

Highlights of light hadron decays at BESIII

Zhipeng Xie (on behalf of BESIII collaboration)

University of Science and Technology of China

The 23rd International Conference on Few-Body Problems in Physics (FB23), Beijing, September 26

- Light meson decay
 - ✓ Decay mechanisms
 - ✓ Transition form factor
- Hyperon decay
 - ✓ CP test
 - ✓ Hyperon weak radiative decay

◆ Light mesons

- ✓ it plays a central role in our understanding of quantum chromodynamics (QCD) at low energies.
- η/η' physics
 - $\checkmark \eta \eta'$ mixing
 - ✓ The light quark masses
 - ✓ The fundamental discrete symmetries
 - ✓ Tests of effective field theories: ChPT and VMD
 - ✓ rare or forbidden η/η' decays

η/η' at BESIII

• BESIII is an η/η' factory

- The world's largest sample of J/ψ events(10¹⁰) collected at BESIII detector offers \checkmark a unique opportunity to investigate η and η' physics via the J/ ψ radiative decays with unprecedented precision.
- An important role in η/η' decays \checkmark

 η REFERENCES

23AN PR

21AM PR

PR 17B

JHE 16A

PL 16

23A PR

20A

17D PL

15G PR

14A PR

13

13G

13A

12A

12 PR

11G PR

19

PR D107 092007 PRL 131 091903 PR D104 092004 JHEP 2010 047 PR D99 031703 PR D98 052007 PL B784 378 PR C97 065203 PL B764 233 PR C95 035208 JHEP 1605 019 PL B757 437 PR D92 012014 PR C90 045207 PL B751 265 PR C90 025206 EPJ A50 58 PR D87 012009 PL B718 910	M. Ablikim et al. A. Hayrapetyan et al. M. Ablikim et al. D. Babusci et al. A.S. Zhevlakov et al. M.N. Achasov et al. S. Prakhov et al. S. Prakhov et al. R. Aaij et al. P. Adlarson et al. A. Anastasi et al. R. Arnaldi et al. M. Ablikim et al. B.M.K. Nefkens et al. A. Nikolaev et al. A. Nikolaev et al. M. Ablikim et al. M. Ablikim et al. D. Babusci et al.
PL B718 910 IHEP 1301 119	D. Babusci <i>et al.</i> D. Babusci <i>et al</i>
EPJ A48 64	G. Agakishiev et al.
PR D85 112011	P. Goslawski <i>et al.</i> M. Ablikim <i>et al.</i>
11 004 032000	M. ADIRITI Et al.

$\eta'(958)$	REFERENCES
--------------	------------

ABLIKIM	23AH	PRL 130 081901	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	22E	PR D105 112010	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	211	PR D103 072006	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	21J	PR D103 092005	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	20E	PR D101 032001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	19AW	/ PR D100 052015	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	19T	PRL 122 142002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	18	PR D97 012003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	18C	PRL 120 242003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ADLARSON	18A	PR D98 012001	P. Adlarson <i>et al.</i>	(A2 Collab. at MAMI)
GONZALEZ	2-S 18A	EPJ C78 758	S. Gonzalez-Solis, E. Passemar	(BEIJ, IND+)
(BESIII Collab.) AAIJ	17D	PL B764 233	R. Aaij <i>et al.</i>	(LHCb Collab.)
(RESUL Collab.) ABLIKIM	17	PRL 118 012001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(KLOE-2 Collab.) ABLIKIM	17T	PR D96 012005	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(TMSK, MAINZ, TUBIN+) ABLIKIM	16M	PR D93 072008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(SND Collab.) ABLIKIM	15AD	PR D92 051101	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(WASA-at-COSY Collab.) ABLIKIM	15G	PR D92 012014	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(A2 Collab. at MAMI) ABLIKIM	150	PR D92 012001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(LHCb Collab.) ABLIKIM	15P	PR D92 012007	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(A2 Collab. at MAMI) ACHASOV	15	PR D91 092010	M.N. Achasov <i>et al.</i>	(SND Collab.)
(NA60 Collab.) AKHMETSI	HIN 15	PL B740 273	R.R. Akhmetshin <i>et al.</i>	(CMD-3 Collab.)
(BESUL Collab.) PDG	15	RPP 2015 at pdg.lbl.gc	V) (PDG_Collab)
(WASA-at-COSY Collab.) ABLIKIM	14M	PRL 112 251801	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(HADES Collab.) DONSKOV	14	MPL A29 1450213	S. Donskov <i>et al.</i>	(GAMS-4 π Collab.)
(A2 Collab. at MAMI) PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG_Collab.)
(MAMI-B, MAINZ, BONN) ABLIKIM	13	PR D87 012009	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(BESIII Collab.) ABLIKIM	13G	PR D87 032006	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(BESIII Collab.) ABLIKIM	130	PR D87 092011	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(KLOE/KLOE-2 Collab.) ABLIKIM	13U	PR D88 091502	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(KLOE-2 Collab.) ABLIKIM	12E	PRL 108 182001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
(COSY ANKE Collab.) PDG	12	PR D86 010001	J. Beringer <i>et al.</i>	(PDG Collab.)
(BESUL Collab.) ABLIKIM	11	PR D83 012003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	11G	PR D84 032006	M. Ablikim <i>et al.</i>	(BESIII Collab.)

