong^{1, 2}[†], LI Qite^{1, 2}, BIAN Jiawei^{1, 2}
 1. School of Physics, Peking University, Beijing 100871, China
 2. State Key Laboratory of Nuclear Physics and Technology, Peking University

2024.09.26

Outline

- Background
- Method exclusion of crosstalk using DNN
- Result comparing traditional and machine learning algorithms
- Summary

Background

Multi-neutron detection experiment

Typical layout of experiment at RIBF, RIKEN.

HUANG S, YANG Z, MARQUÉS F, et al. Few-Body Systems, 2021, 62(4): 102

思想自由 兼容并包

crosstalk

The secondary charged particles gamma rays scattered neutrons

The challenges of multi-neutron detection:

low detection efficiency of neutrons

large number of crosstalk signals, real neutron signal will inevitably be excluded

Crosstalk

a single neutron can also generate a large number of crosstalk

directly select the first signal?

Crosstalk

Data from Geant4 simulation

a single neutron can also generate a large number of crosstalk directly select the first signal?

not applicable to the case of multiple neutron events, timing of signals is very complicated

Traditional algorithm

Kondo et al., Nuclear Instruments and Methods in Physics Research Section B 463: 173-178 (2020) S. W. Huang et al., Few-Body Systems 62(4): 1-7 (2021) **Outline**

- Background
- Method exclusion of crosstalk using DNN
- Result comparing traditional and machine learning algorithms
- Summary

- predicting fission fragment yield distribution. WANG Z A, PEI J, LIU Y, QIANG Y., PRL 123: 122501 (2019)
- predicting nuclear mass. Niu Z M, Liang H Z., PRC 06(2): L021303 (2022)
- predicting ground state energy. Knöll et al., PLB 839: 137781 (2023)
- particle identification in plastic scintillators.

Doucet et al., Nucl. Instrum. Methods Phys. Res., Sect. A 954, 161201 (2020)

• particle identification in AT-TPC tracks.

Kuchera et al., Nucl. Instrum. Methods Phys. Res., Sect. A 940: 156-167 (2019)

C.A. Douma et al, Nucl. Instrum. Methods Phys. Res., Sect. A 990, 164951 (2020)

Deep Neural Network

(1) Neutron multiplicity determination

(2) Neutron selection

Training/validation set (1million events) + test set from Geant4 simulation

Machine learning algorithm – step 1

The principle of first step DNN

Input: Information recorded by the neutron detector (X,Y,Z,TOF,Q...) Output: value between 0 (not 4n) and 1 (4n)

Machine learning algorithm – step 2

14 input layer features
12 hidden layers(200 neurons per layer)

Training Set: Number of reacted neutron equals object neutron Feature: information of a single cluster (X,Y,Z,TOF,Q...) Label: 0 or 1 (i.e. whether the cluster contains real signal)

To pick out the cluster where the real neutron is, each cluster is fed into the model and the predicted value p is obtained. Sort all the output value to select them.

The principle of second step DNN

Outline

- Background
- Method exclusion of crosstalk using DNN
- Result comparing traditional and machine learning algorithms
- Summary

Define:

$$r_{1} = \frac{eliminated \ crosstalk \ events}{initial \ crosstalk \ events}$$

nulti n misclassification rate r_{2}
misclassified as 2n events

 $r_2 = \frac{1}{total 2n events}$

/%	r_1	r_2
traditional	98.43	3.83
ML	99.40	1.33

 E_{rel} peak position Detection efficiency Energy resolution

Result: 4n efficiency

思想自由 兼容并包

6

Result: 4n resolution

 シレネト湾 PEKING UNIVERSITY

correlation between different clusters of signals (missing in DNN)

- vertex: represent the information of each detector
- edge: information about correlation of two signals (such as β)
- adapted from Particle-net in high energy physics

Huilin Qu et al., Phys. Rev. D 101: 056019 (2020)

A neural network-based multi-neutron identification algorithm is developed, which significantly improves the four-neutron efficiency (>10 times) compared with the traditional algorithm.

We are now trying to use graph neural network (GNN) and other methods to develop multi-neutron identification algorithm, hoping to further improve the results by introducing correlations between clusters.

We will continue to explore and optimize algorithms for the high-efficiency and high-resolution multi-neutron spectrometer under construction, and apply them to multi-neutron detection.