Study the nature of double charm tetraquark in proton-proton collisions

Yi-Yao Li (李奕尧)

The 23rd International Conference on Few-Body Problems in Physics Beijing, China 2024.9.22-27

Xue-Li Hua, YYL, Qian Wang, Shuai Yang, Qiang Zhao, Bing-Song Zou, Eur. Phys. J. C 84 (2024) 8, 800

Background

The observation of T_{cc}^+

[LHCb, Nature Phys. 18(7) (2022) 751-754]

- Discovered in $pp \rightarrow D^0 D^0 \pi^+ + all$ by LHCb
- The first double charm tetraquark candidate
- Quark content $cc\overline{u}\overline{d}$ and $I(J^P) = 0(1^+)$
- Close to (and below) $D^{*+}D^0$ threshold
- Well-established exotic hadron candidate

Simple BW

- $\delta_m = -273 \pm 61 \text{ keV}$
- $\Gamma = 410 \pm 165 \text{ keV}$
- 4.3 σ for $\delta_m < 0$

Unitarised 3-body BW

- $\delta_m = -359 \pm 40 \text{ keV}$
- $\Gamma = 48 \pm 2 \text{ keV}$
- 9 σ for $\delta_m < 0$

[Nature Phys. 18(7) (2022) 751-754]

[Nature Commun. 13 (2022) 1, 3351]

Background

Hadronic Molecular picture

- Obtain the line shape of T_{cc}^+
- Obtain the mass position and width of T_{cc}^+
- Predict the locations of I = 1 triplet partners of T_{cc}^+

[Xin et al, EPJA 58 (2022) 6, 110] [Shi et al, PRD 106 (2022) 9, 096012] [Albaladejo, PLB 829 (2022) 137052] [Chen et al, PLB 833 (2022) 137391] [Du et al, PRD 105 (2022) 1, 014024] [Liu et al, PRD 107 (2023) 5, 054041] [Lin et al, arXiv: 2205.14628 (2022)] [Ke et al, PRD 105 (2022) 11, 114019] [Chen et al, EPJC 82 (2022) 7, 581] [Deng et al, PRD 105 (2022) 5, 054015] [Wang et al, PRD 107 (2023) 9, 094002] [Montesinos et al, PRC 108 (2023) 3, 035205]

Compact Tetraquark picture

[Wu et al, PRD 107 (2023) 7, L071501]

[Simonov et al, Phys.Atom.Nucl. 86 (2023) 2, 147-152] [Gao et al, Mod.Phys.Lett.A 37 (2022) 35n36, 2250223] [Song et al, Commun.Theor.Phys. 75 (2023) 5, 055201] [Noh et al, PRD 108 (2023) 1, 014004] [Meng et al, PLB 846 (2023) 138221] [Kim et al, PRD 105 (2022) 7, 074021]

2024.9.25

.....

.....

Motivation

- A physical quantity to distinguish the internal structure of T_{cc}^+ ? (Hadronic Molecular & Compact Tetraquark)
- Can be achieved by current experiment?

Study the natures of T_{cc}^+ and $T_{c\bar{c}}^-$ in pp collision at \sqrt{s} =14 TeV

Hadronic Molecular picture

- Events generator: PYTHIA 8.3 (Statistic: 1 billion)
- Collect prompt D^- , \overline{D}^0 , D^{*-} , \overline{D}^{*0} in an event
- Make cone cut $R_{D-D^*} < \Lambda_{HM}$ of $D^- \& \overline{D}^{*0}$ or

 $D^{*-} \& \overline{D}^{0} (\Lambda_{HM} = 0.5, 1, 1.5 \text{ GeV})$

- Form $\overline{D}^{*0}D^- \& D^{*-}\overline{D}^0$ and obtain $\sigma_{\overline{D}^{*0}D^-(D^{*-}\overline{D}^0)}$
- Calculate the $\sigma_{T_{c\bar{c}}}$ by factorization formula The product of $T_{c\bar{c}}$ by PYTHIA

Compact Tetraquark picture $\frac{\text{di-quark from Monte Carlo}}{\text{simulation directly, only for } T_{c\bar{c}}^{-}}$