• Evidence of the cusp effect in $\eta' \rightarrow \pi^0 \pi^0 \eta$

- ✓ The loop contribution to the ππ scattering: the S-wave chargeexchange rescattering $π^+π^- → π^0π^0$
- The cusp effect can shed light on the fundamental properties of QCD at low energies.
- ✓ Statistical significance of Fit with cusp effect is higher than 3σ

✓ The doubly virtual isovector form factor $\alpha = 1.22 \pm 0.33 \pm 0.04$ is extracted for the first time and in agreement with the prediction of the vector meson dominance mode.

- Observation of $\eta' \to \pi^+\pi^-\pi^+\pi^-$ and $\eta' \to \pi^+\pi^-\pi^0\pi^0$
 - ✓ improved measurements of the branching fractions:
 - $B(\eta' \to \pi^+ \pi^- \pi^0 \pi^0) = (2.12 \pm 0.12 + 0.10) \times 10^{-4}$
 - $B(\eta' \to \pi^+\pi^-\pi^+\pi^-) = (8.56 \pm 0.25 + 0.23) \times 10^{-5}$
- Searching for the rare decay $\eta' \to 4\pi^0$ • The upper limit of B($\eta' \to 4\pi^0$) at the 90% confidence level is determined to be 1.24 × 10^{-5} .

- Important input for HLbL contributions
 - ✓ The coupling of π^0 , η and η' with two photons in HLbL can be described using transition form factor (TFF).
 - ✓ TFFs are experimentally accessible in three different processes
 - $\checkmark~$ The fusion of both photons to form a meson is described by the TFF

$\eta/\eta' \rightarrow \gamma e^+ e^-$

 $|F(q^{2})|$

◆ Transition form factor of $\eta/\eta' \rightarrow \gamma e^+ e^-$ ✓ The decay rate $\frac{d\Gamma(P \rightarrow \gamma l^+ l^-)}{dq^2 \Gamma(P \rightarrow \gamma \gamma)} = \frac{2\alpha}{3\pi} \frac{1}{q} \sqrt{1 - \frac{4m_l^2}{q^2}} \left(1 + \frac{2m_l^2}{q^2}\right) \left(1 - \frac{q^2}{m_P^2}\right)^3 |F(q^2)|^2$ ✓ Single-pole: $F(q^2) = \frac{1}{1 - q^2/\Lambda^2}$ for $\eta \rightarrow \gamma e^+ e^-$ ✓ Multi-pole: $|F(q^2)|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - q^2) + \Lambda^2 \gamma^2}$ for $\eta' \rightarrow \gamma e^+ e^-$ ✓ Slope parameter $b_{\eta'} = \frac{d|F(q^2)|}{da^2}|_{q=0}$

- Fit result
 - ✓ $\Lambda_{\eta} = (0.749 \pm 0.027 \pm 0.007) \text{ GeV}/c^2$ ✓ $\Lambda_{\eta'} = (0.802 \pm 0.007 \pm 0.008) \text{ GeV}/c^2$ $\gamma_{\eta'} = (0.113 \pm 0.010 \pm 0.002) \text{ GeV}/c^2$

$\eta/\eta' \rightarrow \gamma e^+ e^-$

◆ Slope parameter:

✓
$$b_{\eta/\eta'} = \frac{d|F(q^2)|}{dq^2}|_{q^2=0}$$
 is in good agreement with previous work.

