

R value measurement and hadron fragmentation functions: recent results by the BESIII collaboration

Yue Xu (On behalf of the BESIII collaboration)

Fudan University

September 22-27, 2024, Beíjíng, Chína

BEPCII and BESIII

Accelerator: BEPCII

Ecm= 1.84-4.95 GeV Peak luminosity @3.770 GeV: ~1.1×10³³ cm⁻²s⁻¹

Detector: BESIII

2024/9/23

Data collected at BESIII

R-scan data:

- 1.84~4.95 GeV, ~170 points
- Extensive R ratio measurement
- Near-threshold Baryon pairproduction mechanism

J/ψ and $\psi(2S)$ data:

- Largest sample in the world
- Light(exotic) hadron spectrum

$\psi(3770)$ data:

- 20 fb⁻¹
- Charm meson decays
- ISR technique for g-2 physics

XYZ data:

- Large open-charm samples
- Charmonium (-like) states

The definition of *R* value

Theoretical definition

• The *R* value is defined as the leading-order production cross section ratio of hadrons and muon pairs in electron-positron annihilation:

$$R \equiv \frac{\sigma^0(e^+e^- \to \text{hadrons})}{\sigma^0(e^+e^- \to \mu^+\mu^-)} \equiv \frac{\sigma_{\text{had}}^0}{\sigma_{\mu\mu}^0}$$

A direct result from the QED theory:

$$\sigma_{\mu\mu}^{0}(s) = \frac{4\pi\alpha^{2}}{3s} \frac{\beta_{\mu}(3-\beta_{\mu}^{2})}{2}, \text{ with } \beta_{\mu} = \sqrt{1-4m_{\mu}^{2}/s}$$

Measurement of R value $\Leftrightarrow \Rightarrow$ Measurement of total cross section of hadron production Important quantity in particle physics to test the Standard Model (SM)!

Muon anomalous a_{μ}^{SM} & running $\Delta \alpha(s)$

The anomalous magnetic moment of muon

 $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{Weak} + a_{\mu}^{had}$

• a_{μ}^{QED} and a_{μ}^{Weak} can be calculated precisely

•
$$a_{\mu}^{had} = a_{\mu}^{LO-HVP} + a_{\mu}^{NLO-HVP} + a_{\mu}^{HLBL}$$

 $a_{\mu}^{LO-HVP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} ds \frac{R(s)K(s)}{s^2}$

Phys. Rev. Lett. 126, 141801 (2021)

QED running coupling constant

$$\Delta \alpha_{s} = 1 - \frac{\alpha(0)}{\alpha(s)} = \Delta \alpha_{lepton}(s) + \Delta \alpha_{had}^{(5)}(s) + \Delta \alpha_{top}(s)$$

- $\Delta \alpha_{lepton}(s)$ can be calculated analytically using perturbation theory
- $\Delta \alpha_{top}(s)$: is small($10^{-7} \sim 10^{-10}$ for BESIII region), since the top quark is heavy
- $\Delta \alpha_{had}^{(5)}(s)$: should be calculated using **R** value at low energy $\Delta \alpha_{had}^{(5)}(s) = -\frac{\alpha s}{3\pi} Re \int_{E_{th}}^{\infty} ds' \frac{R(s')}{s'(s'-s-i\varepsilon)}$

Fractional contribution to $\Delta \alpha_{had}^{(5)}(M_Z^2)$:

Determination of *R* **value in experiment**

Inclusive method

Determination of ε_{had} is the most challenging task!

Analysis strategy

Two MC simulation model: LUARLW and HYBRID

LUARLW model (nominal generator)

Main features of LUARLW:

- A self-consistent inclusive generator developed based on JETSET
- Initial-state radiation (ISR) process is implemented from $2m_{\pi}$ to \sqrt{s}
- Kinematic quantities of initial hadrons are sampled by the Lund area law
- Phenomenological parameters are tuned based on comparisons between data and MC

HYBRID model (alternative generator)

Main features of HYBRID:

- The first attempt of exclusive simulations in determination of hadronic efficiency
- Combination of THREE different well-established simulation models
- As much as currently known experimental knowledges are implemented.
- Different ISR and VP correction schemes are adopted.

HYBRID-LUARLW comparison: effective energy

- The comparisons of the $\sqrt{s'}$ spectrum between LUARLW and HYBRID
- The $\sqrt{s'}$ spectrum directly reflect the fraction of the ISR-returned processes

These two different simulation schemes result in consistent $\sqrt{s'}$ spectra!

Comparison between MC and data

LUARLW

- $N_{pr,g}$, θ : Number and polar angle of selected charged tracks
- N_{iso}^{2-prg} : Number of isolated clusters in 2-prong events
- E/(pc): Ratio of deposited energy and measured momentum per track

Good agreement of both generator models and data

2024/9/23

R-value measurements in 2.2-3.7 GeV

Comparing BESIII *R* values with previously published results:

Phys. Rev. Lett. 128, 06200(2022)

- The accuracy is better than 2.6% below 3.1 GeV and 3.0% above
- Larger than the pQCD prediction by 2.7σ between $3.4\sim3.6$ GeV

2024/9/23

R value measurement and hadron fragmentation functions

11

Prospect of the R value at BESIII

More additional data already collected (2.0-4.96 GeV, below 2.0 GeV also obtained)

Different methods:

- $@\leq 2.0 \text{ GeV: exclusive}$
- $@\geq 2.0 \text{ GeV: inclusive}$
- ISR technique: taking advantage of BESIII $\psi(3770)$ data, the R value from $\pi^+\pi^-$ threshold to continuum region can be accessed

More results of R measurement at BESIII are coming soon!