- Events generator: PYTHIA 8.3 (Statistic: 100 billion)
- Collect \bar{c} , u, d, ud_0 , ud_1 in an event
- Make cone cut of $\bar{c}\&\bar{c}$ or u&d ($R_{\bar{c}-\bar{c}}$ or $R_{u-d} < 1$ GeV) to form $\bar{c}\bar{c}$ and ud (anti)di-quark
- Make cone cut of $\bar{c}\bar{c}\&ud$ to form $\bar{c}\bar{c}ud$

(select condition: $R_{\bar{c}\bar{c}-ud} < \Lambda_{CT}$, $\Lambda_{CT}=0.5$, 1 GeV)

• Calculate the $\sigma_{T_{\overline{cc}}}$ by convolute wave function

$P_{\rm T}$ distributions of $\overline{D}^{(*)} \& D^{(*)}$ and their ratio

- $\sigma_{\overline{D}^{(*)}}$ is lager than $\sigma_{D^{(*)}}$ at low P_{T}
- Described by [Braaten, Jia, Mehen, PRL 89 (2002) 122002]

with heavy quark recombination mechanism

 $P_{\rm T}$, rapidity (y) distributions of $\overline{D}\overline{D}^*$ & DD^* pairs and their ratio

- Ratio $\equiv \frac{\sigma_{\overline{D}\overline{D}^*}}{\sigma_{DD^*}}$
 - Maximum at $P_{\rm T} \approx 2 \text{GeV}$ and $y \approx 0$
 - Similar $P_{\rm T}$ and y behaviors
 - $\sigma_{\overline{D}\overline{D}^*}$ is lager than σ_{DD^*} at low P_{T} and large |y|

The cross section of the T_{cc}^+

$$\sigma_{T_{cc}^{+}} = \frac{1}{4m_{D}m_{D^{*}}} g^{2} |\mathcal{G}|^{2} \left(\frac{d\sigma_{DD^{*}}}{dk}\right)_{MC} \frac{4\pi^{2}\mu}{k^{2}}$$

The amplitude of the production of DD^* should be a constant without considering the FSI:

Successfully apply to:

X(3872): [Guo et al, EPJC 74 (2014) 9, 3063], [Shi et al, PRD 106 (2022) 11, 114026], [Albaladejo et al, CPC 41 (2017) 12, 121001], [Yang et al, CPC 45 (2021) 12, 123101]

P_cs: [Ling et al, EPJC 81 (2021) 9, 819]

Z_bs: [Cao et al, PRD 101 (2020) 7, 074010]

D_{s0}(2317): [Guo et al, JHEP 05 (2014) 138]

	$A + \delta_{sta} + \delta_{sys}$					
1	$\mathcal{A}(\%)$		$\sigma_{T^+_{cc}}(\sigma_{T^{ar{c}ar{c}}})$ ror	statistic er	7)	Range(GeV
		$\Lambda = 1.5 {\rm GeV}$	$\Lambda = 1 {\rm GeV}$	$\Lambda = 0.5 { m GeV}$		
		$313.74{\pm}1.03$ nb	152.42 ± 0.89 nb	43.30 ± 0.70 nb	$\sigma_{T_{cc}^+}$	
	$1.24 \pm 0.30 \pm 0.20$	$(321.14 \pm 1.04 \text{ nb})$	$(156.81 \pm 0.91 \text{ nb})$	$(44.13 \pm 0.71 \text{ nb})$	Full $(\boldsymbol{\sigma}_{\boldsymbol{T}_{\overline{c}\overline{c}}})$	
			ICb $(2 < y < 4.5)$	LH		
		$11.46{\pm}0.23~\mathrm{nb}$	$5.27{\pm}0.20~{\rm nb}$	$1.46{\pm}0.15~\mathrm{nb}$	112]	$4 < p_T < 20$ [
	$2.53 \pm 2.01 \pm 1.79$	$(11.87 \pm 0.24 \text{ nb})$	$(5.63 \pm 0.20 \text{ nb})$	$(1.45 \pm 0.15 \text{ nb})$]	
		$62.28{\pm}0.66~\mathrm{nb}$	$29.93{\pm}0.57$ nb	$8.26{\pm}0.44~\mathrm{nb}$	1	$n_T > 0$ [11]
	$1.64 \pm 1.03 \pm 0.52$	$(64.30 \pm 0.67 \text{ nb})$	$(30.82 \pm 0.58 \text{ nb})$	$(8.69 \pm 0.46 \text{ nb})$	$p_T \geq 0$ [11]	