- ✓ The corresponding radii of interaction region of η and η' are calculated to be:
 - $R_{\eta} = (0.645 \pm 0.023 \pm 0.007) \text{fm}$
 - $R_{\eta\prime} = (0.596 \pm 0.005 \pm 0.006) \text{fm}$

- Precision study of $\eta' \to \pi^+ \pi^- l^+ l^-$
 - ✓ Decay amplitude

$$\overline{|A_{\eta'\to\pi^+\pi^-l^+l^-}|}^2(s_{\pi\pi},s_{ll},\theta_{\pi},\theta_l,\varphi) = \frac{e^2}{8k^2}|M(s_{\pi\pi},s_{ll})|^2\lambda(M^2(\eta'),s_{\pi\pi},s_{ll})(1-\beta_l^2sin^2\theta_lsin^2\varphi)s_{\pi\pi}\beta_{\pi}^2sin^2\theta_{\pi}sin^2\theta$$

- ✓ The magnetic form factor $M(s_{\pi\pi}, s_{ll}) = M_{mix} \times VMD(s_{\pi\pi}, s_{ll})$
- ✓ VMD factor

 $\eta' \to \pi^+ \pi^- l^+ l^-$

VMD models

- ✓ Hidden gauge model: $c_1 c_2 = c_3 = 1$
- ✓ Full VMD model: $c_1 c_2 = \frac{1}{3}$, $c_3 = 1$
- ✓ Modified VMD: $c_1 c_2 \neq c_3$
- Amplitude analysis result

$n' \rightarrow \pi^+ \pi^- e^+ e^-$	Model I	Model II	Model III
$\eta \rightarrow \pi + \pi - e^+ e^-$	$c_1 - c_2 = c_3 = 1$	$c_1 - c_2 = 1/3, c_3 = 1$	$c_1 - c_2 \neq c_3$
$m_V ({ m MeV}/c^2)$	$954.3 \pm 87.8 \pm 36.4$	857.4 ± 76.5	787.5 ± 173.9
$m_{V,\pi}({ m MeV}/c^2)$	$765.3 \pm 1.2 \pm 20.2$	765.4 ± 1.2	764.8 ± 1.3
$m_{\omega}({ m MeV}/c^2)$	$778.7 \pm 1.3 \pm 17.3$	778.7 ± 1.3	778.7 ± 1.4
$eta(10^{-3})$	$8.5 \pm 1.4 \pm 0.7$	8.5 ± 1.4	8.1 ± 1.5
heta	$1.4\!\pm\!0.3\!\pm\!0.1$	1.4 ± 0.3	1.4 ± 0.3
$c_1 - c_2$	1	1/3	-0.03 ± 1.09
	1	1	1.03 ± 0.03
$\chi^2/ndof(e^+e^-,\pi^+\pi^-)$	77.9/82.0, 47.8/65.0	78.7/82.0, 47.6/65.0	79.4/82.0, 45.1/65.0
$b_{\eta'} (\text{GeV}/c^2)^{-2}$	$1.10 \pm 0.20 \pm 0.07$	1.36 ± 0.24	1.61 ± 0.71
m/ > =+== ++ +=	Model I	Model II	Model III
$\eta \to \pi^-\pi^-\mu^-\mu^-$	$c_1 - c_2 = c_3 = 1$	$c_1 - c_2 = 1/3, c_3 = 1$	$c_1 - c_2 \neq c_3$
$m_V ({ m MeV}/c^2)$	$649.4 \pm 55.9 \pm 35.6$	601.6 ± 25.7	589.6 ± 25.9
$m_{V,\pi}({ m MeV}/c^2)$	$757.3 \pm 24.1 \pm 18.0$	765.4 ± 18.8	774.4 ± 43.5
$c_1 - c_2$	1	1/3	0.01 ± 0.45
c_3	1	1	0.98 ± 0.40
$\chi^2/ndof(\mu^+\mu^-,\pi^+\pi^-)$	48.1/34.0, 32.9/46.0	48.3/34.0, 32.9/46.0	49.7/35.0, 32.4/46.0
$b_{\eta'} (\text{GeV}/c^2)^{-2}$	$2.37 \!\pm\! 0.41 \!\pm\! 0.27$	2.76 ± 0.24	2.88 ± 0.25