Fragmentation functions (FFs) $D_q^h(z)$

• $D_q^h(z)$: describe the fragmentation of an unpolarized quark into an unpolarized hadron, where the hadron carries a fraction $z = 2E_h/\sqrt{s}$ of parton's momentum

Several open questions about QCD

Access FFs with QCD factorization

 $e^+e^-: s = \sum_q \sigma(e^+e^- \to q\bar{q}) \otimes FF$

- No PDFs necessary
- Calculations know at NNLO
- Flavor structure not directly accessible

SIDIS:
$$s = \sum_{q} PDF \otimes \sigma(eq \rightarrow e'q') \otimes FF$$

- Depend on unpolarized PDFs
- Flavor structure directly accessible
- FFs and PDFs

 $pp: s = \sum_q PDF \otimes PDF \otimes \sigma(q_1q_1 \rightarrow q_1'q_2') \otimes FF$

- Depend on unpolarized PDFs
- Leading access to gluon FF
- Parton momenta not directly known

SIA @ e^+e^- : the cleanest process for FFs studying

2024/9/23

World data: π^{\pm} , π^{0} , η , K_{S}^{0} , K^{\pm}

arxiv:2404.11527

PRL 111 062002 (2013)

Lack of precise data at low energy, where BESIII could contribute

Measurement strategy at BESIII

• Normalized differential cross section (*h* as the hadron under investigation):

$$\frac{1}{\sigma_{\text{had}}} \frac{d\sigma(e^+e^- \to h + X)}{dp_h} = \frac{N_h}{N_{\text{had}}} \frac{1}{\Delta p_h} = \frac{N_h^{\text{obs}}}{N_{\text{had}}^{\text{obs}}} \frac{1}{\Delta p_h} f_h$$

- Hardronic events N_{had} : using the same criteria as those applied in the R value measurement
- Δp_h : Bin width in a momentum bin
- Two relatively independent inclusive MC models are developed to determine f_h

Phys. Rev. Lett. 128, 06200(2022)

Results for π^0 and K_S^0

$P \in (0.4, 0.5) \text{ GeV/c}$

- Hadrons reconstructed from daughters
- Background suppression:
 - Helicity angle cut
 - Secondary vertex fit

- Dominant uncertainty is from simulation of $e^+e^- \rightarrow \pi^0/K_{\underline{S}}^0 + X$
- Disagreement between FF fits and data depends on both \sqrt{s} and p_h
- Leading twist calculation not sufficient? quark and hadron mass correction? small-z resumption? problem in the extrapolation of FFs to lower energy?

2024/9/23

Results for η

$(0.4, 0.5) \text{ GeV/c} @ \sqrt{s} = 2.9 \text{ GeV}$

- Hadrons reconstructed from daughters
- Helicity angle cut for background suppression

- Significant disagreement between FF fits given in <u>PRD 83, 034002 (2011)</u> and data
- A new fit performed (<u>arXiv: 2404.11527</u>):
 - Incorporated new BESIII data and previous world e^+e^- data with $\sqrt{s} > 10$ GeV
 - Implemented higher-twist effects and hadron mass correction in NNLO accuracy

2024/9/23

More results are ongoing

- In continuum region $2.00 \sim 3.67$ GeV:
 - 1D and 2D (p v.s. p_t) inclusive production of charged particles: $e^+e^- \rightarrow \pi^{\pm}/K^{\pm} + X$
 - Search for spin-alignment effect for vector mesons: $e^+e^- \rightarrow \phi K^* + X$
- In higher-energy region above 4.8 GeV:
 - High luminosity data: > 150 pb^{-1} on the tape and more on the schedule
 - Possible to measuring heavier strange meson and hyperons: $e^+e^- \rightarrow \eta'/\Lambda/\Sigma + X$

Summary

R value

 \succ Improving accuracy determination of *R* value important for Standard Models tests

➤ The First round measurement of *R* value at BESIII published (Phys. Rev. Lett. 128, 06200(2022))

✓ 2.2324 GeV $\leq \sqrt{s} \leq$ 3.6710 GeV

 \checkmark Accuracy better than 2.6% below 3.1 GeV and 3.0% above

 \Rightarrow Other high statistics samples available

 \Rightarrow Other approaches on-going @ BESIII Stay tuned !!!!

Fragmentation functions

- > Precise knowledge of FFs helps us to understand the non-perturbative QCD dynamics
- > The e^+e^- annihilation experiments provide the cleanest environment to measure FFs
- > BESIII contributes to the study of unpolarized FFs at $\sqrt{s} < 5$ GeV
 - ✓ Normalized differential cross sections of inclusive $\pi^0/K_S^0/\eta$ production are measured
 - ✓ The results provide broad z coverage from 0.1 to 0.9 with precision of 3% at $z \sim 0.4$
 - ✓ Large discrepancy from predictions of the existing fragmentation functions are observed, which requires more study
- ⇒ More results for $\pi^{\pm}, K^{\pm}, \phi, K^*$ at continuum region and $\eta' / \Lambda / \Sigma$ at higher energy region are currently in progress

Thank you!

2024/9/23