A: the weighted average of $A_{0.5 \text{GeV}}$, $A_{1 \text{GeV}}$ and $A_{1.5 \text{GeV}}$

 $A \equiv \omega_1 A_1 + \omega_2 A_2 + \omega_3 A_3 \qquad \qquad \delta_{sta} \equiv \omega_1 \delta_1 + \omega_2 \delta_2 + \omega_3 \delta_3$ $\omega_i \equiv \frac{\frac{1}{\delta_i^2}}{\frac{1}{\delta_1^2} + \frac{1}{\delta_2^2} + \frac{1}{\delta_3^2}} \qquad \qquad \delta_{sys} \equiv \sqrt{\frac{\sum_i (A_i - A)^2}{3}}$

T_{cc}^+ in Compact Tetraquark picture

10

 $cc\bar{u}d$ & $c\bar{c}ud$: hand-made diquark pairs $\overline{cc}ud_0 \& \overline{cc}ud_1$: MC diquark pairs consist of ud_0, ud_1

- Similar *P*_T behaviors between all diquark pairs
- MC diquark pairs show different *y* behaviors
- $\sigma_{cc\overline{u}d}$ is larger than $\sigma_{cc\overline{u}\overline{d}}$ at low P_{T} and large |y|

$$\sigma_{T_{cc}^{+}} = \sigma_{cc\overline{u}\overline{d}} \left| \phi\left(\vec{k}, a\right) \right|^{2} \longrightarrow \phi^{h.o.}\left(\vec{k}, a\right) = (\frac{1}{\pi})^{\frac{3}{4}} (\frac{1}{a})^{\frac{3}{2}} e^{\frac{-|\vec{p}|^{2}}{2a^{2}}} \phi^{St}\left(\vec{k}, a\right) = 2\sqrt{2} \frac{1}{\pi} (\frac{1}{a})^{\frac{3}{2}} (\frac{|\vec{p}|^{2}}{a^{2}} + 1)^{-2}$$

$$\overset{(1)}{=} 2^{2} (\frac{1}{\pi})^{\frac{3}{2}} (\frac{|\vec{p}|^{2}}{a^{2}} + 1)^{-2}$$

$$\overset{(2)}{=} 2^{2} (\frac{1}{\pi})^{\frac{3}{2}} (\frac{|\vec{p}|^{2}}{a^{2}} + 1)^{-2}$$

$$\overset{(2)}{=} 2^{2} (\frac{1}{\pi})^{\frac{3}{2}} (\frac{|\vec{p}|^{2}}{a^{2}} + 1)^{-2}$$