- The slope parameter of TFF $\checkmark b_{\eta\prime} = 1.30 \pm 0.19 (\text{GeV}/c^2)^{-2}$
- CP -violating asymmetry $\checkmark F(\varphi) = 1 + b \cdot \sin^2 \varphi + c \cdot \sin 2\varphi$ $\checkmark A_{CP} = \frac{4c}{(2+b\pi)}$ • For $\eta' \rightarrow \pi^+ \pi^- e^+ e^- A_{CP} = (-0.21 \pm 0.73 \pm 0.01)\%$
 - For $\eta' \to \pi^+ \pi^- \mu^+ \mu^- A_{CP} = (0.62 \pm 4.71 \pm 0.08)\%$

 $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$

CP observable in hyperon decay

• CP tests in hyperon

$$\checkmark \text{ The amplitude of hyperon decay} \frac{1}{2} \rightarrow \frac{1}{2} + \mathbf{0} \text{ is } \mathcal{A} \sim S\sigma_0 + P\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}},$$
$$\alpha_Y = \frac{2Re(S^*P)}{|S|^2 + |P|^2}, \beta_Y = \frac{2Im(S^*P)}{|S|^2 + |P|^2}, \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 - |P|^2}$$

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

Phys. Rev. 108, 1645 (1957)

$$\checkmark \text{ If CP conserved: } S \xrightarrow{\text{CP}} - S, \quad P \xrightarrow{\text{CP}} P \text{ which mean } \alpha_Y \xrightarrow{\text{CP}} \alpha_{\overline{Y}} = -\alpha_Y, \quad \beta_Y \xrightarrow{\text{CP}} \beta_{\overline{Y}} = -\beta_Y$$

$$\checkmark \ \alpha_Y^2 + \beta_Y^2 + \gamma_Y^2 = 1 \ \rightarrow \ \beta_Y = \sqrt{1 - \alpha_Y^2} \sin(\phi_Y), \gamma_Y = \sqrt{1 - \alpha_Y^2} \cos(\phi_Y)$$

 $\checkmark CP \text{ observable: } A_{CP} = \frac{\alpha_Y + \alpha_{\overline{Y}}}{\alpha_Y - \alpha_{\overline{Y}}}, \ \Delta \phi_{CP} = \frac{\phi_Y - \phi_{\overline{Y}}}{2}$

 $\checkmark S = \sum S_j \exp\{i(\xi_j^S + \delta_{2I}^S)\}, P = \sum P_j \exp\{i(\xi_j^P + \delta_{2I}^P)\}$

$$\checkmark \overline{S} = \sum -S_j \exp\{i(-\xi_j^S + \delta_{2I}^S)\}, \overline{P} = \sum P_j \exp\{i(-\xi_j^P + \delta_{2I}^P)\}$$

$$\checkmark A_{CP} = -tan(\delta_P - \delta_S)tan(\xi_P - \xi_S), \ \Delta\phi_{CP} = \frac{\alpha_Y}{\sqrt{1 - \alpha_Y^2}} cos\phi_Y tan(\xi_P - \xi_S)$$

Hyperon production at BESIII

• Polarized hyperon pairs produced in e^+e^- collisions

✓ Spin $\frac{1}{2} + \frac{1}{2}$ baryon-antibaryon spin density matrix

$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2 \sin(\Delta \Phi)}, \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2 \cos(\Delta \Phi)} \quad P_Y =$$

✓ Unpolarized e^+e^- beams $--\rightarrow$ transverse polarization (if $\Delta \Phi \neq 0$) • $P_y(cos\theta) = \frac{\sqrt{1-\alpha_{\psi}^2}cos(\theta)sin(\theta)}{1+\alpha_{u}cos^2(\theta)}sin(\Delta \Phi)$

• 10 billion J/ψ events collected:

- ✓ Large BR in J/ ψ decay
- Quantum entangled pair productions
- ✓ Polarized hyperon
- \checkmark High efficiency, background free

AM Detection $N_B \ (\times 10^6$ Decay mode $B(\times 10^{-3})$ Efficiency Number of reconstru $J/\psi \to \Lambda \bar{\Lambda}$ 1.61 ± 0.15 16.1 ± 1.5 40% 4500 X 10³ $J/\psi \rightarrow \Sigma^0 \overline{\Sigma}^0$ 1.29 ± 0.09 12.9 ± 0.9 25% 600 X 10³ $J/\psi \rightarrow \Sigma^+ \overline{\Sigma}^ 1.50 \pm 0.24$ 15.0 ± 2.4 24% 640 X 10³ $J/\psi \to \Sigma(1385)^- \bar{\Sigma}^+$ (or c.c.) 0.31 ± 0.05 3.1 ± 0.5 $J/\psi \rightarrow \Sigma(1385)^- \overline{\Sigma}(1385)^+$ (or c.c.) 11.0 ± 1.2 1.10 ± 0.12 $J/\psi \rightarrow \Xi^0 \bar{\Xi}^0$ 1.20 ± 0.24 12.0 ± 2.4 14% 670 X 10³ $J/\psi \rightarrow \Xi^- \overline{\Xi}^+$ 0.86 ± 0.11 8.6 ± 1.0 19% 810 X 10³ $J/\psi \to \Xi (1530)^0 \bar{\Xi}^0$ 0.32 ± 0.14 3.2 ± 1.4 $J/\psi \rightarrow \Xi(1530)^- \bar{\Xi}^+$ 0.59 ± 0.15 5.9 ± 1.5 $\psi(2S) \to \Omega^- \bar{\Omega}^+$ 0.05 ± 0.01 0.15 ± 0.03 s $\mathbf{P}_{A} \cdot \hat{\mathbf{Z}} = \frac{\alpha_{\Xi} + \mathbf{P}_{\Xi} \cdot \mathbf{Z}}{1 + \alpha \mathbf{P} \cdot \hat{\mathbf{Z}}},$ Nature volume 606, pages64–69 (2022)

$$\mathbf{P}_{A} \times \hat{\mathbf{z}} = \mathcal{P}_{\Xi} \sqrt{1 - \alpha_{\Xi}^{2}} \frac{\sin \phi_{\Xi} \hat{\mathbf{x}} + \cos \phi_{\Xi} \hat{\mathbf{y}}}{1 + \alpha_{\Xi} \mathbf{P}_{\Xi} \cdot \hat{\mathbf{z}}},$$

- Tests of CP symmetry in entangled $\Xi^0 \overline{\Xi}^0$ pairs
 - ✓ The most precise values for CP asymmetry observables of Ξ^0 decay are obtained.
 - ✓ For the first time, the weak and strong phase differences are determined which are the most precise results for any weakly decaying baryon.
 - $\checkmark \Xi^0$ and $\overline{\Xi}^0$ decay parameters are determined with the most precise, which are improved by more than one order of magnitude over the previous measurements.

Parameter	This work	Previous result
$\alpha_{J/\psi}$	$0.514 \pm 0.006 \pm 0.015$	0.66±0.06 [42]
$\Delta \Phi(rad)$	$1.168 \pm 0.019 \pm 0.018$	
α_{Ξ}	$-0.3750 \pm 0.0034 \pm 0.0016$	-0.358 ± 0.044 [49]
$\bar{\alpha}_{\Xi}$	$0.3790 \pm 0.0034 \pm 0.0021$	0.363 ± 0.043 [49]
$\phi_{\Xi}(rad)$	$0.0051 \pm 0.0096 \pm 0.0018$	0.03 ± 0.12 [49]
$\bar{\phi}_{\Xi}(\mathrm{rad})$	$-0.0053 \pm 0.0097 \pm 0.0019$	-0.19 ± 0.13 [49]
$lpha_{\Lambda}$	$0.7551 \pm 0.0052 \pm 0.0023$	0.7519 ± 0.0043 [20]
$ar{lpha}_\Lambda$	$-0.7448 \pm 0.0052 \pm 0.0017$	-0.7559 ± 0.0047 [20]
$\xi_P - \xi_S(\text{rad})$	$(0.0 \pm 1.7 \pm 0.2) imes 10^{-2}$	
$\delta_P - \delta_S(\text{rad})$	$(-1.3 \pm 1.7 \pm 0.4) \times 10^{-2}$	
A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$	$(-0.7 \pm 8.5) \times 10^{-2}$ [49]
$\Delta \phi_{CP}^{\Xi}$ (rad)	$(-0.1\pm 6.9\pm 0.9) imes 10^{-3}$	$(-7.9 \pm 8.3) \times 10^{-2}$ [49]
A^{Λ}_{CP}	$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$	$(-2.5 \pm 4.8) \times 10^{-3}$ [20]
$\langle \alpha_{\Xi} \rangle$	$-0.3770 \pm 0.0024 \pm 0.0014$	
$\langle \phi_{\Xi} \rangle$ (rad)	$0.0052 \pm 0.0069 \pm 0.0016$	
$\langle \alpha_{\Lambda} \rangle$	$0.7499 \pm 0.0029 \pm 0.0013$	0.7542 ± 0.0026 [20]