The cross sections and asymmetry of T_{cc}^+ and T_{cc}^- in different kinematic range $A \equiv \frac{\sigma^- - \sigma^+}{\sigma^- + \sigma^+}$ Range(GeV) $\sigma_{T_{cc}^+}(\sigma_{T_{c\bar{c}}^-})$ $\mathcal{A}(\%)$ $r = 0.2 \mathrm{fm}$ $r = 0.5 \mathrm{fm}$ $r = 1 \mathrm{fm}$ • $\Lambda_{CT} = 1 \text{GeV}$ $4.43{\pm}0.02$ nb 4.88 ± 0.02 nb $\sigma_{T_{cc}^+}$ 1.25 ± 0.005 nb Full $18.73 \pm 0.25 \pm 0.14$ $(1.82 \pm 0.01 \text{ nb})$ $(\boldsymbol{\sigma}_{T\bar{c}\bar{c}})$ $(7.16 \pm 0.02 \text{ nb})$ • Wave function: $\phi^{h.o.}$ $(6.46 \pm 0.02 \text{ nb})$ LHCb (2 < y < 4.5)39.75±0.89 pb 139.88±3.11 pb 163.77±3.65 pb $4 < p_T < 20$ [112] $7.35 \pm 1.48 \pm 5.24$ (163.83±3.23 pb) $(50.57 \pm 1.00 \text{ pb})$ $(171.16 \pm 3.38 \text{ pb})$ 0.24 ± 0.002 nb $0.84{\pm}0.01$ nb $0.91 {\pm} 0.01$ nb $p_T > 0$ [11] $11.42 \pm 0.60 \pm 0.17$ $(1.14 \pm 0.01 \text{ nb})$ $(0.30 \pm 0.002 \text{ nb})$ $(1.05 \pm 0.01 \text{ nb})$ A(%) $\Lambda_{CT} = 1 \text{GeV} \& \phi^{h.o.}$ $\Lambda_{CT} = 0.5 \text{GeV} \& \phi^{h.o.}$ $\Lambda_{CT} = 1 \text{GeV} \& \phi^{St}$ $\Lambda_{CT} = 0.5 \text{GeV} \& \phi^{St}$ HM Full $18.70 \pm 0.25 \pm 0.08$ $18.73 \pm 0.25 \pm 0.14$ $18.71 \pm 0.67 \pm 0.17$ $18.70 \pm 0.67 \pm 0.11$ $1.24 \pm 0.30 \pm 0.20$ 2<v<4.5 $7.35 \pm 1.48 \pm 5.24$ $3.53 \pm 4.15 \pm 2.99$ $6.71 \pm 1.48 \pm 5.17$ $2.59 \pm 4.15 \pm 3.43$ $2.53\pm2.01\pm1.79$ $4 < P_{\rm T} < 20 \, {\rm GeV}$ 2<v<4.5 $11.42 \pm 0.60 \pm 0.17$ $10.65 \pm 1.64 \pm 0.42$ $11.38 \pm 0.60 \pm 0.16$ $10.69 \pm 1.64 \pm 0.36$ $1.64 \pm 1.03 \pm 0.52$ $P_{\rm T}$ >0 GeV The asymmetry *A* is stable! 2024.9.25 9/12

$P_{\rm T},$ rapidity distributions of the cross section and A

$$A \equiv \frac{\sigma^- - \sigma^+}{\sigma^- + \sigma^+}$$

- A > 0 in all energy region
- $A_{CT} > A_{HM}$ in all energy region
- Both A_{CT} and A_{HM} decrease when \sqrt{s} increase
 - Larger asymmetry at RHIC energy region?

valence quarks contribute the asymmetry

Study the nature of T_{cc}^+ and $T_{c\bar{c}}^-$ in pp collision at \sqrt{s} =14TeV

- Propose a physical quantity $A \equiv \frac{\sigma^- \sigma^+}{\sigma^- + \sigma^+}$ to distinguish HM and CT picture
 - A_{CT} is significantly larger than A_{HM}
 - Both A_{CT} and A_{HM} decrease with the increasing c.m. energy
- These asymmetry can be observed at LHCb kinematic range
- We expect a larger asymmetry at RHIC energy region
- Can be applied to other double heavy tetraquark candidates

Thank you very much for your attention!

Picture	$\sigma_{T_{cc}^+}$	$\sigma_{T^{\overline{c}\overline{c}}}$	A (%)
HM	152.42±0.89 nb	156.81±0.91 nb	1.24 ± 0.30
diquark- antidiquark	4.43±0.02 nb	6.46 <u>±</u> 0.02 nb	18.73±0.25
$(c\overline{u})_8(c\overline{d})_8$	2.79±0.04 nb	3.26±0.04 nb	7.91±0.94

2024.9.25

2024.9.25

$P_{\rm T}$, P_z , rapidity (y) distributions of diquark and anti-diquark

- Maximum at $P_{\rm T} \approx 2 \text{GeV}$ and $y \approx 0$
- for hand-made diquark
- Maximum at large $|P_z|$ and large |y| for ud_0 and ud_1
- Different *y* behaviors between two kinds of diquark

$\operatorname{Range}(\operatorname{GeV})$		$\sigma_{T_{cc}^+}(\sigma_{T_{\bar{c}\bar{c}}^-})$		$\mathcal{A}(\%)$
	$\Lambda=0.5{\rm GeV}$	$\Lambda = 1 {\rm GeV}$	$\Lambda = 1.5 {\rm GeV}$	
	$43.30{\pm}0.70~\mathrm{nb}$	$152.42{\pm}0.89$ nb	$313.74{\pm}1.03$ nb	
Full	$(44.13 \pm 0.71 \text{ nb})$	$(156.81{\pm}0.91~{\rm nb})$	$(321.14 \pm 1.04 \text{ nb})$	$1.24 \pm 0.30 \pm 0.20$
	LI	HCb $(2 < y < 4.5)$		
$4 < p_T < 20$ [112]	$1.46{\pm}0.15~\mathrm{nb}$	$5.27{\pm}0.20~{\rm nb}$	$11.46{\pm}0.23~\mathrm{nb}$	
	$(1.45 \pm 0.15 \text{ nb})$	$(5.63 \pm 0.20 \text{ nb})$	$(11.87 \pm 0.24 \text{ nb})$	$2.53 \pm 2.01 \pm 1.79$
$p_T > 0$ [11]	$8.26{\pm}0.44~\mathrm{nb}$	$29.93{\pm}0.57~\mathrm{nb}$	$62.28{\pm}0.66~\mathrm{nb}$	
	$(8.69 \pm 0.46 \text{ nb})$	$(30.82 \pm 0.58 \text{ nb})$	$(64.30 \pm 0.67 \text{ nb})$	$1.64 \pm 1.03 \pm 0.52$
		CMS $(y < 1.2)$		
$0 < p_T < 50(30)$ [113]	$0.05{\pm}0.02~\mathrm{nb}$	$0.28{\pm}0.04$ nb	$0.55{\pm}0.04$ nb	
	$(0.03 \pm 0.02 \text{ nb})$	$(0.20 \pm 0.03 \text{ nb})$	$(0.44 \pm 0.04 \text{ nb})$	$-13.42\pm8.44\pm2.18$
	A	$\Gamma \text{LAS} \ (y < 0.75)$		
$10 < p_T < 70$ [114]	$0.03{\pm}0.02~\mathrm{nb}$	$0.20{\pm}0.03~\mathrm{nb}$	$0.38{\pm}0.04$ nb	
	$(0.03 \pm 0.02 \text{ nb})$	$(0.13 \pm 0.03 \text{ nb})$	$(0.28 \pm 0.03 \text{ nb})$	$-16.87 \pm 9.33 \pm 10.10$

		· - · · · ·			
$\operatorname{Range}(\operatorname{GeV})$		$\sigma_{T_{cc}^+}(\sigma_{T_{\bar{c}\bar{c}}^-})$		$\mathcal{A}(\%)$	
	$r = 0.2 \mathrm{fm}$	$r = 0.5 \mathrm{fm}$	$r = 1 \mathrm{fm}$		
	$1.25{\pm}0.005$ nb	$4.43{\pm}0.02~\mathrm{nb}$	$4.88{\pm}0.02$ nb		
Full	$(1.82 \pm 0.01 \text{ nb})$	$(6.46 \pm 0.02 \text{ nb})$	$(7.16 \pm 0.02 \text{ nb})$	$18.73 \pm 0.25 \pm 0.14$	
	LI	HCb $(2 < y < 4.5)$			
$4 < p_T < 20$ [112]	$39.75{\pm}0.89~\rm{pb}$	$139.88{\pm}3.11~{\rm pb}$	$163.77 {\pm} 3.65 \text{ pb}$		
$4 < p_T < 20 [112]$	$(50.57 \pm 1.00 \text{ pb})$	$(171.16 \pm 3.38 \text{ pb})$	$(163.83 \pm 3.23 \text{ pb})$	$7.35 \pm 1.48 \pm 5.24$	
$p_T > 0 \ [11]$	$0.24{\pm}0.002$ nb	$0.84{\pm}0.01~{\rm nb}$	$0.91{\pm}0.01~{\rm nb}$		
	$(0.30 \pm 0.002 \text{ nb})$	$(1.05 \pm 0.01 \text{ nb})$	$(1.14 \pm 0.01 \text{ nb})$	$11.42 \pm 0.60 \pm 0.17$	
CMS $(y < 1.2)$					
$10 < p_T < 50(30)$ [113]	$3.77{\pm}0.51~\rm{pb}$	$4.73{\pm}0.56~\rm{pb}$	$4.51{\pm}0.53~\rm{pb}$		
$10 < p_T < 50(50)$ [115]	$(1.09 \pm 0.15 \text{ pb})$	$(3.77 \pm 0.51 \text{ pb})$	$(4.94 \pm 0.67 \text{ pb})$	$-6.62 \pm 8.86 \pm 7.96$	
ATLAS $(y < 0.75)$					
$10 < p_T < 70$ [114]	$0.92{\pm}0.14~\rm pb$	$3.15{\pm}0.46~\rm{pb}$	$3.11{\pm}0.46~\rm pb$		
	$(0.69 \pm 0.12 \text{ pb})$	$(2.83 \pm 0.49 \text{ pb})$	$(4.88 \pm 0.84 \text{ pb})$	$0.98 \pm 11.04 \pm 15.37$	