PRD 108(2023) L031106

- Investigation of the $\Delta I = \frac{1}{2}$ Rule and Test of CP Symmetry
 - ✓ The precisions of $\alpha_{\Lambda 0}$ for $\Lambda \to n\pi^0$ and $\overline{\alpha}_{\Lambda 0}$ for $\overline{\Lambda} \to \overline{n}\pi^0$ compared to world averages are improved by factors of 4 and 1.7
 - ✓ The ratio of decay asymmetry parameters of $\Lambda \to n\pi^0$ to that of $\Lambda \to p\pi^-$, $\langle \alpha_{\Lambda 0} \rangle / \langle \alpha_{\Lambda -} \rangle$, is smaller than unity more than 5 σ , which signifies the existence of the $\Delta I = 3/2$ transition in Λ for the first time.

- Test of CP Symmetry in Hyperon to Neutron Decays
 - ✓ The CP-odd weak decay parameters of the decays $\Sigma^+ \to n\pi^+(\alpha_+)$ and $\overline{\Sigma}^- \to \overline{n}\pi^-(\overline{\alpha}_-)$ are determined. $\overline{\alpha}_-$ is measured for the first time, and the accuracy of α_+ is improved by a factor of 4.
 - ✓ The simultaneously determined decay parameters allow the first precision CP symmetry test for any hyperon decay with a neutron in the final state.

PRL 131(2023) 191802

Parameter	This Letter	Previous result
$\alpha_{J/\psi}$	$-0.5156 \pm 0.0030 \pm 0.0061$	$-0.508 \pm 0.006 \pm 0.004$ [26]
$\Delta \Phi_{J/\psi}$ (rad)	$-0.2772 \pm 0.0044 \pm 0.0041$	$-0.270 \pm 0.012 \pm 0.009$ [26]
α_+	$0.0481 \pm 0.0031 \pm 0.0019$	0.069 ± 0.017 [18]
$\bar{\alpha}_{-}$	$-0.0565 \pm 0.0047 \pm 0.0022$	
α_+/α_0	$-0.0490 \pm 0.0032 \pm 0.0021$	-0.069 ± 0.021 [33]
$\bar{\alpha}_{-}/\bar{\alpha}_{0}$	$-0.0571 \pm 0.0053 \pm 0.0032$	
A _{CP}	$-0.080 \pm 0.052 \pm 0.028$	
$\langle lpha_+ angle$	$0.0506 \pm 0.0026 \pm 0.0019$	

- Strong and Weak CP Tests in Sequential Decays of Polarized Σ^0 Hyperons
 - ✓ The strong-CP symmetry $(A_{CP}^{\Sigma} = \alpha_{\Sigma^0} + \overline{\alpha}_{\Sigma^0})$ is tested for the first time. The weak-CP test is performed in the subsequent decays of their daughter particles Λ and $\overline{\Lambda}$.
 - ✓ The transverse polarizations of the Σ^0 hyperons in J/ψ and ψ (3686) decays are observed with opposite directions for the first time.
 - ✓ The ratios between the S-wave and D-wave contributions of $J/\psi(\psi(3686)) \rightarrow \Sigma^0 \overline{\Sigma}^0$ decay are obtained for the first time.