• $\Lambda_{CT} = 1 \text{GeV}$

[•] Wave function: $\phi^{h.o.}$

$\operatorname{Range}(\operatorname{GeV})$		$\sigma_{T_{cc}^+}(\sigma_{T_{\bar{c}\bar{c}}^-})$		$\mathcal{A}(\%)$
	$r = 0.2 \mathrm{fm}$	$r = 0.5 \mathrm{fm}$	$r = 1 \mathrm{fm}$	
	$0.23{\pm}0.002$ nb	$2.20{\pm}0.02$ nb	$4.72{\pm}0.05~\mathrm{nb}$	
Full	$(0.34 \pm 0.003 \text{ nb})$	$(3.21 \pm 0.03 \text{ nb})$	$(6.92 \pm 0.06 \text{ nb})$	$18.71 \pm 0.67 \pm 0.17$
	LH	ICb $(2 < y < 4.5)$		
$4 < p_T < 20$ [114]	$7.18{\pm}0.44~\rm{pb}$	$69.86{\pm}4.24~\mathrm{pb}$	$158.77{\pm}9.63~{\rm pb}$	
$1 < p_1 < 20 [111]$	$(8.15 \pm 0.46 \text{ pb})$	$(77.10 \pm 4.38 \text{ pb})$	$(156.83 \pm 8.91 \text{ pb})$	$3.53 \pm 4.15 \pm 2.99$
$n_T > 0$ [11]	$0.04{\pm}0.001~{\rm nb}$	$0.41{\pm}0.01~{\rm nb}$	$0.88{\pm}0.02~{\rm nb}$	
$p_T > 0$ [11]	$(0.05 \pm 0.001 \text{ nb})$	$(0.51 \pm 0.01 \text{ nb})$	$(1.10\pm 0.02 \text{ nb})$	$10.65 \pm 1.64 \pm 0.42$
	(CMS $(y < 1.2)$		
$10 < p_T < 50(30)$ [115]	$0.24{\pm}0.08~\rm{pb}$	$2.25{\pm}0.75~\mathrm{pb}$	$4.34{\pm}1.45~\rm{pb}$	
	$(0.16 \pm 0.07 \text{ pb})$	$(1.65 \pm 0.67 \text{ pb})$	$(4.82 \pm 1.97 \text{ pb})$	$-9.84 \pm 25.79 \pm 10.79$
ATLAS $(y < 0.75)$				
$10 < p_T < 70 \ [116]$	$0.16{\pm}0.06~\rm{pb}$	$1.51{\pm}0.62~\rm{pb}$	$3.00{\pm}1.22~\rm{pb}$	
	$(0.16 \pm 0.07 \text{ pb})$	$(1.65 \pm 0.67 \text{ pb})$	$(4.82 \pm 1.97 \text{ pb})$	$9.44 \pm 28.33 \pm 9.92$

• $\Lambda_{CT} = 0.5 \text{GeV}$

[•] Wave function: $\phi^{h.o.}$

Range(GeV)		$\sigma_{T_{cc}^+}(\sigma_{T_{\bar{c}\bar{c}}^-})$		$\mathcal{A}(\%)$
	$r = 0.2 \mathrm{fm}$	$r = 0.5 \mathrm{fm}$	$r = 1 \mathrm{fm}$	
	$1.50{\pm}0.01$ nb	$4.16{\pm}0.02$ nb	$4.84{\pm}0.02$ nb	
Full	$(2.18 \pm 0.01 \text{ nb})$	$(6.07 \pm 0.02 \text{ nb})$	$(7.09 \pm 0.02 \text{ nb})$	$18.70 \pm 0.25 \pm 0.08$
	LI	HCb $(2 < y < 4.5)$		
$4 < p_T < 20$ [114]	$47.53 \pm 1.06 \text{ pb}$	$132.57{\pm}2.95~{\rm pb}$	$159.48{\pm}3.55~{\rm pb}$	
	$(60.31 \pm 1.19 \text{ pb})$	$(157.59 \pm 3.11 \text{ pb})$	$(158.35 \pm 3.13 \text{ pb})$	$6.71 \pm 1.48 \pm 5.17$
$p_T > 0$ [11]	$0.29{\pm}0.003$ nb	$0.79{\pm}0.01$ nb	$0.90{\pm}0.01~\rm{nb}$	
	$(0.36 \pm 0.003 \text{ nb})$	$(0.99 \pm 0.01 \text{ nb})$	$(1.13 \pm 0.01 \text{ nb})$	$11.38 \pm 0.60 \pm 0.16$
		CMS $(y < 1.2)$		
$10 < p_T < 50(30)$ [115]	$1.69{\pm}0.20~\rm{pb}$	$4.37{\pm}0.52~\rm{pb}$	$4.02{\pm}0.47~\rm{pb}$	
	$(1.31 \pm 0.18 \text{ pb})$	$(3.57 \pm 0.48 \text{ pb})$	$(5.44 \pm 0.73 \text{ pb})$	$-2.69\pm8.81\pm12.52$
ATLAS $(y < 0.75)$				
$10 < p_T < 70 \ [116]$	$1.10{\pm}0.16~\rm{pb}$	$2.92{\pm}0.43~\rm pb$	$2.79{\pm}0.41~\rm{pb}$	F 44 1 10 00 1 10 11
	$(0.85 \pm 0.15 \text{ pb})$	$(2.83 \pm 0.49 \text{ pb})$	$(5.26 \pm 0.90 \text{ pb})$	$5.44 \pm 10.89 \pm 18.41$

• $\Lambda_{CT} = 1 \text{GeV}$

[•] Wave function: ϕ^{St}

$\operatorname{Range}(\operatorname{GeV})$		$\sigma_{T_{cc}^+}(\sigma_{T_{\bar{c}\bar{c}}^-})$		$\mathcal{A}(\%)$
	$r = 0.2 \mathrm{fm}$	$r = 0.5 \mathrm{fm}$	$r = 1 \mathrm{fm}$	
	$0.34{\pm}0.004$ nb	$2.39{\pm}0.03$ nb	$4.42{\pm}0.05~\mathrm{nb}$	
Full	$(0.49 \pm 0.004 \text{ nb})$	$(3.49 \pm 0.03 \text{ nb})$	$(6.47 \pm 0.06 \text{ nb})$	$18.70 \pm 0.67 \pm 0.11$
	LH	ICb $(2 < y < 4.5)$		
$4 < p_T < 20$ [114]	$10.48{\pm}0.64~\rm{pb}$	$76.95{\pm}4.67\mathrm{pb}$	$146.22 \pm 8.87 \text{ pb}$	
$1 < p_1 < 20 [111]$	$(11.83 \pm 0.67 \text{ pb})$	$(83.02 \pm 4.72 \text{ pb})$	$(140.27 \pm 7.97 \text{ pb})$	$2.59 \pm 4.15 \pm 3.43$
$p_T > 0$ [11]	$0.06{\pm}0.002~\mathrm{nb}$	$0.45{\pm}0.01$ nb	$0.82{\pm}0.02~{\rm nb}$	
	$(0.08 \pm 0.002 \text{ nb})$	$(0.56 \pm 0.01 \text{ nb})$	$(1.03 \pm 0.02 \text{ nb})$	$10.69 \pm 1.64 \pm 0.36$
CMS $(y < 1.2)$				
$10 < p_T < 50(30)$ [115]	$0.34{\pm}0.11~\rm{pb}$	$2.41{\pm}0.80~{\rm pb}$	$3.57{\pm}1.19~\rm{pb}$	
10 () [10 (00 (00) [110]	$(0.24 \pm 0.10 \text{ pb})$	$(1.91 \pm 0.78 \text{ pb})$	$(5.06 \pm 2.06 \text{ pb})$	$-4.32\pm25.67\pm15.52$
ATLAS $(y < 0.75)$				
$10 < p_T < 70$ [116]	$0.23{\pm}0.09~\rm{pb}$	$1.63{\pm}0.66~\rm{pb}$	$2.49{\pm}1.02~\rm{pb}$	
	$(0.24 \pm 0.10 \text{ pb})$	$(1.91 \pm 0.78 \text{ pb})$	$(5.06 \pm 2.06 \text{ pb})$	$14.44 \pm 27.69 \pm 14.09$