Parameter	This Letter	Previous results
$\alpha_{J/\psi}$	$-0.4133 \pm 0.0035 \pm 0.0077$	-0.449 ± 0.022 [52]
$\Delta \Phi_{J/\psi}$ (rad)	$-0.0828 \pm 0.0068 \pm 0.0033$	
$\alpha_{\psi(3686)}$	$0.814 \pm 0.028 \pm 0.028$	0.71 ± 0.12 [52]
$\Delta \Phi_{\psi(3686)}$ (rad)	$0.512 \pm 0.085 \pm 0.034$	
α_{Σ^0}	$-0.0017 \pm 0.0021 \pm 0.0018$	
$\bar{\alpha}_{\Sigma^0}$	$0.0021 \pm 0.0020 \pm 0.0022$	
$lpha_{\Lambda}$	$0.730 \pm 0.051 \pm 0.011$	0.748 ± 0.007 [44]
\bar{lpha}_{Λ}	$-0.776 \pm 0.054 \pm 0.010$	-0.757 ± 0.004 [44]
A_{CP}^{Σ}	$(0.4 \pm 2.9 \pm 1.3) \times 10^{-3}$	
A_{CP}^{Λ}	$(-3.0 \pm 6.9 \pm 1.5) \times 10^{-2}$	$(-2.5 \pm 4.8) \times 10^{-3}$ [2]

- Hyperon weak radiative decay
 - ✓ Interplay of the electromagnetic, weak, and strong interactions.
 - ✓ Hara's theorem: Radiative hyperon decays have vanish PV amplitude and decay asymmetry in the limit of SU(3) symmetry.
 - $\checkmark \text{ Effective Lagrangian: } \mathcal{L} = \frac{eG_F}{2}\overline{B}_f (a^{PC} + b^{PV}\gamma_5)\sigma^{\mu\nu}B_iF_{\mu\nu}$

✓ Decay width and decay asymmetry: $\Gamma = \frac{e^2 G_F^2}{\pi} (|a|^2 + |b|^2) \left| \vec{k} \right|^3, \alpha_{\gamma} = \frac{2Re(ab^*)}{|a|^2 + |b|^2}$

 $\checkmark \alpha_{\gamma} = 0?$

✓ This process generally has a very small branching ratio and is difficult to measure.

• Measurement of the Absolute Branching Fraction and Decay Asymmetry of $\Lambda
ightarrow n\gamma$

- ✓ The absolute branching fraction of the decay $\Lambda \rightarrow n\gamma$ is determined to be $(0.832 \pm 0.038 \pm 0.054) \times 10^{-3}$, which is a factor of 2.1 lower and 5.6 standard deviations different than the previous measurement.
- ✓ The first determination of the decay asymmetry parameter α_{γ} is reported with a value of - 0. 16 ± 0. 10 ± 0. 05.

PRL 129(2022) 212002

 \blacklozenge Precision Measurement of the Decay $\Sigma^+ \to p\gamma$ in the Process $J/\psi \to \Sigma^+\overline{\Sigma}^-$

- ✓ The absolute branching fraction of the decay $\Sigma^+ \rightarrow p\gamma$ is measured to be (0.996 ± 0.021 ± 0.018) × 10⁻³, which is lower than its world average value by 4.2 standard deviations.
- ✓ The decay asymmetry parameter is determined to be $-0.652 \pm 0.056 \pm 0.020$.

- \blacklozenge Measurement of the Decay $\Xi^0 \to \Lambda \gamma$ with Entangled $\Xi^0 \overline{\Xi}{}^0$ Pairs
 - ✓ The absolute branching fraction of the decay $\Xi^0 \rightarrow \Lambda \gamma$ has been measured for the first time, and is $(1.347 \pm 0.066 \pm 0.054) \times 10^{-3}$.
 - $\checkmark\,$ The decay asymmetry parameter is determined to be $-0.741\pm0.062\pm0.019.$

Summary

A set of interesting and important results from the light hadron decays are achieved:

- ✓ Light meson decays (η/η')
 - Decay mechanisms, Form factors, New physics...
- ✓ Hyperon decays
 - $\checkmark\,$ CP test and polarization measurement
 - ✓ Hyperon weak radiative decay

More interesting results expected in the future!