• $\Lambda_{CT} = 0.5 \text{GeV}$

[•] Wave function: ϕ^{St}

Events generator: PYTHIA 8.3

<pre>! 1) Settings used in the main pr Main:numberOfEvents = 1000000 Main:timesAllowErrors = 3 !Main:outputLog = on</pre>	ogram. <u>! number of events to generate</u> ! how many aborts before run stops ! Put all printed output to a log file.	Set total event numbers of simulation
<pre>! 2) Settings related to output i !Init:showChangedSettings = on !Init:showChangedParticleData = o !Next:numberCount = 1000 !Next:numberShowInfo = 2 !Next:numberShowProcess = 1 !Next:numberShowEvent = 2 !Init:showAllSettings = on !Init:showAllParticleData = on !Stat:showPartonLevel = on</pre>	n init(), next() and stat(). ! list changed settings ff ! list changed particle data ! print message every n events ! print event information n times ! print process record n times ! print event record n times ! additional statistics on MPI	
<pre>! 4) Beam parameter settings. Val Beams:idA = 2212 Beams:idB = 2212 Beams:eCM = 14000. ! 5) Settings for the hard-proces !HardQCD:hardccbar = on</pre>	ues below agree with default ones. ! first beam, p = 2212, pbar = -2212 ! second beam, p = 2212, pbar = -2212 <u>! CM energy of collision</u> s generation. ! Sum of g g → c cbar and q qbar → c cbar.	 Set collision's beams (proton's ID: 2212) Set collision's c.m. energy: 14TeV
<pre>!SoftQCD:all = on SoftQCD:nonDiffractive = on !HardQCD:all = on !PhaseSpace:pTHatMin = 0.5</pre>	<pre>! The inelastic nondiffrative part of the total cross section, ! switch on all QCD jet + jet processes ! minimal pT scale in process</pre>	Set collision type $\sigma_{pp \ minibias} = 57.17 \text{mb}$

2024.9.25

Events generator: PYTHIA 8.3 Statistic in Hadronic Molecular picture: 1 billion $\sigma_{pp\ minibias} = 57.17$ mb T_{cc}^+ relative momentum cut D^+, D^0, D^{*+}, D^{*0} $D^{*0}D^+ \& D^{*+}D^0$ T_{cc}^+ $|\vec{k}| < \Lambda_{HM}$ $T^{-}_{\bar{c}\bar{c}}$ relative momentum cut $D^-, \overline{D}{}^0, D^{*-}, \overline{D}{}^{*0}$ $\overline{D}^{*0}D^- \& D^{*-}\overline{D}^0$ $T^{-}_{\bar{c}\bar{c}}$ $|\vec{k}| < \Lambda_{HM}$

Events generator: PYTHIA 8.3 Statistic in **Compact Tetraquark** picture: 100 billion $\sigma_{pp\ minibias} = 57.17mb$ T_{cc}^+ relative momentum cut relative momentum cut $cc \& \bar{u}\bar{d}$ $cc\bar{u}\bar{d}$ T_{cc}^+ $c, \overline{u}, \overline{d}$ $|\vec{k}| < \Lambda_{CT}$ $|\vec{q}| < 1$ GeV $T^{-}_{\bar{c}\bar{c}}$ relative momentum cut relative momentum cut \bar{c}, u, d $\bar{c}\bar{c}$ & ud *c̄c̄ud* $T^{-}_{\bar{c}\bar{c}}$ ud₀, ud $|\vec{k}| < \Lambda_{CT}$ $|\vec{q}| < 1$ GeV

 ud_0 , ud_1 : di-quark from Monte Carlo simulation directly

2024.9.25